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Abstract. We investigate how the type of convexity of the core function affects the Csiszár f -
divergence functional. A general treatment for the type of convexity has been considered and the
associated perspective functions have been studied. In particular, it has been shown that when
the core function is MN-convex, then the associated perspective function is jointly MN-convex
if the two scalar means M and N are the same. In the case where M �= N, we study the type of
convexity of the perspective function. As an application, we prove that the Hellinger distance is
jointly GG-convex.

1. Introduction

In the probability theory, the notion of Csiszár f -divergence is well-known in
relation with measures between probability distributions. Those kinds of measures have
many applications in many directions, like economics, genetics, signal processing and
so on. In fact, Csiszár [2, 3] introduced f -divergence functional of a function f :
[0,∞) → R by

I f (p,q) :=
n

∑
j=1

q j f

(
p j

q j

)

for n -tuples of positive real numbers p = (p1, . . . , pn) and q = (q1, . . . ,qn) . In above
definition, the undefined expressions are interpreted as

f (0) = lim
t→0+

f (t), 0 f

(
0
0

)
= 0, 0 f

( p
0

)
= lim

ε→0+
f
( p

ε

)
= p lim

t→∞

f (t)
t

.

A useful fact concerning the f -divergence functional was proved by Csiszár and
Körner [4] as follows. In fact, they showed that the perspective function of a convex
function is sub-additive.
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THEOREM A. If f : [0,∞)→R is convex, then If (p,q) is jointly convex in p and
q and

g

(
n

∑
j=1

p j,
n

∑
j=1

q j

)
=

n

∑
j=1

q j f

(
∑n

j=1 p j

∑n
j=1 q j

)
� I f (p,q) (1)

for all positive n-tuples p = (p1, . . . , pn) and q = (q1, . . . ,qn) , where the perspective
function g associated to f is defined by

g(x,y) := y f

(
x
y

)
.

We remark that Theorem A was independently proved by E. K. Godunova in [9].
The reader is referred to [14] for more on perspective functions.

When f varies through convex functions, the Csiszár f -divergence produces dif-
ferent known measures. Among others, we mention the following notable measures:

— Kullback–Leibler distance is defined by KL(p,q) := ∑n
j=1 p j log

(
p j
q j

)
and KL =

I f , when f (t) = t ln t (t > 0) .

— Total variation distance is defined by V (p,q) := ∑n
j=1

∣∣p j −q j
∣∣ and V = I f ,

when f (t) = |t −1| (t � 0) .

— Hellinger distance is defined by H2(p,q) := 2∑n
j=1

(√
p j −√

q j
)2

and H2 = I f ,
when f (t) = 2(

√
t−1)2 (t � 0) .

— χ2 -distance is defined by Dχ2(p,q) := ∑n
j=1

(p j−q j)2

q j
and Dχ2 = I f , when f (t)=

(t −1)2 (t � 0) .

— Rényi’s divergences are defined by Rα(p,q) := 1
α(α−1) lnρα(p,q) for every α ∈

R \ {0,1} , where ρα(p,q) = ∑n
j=1 pα

j q
1−α
j and ρα = I f , when f (t) = tα (t >

0) .

For more information about f -divergence functional and its properties, the reader
is referred to [8, 10, 11, 12, 15] and references therein.

For every two positive real numbers x,y and every α ∈ [0,1] , the most well-known
scalar means read as follows:

Aα(x,y) = αx+(1−α)y Arithmetic mean

Gα(x,y) = xαy1−α Geometric mean

Hα(x,y) =
(
αx−1 +(1−α)y−1)−1

Harmonic mean.

The Arithmetic-Geometric-Harmonic means inequality is well-known:

Hα(x,y) � Gα(x,y) � Aα(x,y), (x,y � 0, α ∈ [0,1]). (2)
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2. MN-convexity

Convex functions are known to be defined using the Arithmetic mean: A real
function f is convex when

f (Aα (x,y)) � Aα( f (x), f (y))

for all x,y in domain of f and every α ∈ [0,1] . However, when the Arithmetic means
are replaced by other means in both sides of the above inequality, different types of
convexities for functions can be derived. In the next definition, we limit the domain and
the range of our function to the positive half-line, while it will be possible to consider
this sets more general subsets of real functions depending on occasions. If Mα and
Nα are two α -weighted scalar means, a positive real function f on (0,∞) is said to be
MN-convex, when

f (Mα (x,y)) � Nα( f (x), f (y)) (3)

holds for all x,y � 0 and every α ∈ [0,1] . Note that an AA-convex function is simply
called convex. Moreover, some of these functions enjoy well-known titles. For exam-
ple, HA-convex functions are called Harmonically convex and AG-convex functions
are known as log-convex functions.

Some basic facts concerning MN-convex functions are given in the following
lemma. The reader is referred to [1, 7, 13, 14, 16] to see the proofs and more infor-
mation about these functions.

LEMMA 1. Let f be a positive real function on (0,∞) .
(i) If f is AG-convex if and only if log f is convex;
(ii) f is AH-convex if and only if 1/ f is concave;
(iii) f is GA-convex (concave) if and only if f oexp is convex (concave);
(iv) If h is convex (concave), then f (t) = h(lnt) is GA-convex (concave);
(v) f is GG-convex if and only if the function h = lno f oexp is convex;
(vi) f is GG-convex if and only if h = lno f is GA-convex;
(vii) f is GH-convex (concave) if and only if f oexp is AH-convex (concave);
(iix) f is HG-convex if and only if h(t) = t ln f (t) is convex;
(ix) f is HG-convex if and only if ln f is HA-convex;
(x) f is HH-convex (concave) if and only if h(t) = t/ f (t) is concave (convex).

We note that each class of MN-convex functions we mentioned in Lemma 1 actu-
ally contains many examples. So we give several examples before we continue.

EXAMPLE 1. The functions t �→ 1/
√

t and t �→ −t−3 are AH-convex on (0,∞) .
The functions t �→ expt and t �→ tr (r < 0) are AG-convex on R and (0,∞) ,

respectively.
The function t �→ log(1+ t) is GA-convex on (0,∞) . Moreover, recall that the

well-known digamma function is defined by ψ(t) = d
dt logΓ(t) = Γ(t)

Γ′(t) on (0,∞) , where

Γ denotes the gamma function, i.e., Γ(t) =
∫ ∞
0 xt−1e−xdx . It is known that [16] the
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functions t �→ ψ(t)+ 1
2t and t �→ ψ(t)+ 1

2t + 1
12t2

are GA-concave and GA-convex,
respectively, on (0,∞) .

It has been shown in [13] that if f (t) = ∑∞
n=0 cntn is a real analytic function whose

radius of convergence is r > 0 and whose coefficients cn are non-negative, then f is a
GG-convex function on (0,r) . This implies that the functions exp, sinh and cosh are
GG-convex on R and the functions sec, csc and tan are GG-convex on (0,π/2) . In
addition, the functions t �→ (1− t)−1 and t �→ 1+t

1−t are GG-convex on (0,1) , see [5].

The functions t �→ 1√
ln t

and t �→ −(ln t)−3 are GH-convex on (0,∞) .
For all r � 0 and r � −1, the function t �→ exp(tr) are HG-convex on (0,∞) .
The functions t �→ t

ln t and t �→ tr (0 � r � 1) are HH-convex on (0,∞) .

Regarding the Jensen inequality, Lemma 1 can be used to demonstrate variants of
the Jensen inequality for every MN-convex function. For more information on MN-
convexity the reader can refer to [1, 5, 13, 14].

3. The effect of type of convexity of the core function
on the f -divergence functional

We begin with modifications of the celebrated result of Csiszár, Theorem A. A
consequence of Theorem A is that if f is convex, the associated perspective function
g f is convex in both variables. In the next theorem, we investigate the effect of the type
of convexity of the generating function f on the convexity of the associated perspective
function g f . When there is no fear of ambiguity, we briefly use g for the associated
perspective function of f . Once more, we note that although we restrict the domain
and the range of our function to the positive half-line, depending on the situation, it is
possible to consider this sets more general subsets of real functions.

THEOREM 1. Let f : (0,∞) → (0,∞) be a real function.
(i) f is AH-convex if and only if g is AH-convex on the first coordinate and convex

on the second coordinate. In particular, the inequality

g
(
Aα(a,b),Aα(x,y)

)
� Hα {[Aα(g(a,x),g(a,y))] , [Aα(g(b,x),g(b,y))]} (4)

holds for all a,b,x,y � 0 and every α ∈ [0,1] .
(ii) f is AG-convex if and only if g is AG-convex on the first coordinate and convex

on the second coordinate. In particular, the inequality

g
(
Aα(a,b),Aα(x,y)

)
� Gα {Aα(g(a,x),g(a,y)),Aα (g(b,x),g(b,y))} (5)

holds, for all a,b,x,y � 0 and every α ∈ [0,1] .
(iii) f is GG-convex if and only if g is jointly GG-convex. In particular,

g
(
Gα(a,b),Gα(x,y)

)
� Gα {g(a,x),g(b,y))} (6)

for all a,b,x,y � 0 and every α ∈ [0,1] .
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(iv) f is HH-convex if and only if g is jointly HH-convex. In particular,

g
(
Hα(a,b),Hα(x,y)

)
� Hα {g(a,x),g(b,y))} (7)

for all a,b,x,y � 0 and every α ∈ [0,1] .
(v) f is GH-convex if and only if g is GH-convex in its first variable and GG-

convex in its second variable. In particular, the inequality

g
(
Gα(a,b),Gα(x,y)

)
� Hα {Gα(g(a,x),g(a,y)),Gα(g(b,x),g(b,y))} (8)

holds for all a,b,x,y � 0 and every α ∈ [0,1] . Moreover, in this case g is jointly
GG-convex, i.e., (6) holds.

Before proving Theorem 1, we would like to note that if f is MN-convex, then g is
not necessarily MN-convex in both variables, unless M = N. For example, if f is AH-
convex, then part (i) of Theorem 1 shows that g is AH-convex on the first coordinate
and convex on the second coordinate. However, g is not AH-convex in both variables.
To see this, consider the AH-convex function f (t) = 1/

√
t and put α = 1/2, a = 1,

x = 2 and y = 4. Then

3
√

3 = g(a,A1/2(x,y)) � H1/2(g(a,x),g(a,y)) =
16

√
2

4+
√

2
.

Note in addition that when f is AH-convex, g is AA-convex in both variables. How-
ever, the the reverse direction does not hold, i.e., if g is AA-convex in both variables,
then f is not necessarily AH-convex.

Proof of Theorem 1. First assume that f is AH-convex. For all x,y,a � 0 and
every α ∈ [0,1] we have

g
(
αa+(1−α)b,x

)
= x f

(1
x

(
αa+(1−α)b

))
� x
[
α f
(a
x

)−1 +(1−α) f
(b

x

)−1]−1

=
[
αx−1 f

(a
x

)−1
+(1−α)x−1 f

(b
x

)−1]−1

=
[
αg(a,x)−1 +(1−α)g(b,x)−1

]−1
.

This ensures that g is AH-convex on the first coordinate. Therefore

g
(

α(a,x)+ (1−α)(b,y)
)

�
(

αg(a,z)−1 +(1−α)g(b,z)−1
)−1

,

where z = αx+(1−α)y . This means that

g
(
Aα(a,b),Aα(x,y)

)
� Hα {g(a,Aα(x,y)),g(b,Aα (x,y))} . (9)
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On the other hand we can write

f

(
a

Aα(x,y)

)
= f

⎛
⎝ αa

yx + (1−α)a
yx

α
y + (1−α)

x

⎞
⎠= f

(
β
(a

x

)
+(1−β )

(
a
y

))
, (10)

where β =
α
y

α
y + (1−α)

x

= αx
Aα (x,y) . Since f is convex, (10) implies that

f

(
a

Aα(x,y)

)
� αx

Aα(x,y)
f
(a

x

)
+

(1−α)y
Aα(x,y)

f

(
a
y

)
.

Multiplying both sides by Aα(x,y) we get

g
(
a,Aα(x,y)

)
� Aα(g(a,x),g(a,y)). (11)

Similarly

g
(
b,Aα(x,y)

)
� Aα(g(b,x),g(b,y)). (12)

Since the Harmonic mean is monotone, it follows from (11) and (12) that

g
(
Aα(a,b),Aα(x,y)

)
� Hα {g(a,Aα(x,y)),g(b,Aα(x,y))} (by (9))

� Hα {Aα(g(a,x),g(a,y)),Aα(g(b,x),g(b,y))}
which is the desired inequality (4). With x = y , this gives the AH-convexity of g in the
first coordinate and with a = b this implies the convexity of g in the second coordinate.

Conversely, if g is AH-convexity in the first coordinate, then f (t) = g(t,1) is an
AH-convex function, too. This completes the proof of (i).

Next suppose that f is AG-convex. For all x,y,a � 0 and every α ∈ [0,1] we have

g
(
αa+(1−α)b,x

)
= x f

(1
x

(
αa+(1−α)b

))
� x
[
f
(a

x

)α
f
(b

x

)1−α]

=
[
x f
(a

x

)]α
[
x f
(b

x

)]1−α

= g(a,x)αg(b,x)1−α ,

whence g is AG-convex in its first variable. Hence

g
(
Aα(a,b),Aα(x,y)

)
� Gα {g(a,Aα(x,y)),g(b,Aα (x,y))} . (13)

Furthermore, taking into account the Arithmetic-Geometric means inequality, we know
that f is a convex function so that (11) and (12) hold. Regarding the monotonicity of
the Geometric mean in its both variables we conclude from (11) and (12) that

Gα {g(a,Aα(x,y)),g(b,Aα(x,y))} � Gα {Aα(g(a,x),g(a,y)),Aα(g(b,x),g(b,y))} .
(14)
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Combining (13) and (14) we infer (5). Putting x = y , the AG-convexity of g in first
coordinate follows from (5) and with a = b , (5) gives the convexity of g in the second
coordinate. Conversely, if g is AG-convex in its first coordinate, then f (t) = g(t,1) is
AG-convex as well.

To prove (iii), let f be a GG-convex function. Then

f

(
Gα(a,b)
Gα(x,y)

)
= f

(
aαb1−αx−αyα−1)= f

(
Gα

(
a
x
,
b
y

))
� Gα

(
f
(a

x

)
, f

(
b
y

))
.

Hence

g
(
Gα(a,b),Gα(x,y)

)
= Gα(x,y) f

(
Gα(a,b)
Gα(x,y)

)

� Gα(x,y)Gα

(
f
(a

x

)
, f

(
b
y

))
= Gα {g(a,x),g(b,y))}

as required. This proves (iii).
Next suppose that f is a HH-convex function. We write

f

(
Hα(a,b)
Hα(x,y)

)
= f

((
αa−1 +(1−α)b−1

αx−1 +(1−α)y−1

)−1
)

= f

((
α xy

a +(1−α) xy
b

αy+(1−α)x

)−1
)

= f

((
β

x
a

+(1−β )
y
b

)−1
)

in which we set β = αy
αy+(1−α)x . Since f is HH-convex, we obtain

f

(
Hα(a,b)
Hα(x,y)

)
= f

(
Hβ

(
a
x
,
b
y

))
� Hβ

(
f
(a

x

)
, f

(
b
y

))

so that

g(Hα(a,b),Hα(x,y)) = Hα(x,y) f

(
Hα(a,b)
Hα(x,y)

)
� Hα(x,y)Hβ

(
f
(a

x

)
, f

(
b
y

))
.

(15)

A simple calculation shows that

Hα(x,y)Hβ

(
f
(a

x

)
, f

(
b
y

))
= Hα {g(a,x),g(b,y)} .

Consequently, (7) follows from (15). Hence g is jointly HH-convex. Conversely, if g
is jointly HH-convex, then f (t) = g(t,1) is HH-convex. This proves (iv).



566 M. KIAN

Let f be a GH-convex function. For all a,b,x � 0 and α ∈ [0,1] we have

g
(
Gα(a,b),x

)
= x f

(
Gα(a,b)

x

)
= x f

(
Gα

(
a
x
,
b
x

))

� xHα

(
f
(a

x

)
, f

(
b
x

))
= Hα (g(a,x),g(b,x)) , (16)

whence g is GH-convex function in its first coordinate. Furthermore, we can write

g
(
a,Gα(x,y)

)
= Gα(x,y) f

(
a

Gα(x,y)

)

= Gα(x,y) f

(
Gα

(
a
x
,
a
y

))

� Gα(x,y)Hα

(
f
(a

x

)
, f

(
a
y

))

� Gα(x,y)Gα

(
f
(a

x

)
, f

(
a
y

))
= Gα (g(a,x),g(a,y)) , (17)

where the last inequality follows from the Harmonic-Geometric mean inequality. This
ensures that g is GG-convex in the second coordinate. Furthermore, combining (16)
and (17) and using the monotonicity of the Harmonic mean, we reach (8). In addition,
a similar argument as in (16) shows that g is jointly GG-convex. Indeed,

g
(
Gα(a,b),Gα(x,y)

)
= Gα(x,y) f

(
Gα(a,b)
Gα(x,y)

)

= Gα(x,y) f

(
Gα

(
a
x
,
b
y

))

� Gα(x,y)Hα

(
f
(a

x

)
, f

(
b
y

))

� Gα(x,y)Gα

(
f
(a

x

)
, f

(
b
y

))
= Gα (g(a,x),g(b,y)) ,

and so g is jointly GG-convex as we claimed. The converse follows similarly as previ-
ous parts. �

We give some particular corollaries of of Theorem 1 for some f -divergence func-
tionals. It is easy to see that there are positive real numbers c1,c2 for which the function
f (t) = t log t is AH-convex on (c1,c2) . Theorem 1 implies that the Kullback–Leibler

distance KL(p,q) = ∑n
j=1 p j log

(
p j
q j

)
is AH-convex on the first coordinate and convex

on the second coordinate. As another example, the function f (t) = tr is AG-convex on
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(0,∞) for all r < 0. By Theorem 1, the generated divergence functional ρr(p,q) =
∑n

j=1 pr
jq

1−r
j is AG-convex on its first coordinate and convex on its second coordi-

nate. As another example, the function f (t) = 2(
√

t − 1)2 is GG-convex. Accord-
ingly, the related divergence functional, which is the Hellinger distance H2(p,q) :=
2∑n

j=1

(√
p j −√

q j
)2

is jointly GG-convex.
The MN-convexity of f produces variants of the Jensen inequality. Here, we study

inequality (1) in Theorem A, when the core function f enjoys MN-convexity.

THEOREM 2. Let a = (a1, . . . ,an) and b = (b1, . . . ,bn) be two n-tuples of posi-
tive real numbers with a = ∑n

i=1 ai and b = ∑n
i=1 bi . Let f be a positive real function

on (0,∞) .
(i) If f is an AH-convex function, then

g
(
a,b
)

� a2I 1
f
(a,b)−1 � I f (a,b). (18)

(ii) If f is an AG-convex function, then

g
(
a,b
)

� b exp

[
1

b
Ilog f (a,b)

]
� I f (a,b). (19)

(iii) If f is a HA-convex function, then

g
(
a,b
)

=
b
a

gϕ

(
b, a
)

=
b
a

gφ

(
a,b
)

� b
a

Iϕ(b,a) =
b
a

Iφ (a,b) , (20)

where ϕ(t) = f (1/t) and φ(t) = t f (t) .
(iv) If f is an increasing GA-convex function, then

g
(
a,b
)

� g foexp

(
a,b
)

� I f oexp(a,b). (21)

Proof. Suppose that a,b are n -tuples of positive real numbers. For every i =
1, . . . ,n , we set βi = bi

∑n
k=1 bk

so that (β1, . . . ,βn) is a probability vector. First assume

that f is an AH-convex function for which we can write

f
(∑n

i=1 ai

∑n
i=1 bi

)
= f
( a1

∑n
k=1 bk

+ · · ·+ an

∑n
k=1 bk

)

= f
(a1

b1

b1

∑n
k=1 bk

+ · · ·+ an

bn

bn

∑n
k=1 bk

)

�
(

n

∑
i=1

bi

∑n
k=1 bk

1
f ( ai

bi
)

)−1

(22)
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where we use the AH-convexity of f with βi = bi
∑n

k=1 bk
. Multiplying both sides of (22)

by ∑n
k=1 bk we get

( n

∑
k=1

bk
)
f
(∑n

i=1 ai

∑n
i=1 bi

)
�
( n

∑
k=1

bk

)( n

∑
i=1

bi

∑n
k=1 bk

1
f ( ai

bi
)

)−1

=
( n

∑
k=1

bk
)2( n

∑
i=1

bi
1

f ( ai
bi

)

)−1

=
( n

∑
k=1

bk

)2
I 1

f
(a,b)−1,

which implies the first inequality in (18). To get the second inequality we use the
convexity of the function t �→ t−1 .

( n

∑
k=1

bk

)2
I 1

f
(a,b)−1 =

( n

∑
k=1

bk

)( n

∑
i=1

bi

∑n
k=1 bk

1
f ( ai

bi
)

)−1

�
n

∑
i=1

bi f

(
ai

bi

)
= I f (a,b).

This completes the proof of (i). Next assume that f is an AG-convex function. Then

f
(∑n

i=1 ai

∑n
i=1 bi

)
= f

(
n

∑
i=1

βi
ai

bi

)
�

n

∏
i=1

f

(
ai

bi

)βi

, (23)

in which we use the same convex coefficients βi as in the proof of (i). Moreover,

n

∏
i=1

f

(
ai

bi

)βi

=
n

∏
i=1

exp

[
bi

∑n
k=1 bk

log f

(
ai

bi

)]

= exp

[
n

∑
i=1

bi

∑n
k=1 bk

log f

(
ai

bi

)]
= exp

[
1

b
Ilog f (a,b)

]
. (24)

The left inequality in (19) follows from (23) and (24). In addition, utilising the Arithmetic-
Geometric means inequality we reach

n

∏
i=1

f

(
ai

bi

)βi

�
n

∑
i=1

βi f

(
ai

bi

)
=

1

b
I f (a,b) (25)

and the right inequality in (19) is derived. This concludes (ii).
Now assume that f is a HA-convex function. It is not hard to see that [5] the

functions ϕ(t) = f (1/t) and φ(t) = t f (t) are convex on proper domains so that The-

orem A gives gϕ

(
a,b
)

� Iϕ(a,b) and gφ

(
a,b
)

� Iφ (a,b) . We consider the convex

coefficients αi = ai
∑n

k=1 ak
for i = 1, . . . ,n in such a way that

f

(
∑n

i=1 ai

∑n
i=1 bi

)
= f

((
∑n

i=1 bi

∑n
i=1 ai

)−1
)

= f

⎛
⎝( n

∑
i=1

bi

ai

ai

∑n
k=1 ak

)−1
⎞
⎠= f

⎛
⎝( n

∑
i=1

αi
bi

ai

)−1
⎞
⎠ .
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By the HA-convex of f , this concludes that

f

(
∑n

i=1 ai

∑n
i=1 bi

)
�

n

∑
i=1

αi f

(
ai

bi

)
=

1

∑n
k=1 ak

n

∑
i=1

ai f

(
ai

bi

)
.

Multiplying both sides by ∑n
k=1 bk we reach

g
(
a,b
)

� b
a

Iϕ(b,a).

On the other hand,

g
(
a,b
)

= b f

(
a

b

)
=

b
a

aϕ

(
b
a

)
=

b
a

gϕ

(
b, a
)

=
b
a

gφ

(
a,b
)

.

Furthermore, we compute

Iϕ (b,a) =
n

∑
i=1

aiϕ
(

bi

ai

)
=

n

∑
i=1

bi
ai

bi
f

(
ai

bi

)
= Iφ (a,b) ,

so that we arrive at (iii).
For proving (iv), first note that a function f is GA-convex if and only if the func-

tion t �→ f (et ) is convex, indeed, when proper domains are considered. So the Csiszár
inequality in Theorem A implies the right inequality of (21):

g foexp

(
a,b
)

� I f oexp(a,b). (26)

When f is increasing, we have f oexp � f on the positive half line. This ensures that
the left inequality in (iv) is valid. �

Acknowledgement. The author would like to thank a referee for bringing some
related references to his attention in the second version of this paper.

RE F ER EN C ES

[1] G. D. ANDERSON, M. K. VAMANAMURTHY AND M. VUORINEN, Generalized convexity and in-
equalities, J. Math. Anal. Appl. 335 (2007), 1294–1308.
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