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Abstract. Let K be a centrally symmetric convex body in the plane. In this paper we prove an
inequality relating the perimeter of the centroid body of K to the perimeter of K , establishing a
new Busemann-Petty type inequality.

1. Introduction

Let K be a convex body in R
2 , i.e., a compact and convex set with non-empty

interior in the plane. We say that K is centrally symmetric if it is O-symmetric, that
is, if K = −K . We say that a line � is a supporting line of K if �∩K �= /0 and K is
contained in one of the half-planes determined by � . Given a unit vector u ∈ S

1 , the
support function of K , hK , is defined as hK(u) = maxx∈K〈u,x〉 . The width function of
K , wK : S

1 → R , is defined as wK(u) = hK(u)+hK(−u) , that is, the distance between
the two supporting lines of K which are orthogonal to u . We can associate with K
some interesting convex bodies which share some properties with K . Here we are
interested in the so called centroid body introduced by C. M. Petty in [6]. The centroid
body, denoted by ΓK , is defined as the convex body whose support function is

hΓK(u) =
1

A(K)

∫
K
|〈u,x〉|dA,

where A(·) denotes the area functional, i.e., the 2-dimensional Lebesgue measure on
the plane. The name centroid body is justified by the fact that every boundary point of
ΓK is the centroid of a half of K , when K is a centrally symmetric body. Recall that
the centroid of K is the point c ∈ R

2 of the form

c =
1

A(K)

∫
K

xdA.
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Also in [6], Petty proved (as a particular case) the following inequality between the
areas of K and ΓK :

A(ΓK)
A(K)

�
(

4
3π

)2

,

where equality holds if and only if K is an ellipse centered at the origin.
In the opposite direction, it was proved by T. Bisztriczky and K. Böröczky the

following in [1]: let K be a convex body containing the origin O , then

A(ΓK)
A(K)

� 16
27

,

where equality holds if and only if K is a triangle with O as a vertex.
However, with the assumption that K has center of symmetry, they proved more:

A(ΓK)
A(K)

� 5
27

,

with equality if and only if K is a parallelogram.
With respect to the perimeter (Minkowsky content) L(·) of ΓK , it was proved in

[4] that for every convex body K of area 1,

L(ΓK) � 8

3
√

π
,

with equality if and only if K is a Euclidean disk with center at O .
We would like to find a bound without any restriction on the area of K . In this

article we show (see Theorem 1) that if K is a centrally symmetric convex body, then

1
3

� L(ΓK)
L(K)

� 1
2
.

Equalities on the left and right sides are not possible for convex bodies; however the
quotient comes arbitrarily close to these bounds by proper choices of K . For the left
side we proceed as follows: consider a very thin rhombus P centred at the origin and
with diagonals of length 2 and 2ε , as shown in Figure 1. Each diagonal divides the
rhombus into two triangles, obtaining in this way four triangles whose centroids are
p , q , r , and s , as shown in the figure. Since P is a centrally symmetric convex set,
the points p , q , r , and s , are in the boundary of ΓP . The lines through these points
which are perpendicular to the segments [O, p] , [O,q] , [O,r] , and [O,s] , respectively,
are support lines of ΓP . It follows that the perimeter of ΓP is smaller than or equal
to 4

3 (1+ ε) . We also have that L(P) = 4
√

ε2 +1, then

L(ΓP)
L(P)

�
4
3 (1+ ε)

4
√

ε2 +1
=

(1+ ε)
3
√

ε2 +1
.

Taking the limit when ε approximates to 0 we have

lim
ε→0+

L(ΓP)
L(P)

� lim
ε→0+

(1+ ε)
3
√

ε2 +1
=

1
3
.
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Figure 1: Perimeter of the centroid body for a thin rhombus

However, as established in the inequality L(ΓP)
L(P) � 1

3 , hence limε→0+
L(ΓP)
L(P) = 1

3 .

For the equality in the right side the procedure is analogous. We consider a very
thin rectangle centred at the origin. Let R be a rectangle centred at O with sides of
length 1 and ε . Let p , q , r , and s be the centroids of four of the half parts of R
obtained by division of R by lines through the origin (see Figure 2). We know that
p , q , r , and s belong to the boundary of ΓR and since ΓR is a convex set then the
rhombus pqrs is contained in ΓR . The perimeter of ΓR is bigger than or equal to√

ε2 +1 and so
L(ΓR)
L(R)

�
√

ε2 +1
2+2ε

.

Taking the limit when ε approximates to 0 we have

lim
ε→0+

√
ε2 +1

2+2ε
=

1
2
,

and since L(ΓR)
L(R) � 1

2 for every ε > 0, we have that

lim
ε→0+

L(ΓR)
L(R)

=
1
2
.

1

εε
O

p

q

r

s1
4

√
ε2 +1

R

ΓR

�

�

�

� �

Figure 2: Perimeter of the centroid body for a thin rectangle
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2. Some auxiliary results

In this section K is a convex body, not necessarily centrally symmetric, whose
centroid is at the origin. For every u ∈ S

1 , let K+
u = {x ∈ K : 〈x,u〉 � 0} and K−

u =
K \K+

u , where A represents the closure of a set A . Denote the centroids of K+
u and

K−
u by c+

u and c−u , respectively.

LEMMA 1. For every u ∈ S
1 we have that hΓK(u) is the harmonic mean of the

distances from c+
u and c−u to the line u⊥.

Proof. From the definition of centroid, it is easy to see that c+
u , O , and c−u are

aligned and that
‖c+

u ‖
‖c−u ‖ =

A(K−
u )

A(K+
u )

. (1)

Now, for the support function of the centroid body of K we have that

hΓK(u) =
1

A(K)

∫
K
|〈u,x〉|dA

=
1

A(K)

[∫
K+

u

〈x,u〉dA−
∫
K−

u

〈x,u〉dA

]

=
1

A(K)

[
A(K+

u )
A(K+

u )

∫
K+

u

〈x,u〉dA− A(K−
u )

A(K−
u )

∫
K−

u

〈x,u〉dA

]

=
A(K+

u )
A(K)

〈
1

A(K+
u )

∫
K+

u

xdA,u

〉
− A(K−

u )
A(K)

〈
1

A(K−
u )

∫
K−

u

xdA,u

〉

=
〈

A(K+
u )

A(K)
c+
u ,u

〉
−

〈
A(K−

u )
A(K)

c−u ,u

〉

=
〈

A(K+
u )

A(K)
c+
u − A(K−

u )
A(K)

c−u ,u

〉
.

It follows that hΓK(u) is the projection of the vector obtained as the convex com-
bination of c+

u and −c−u given by

A(K+
u )

A(K)
c+
u +

A(K−
u )

A(K)
(−c−u ) (2)

over the vector u . Let qu = λ0u be the point of intersection between the segment
[c+

u , pu] with the ray {λu : λ � 0} , where pu denotes the reflection of c−u along the
line u⊥ . Suppose that the u -coordinates of c+

u and c−u are given by y+
u and −y−u ,

respectively. By the similarity of the triangles �c+
u Oqu and �c+

u c−u pu (see Figure 3)
we have that

λ0

2y−u
=

‖c+
u ‖

‖c+
u ‖+‖c−u ‖ =

y+
u

y+
u + y−u

, (3)

and thus

λ0 =
y−u

y−u + y+
u

y+
u +

y+
u

y−u + y+
u

y−u .
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Moreover, from (1) we get y+
u /y−u = A(K−

u )/A(K+
u ) and hence

λ0 =
A(K+

u )
A(K)

y+
u +

A(K−
u )

A(K)
y−u .

Comparing with (2) we conclude that λ0 = hΓK(u). The assertion now follows from
(3), since

λ0 =
(

1
2
(y+

u )−1 +
1
2
(y−u )−1

)−1

. �

O

c−u

c+u
qu = λ0u

pu

y+u

y−u

y−u
�

�

�

�

�

Figure 3: λ0 is the harmonic mean of y+
u and y−u

REMARK 1. Since λ0 = 2y+
u y−u

y+
u +y−u

is the harmonic mean of y+
u and y−u , and the

harmonic mean is smaller than or equal to the arithmetic mean, i.e.,

2y+
u y−u

y+
u + y−u

� y+
u + y−u

2
,

we have that λ0 � y+
u +y−u

2 . Now, the width of ΓK in direction u , denoted by wΓK(u), is
equal to 2λ0 , and then

wΓK(u) � y+
u + y−u . (4)

Now, let ABCD be an isosceles trapezium of height 1 with bases AB and CD that
are parallel to the x axis. Let P and Q be points on AD and BC , respectively, such that
PQ is parallel to AB . Then ABCD is divided into two trapeziums, namely ABQP with
height h and PQCD with height 1− h . Suppose that AB , PQ and CD have lengths
2a , 2b and 2, respectively, with a � b � 1. Then the distance from the centroid of
ABQP to the segment PQ is given by (see for instance [5])

b+2a
3(b+a)

h.
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Similarly, the distance from the centroid of PQCD to the segment PQ is given by

b+2
3(b+1)

(1−h).

We will prove that for 0 � a � 1 and 1
2 � h � 2

3 the distance between the centroids of
both trapeziums is at most 1

2 . In other words, we will prove the following lemma.

LEMMA 2. For every (a,h) ∈ D = [0,1]× [ 1
2 ,

2
3 ] we have that

f (a,h) =
(b+2a)
3(b+a)

h+
(b+2)
3(b+1)

(1−h) � 1
2
.

a

b−a

1−a

h

1−h

A B

CD

P Q

1

Figure 4: The circumscribed trapezium

Proof. By similarity of triangles (see Figure 4) we have that

b = (1−a)h+a.

Then, we may write

f (a,h) =
1
3
· (1−a)h+3a
(1−a)h+2a

h+
1
3
· (1−a)h+a+2
(1−a)h+a+1

(1−h).

Now we determine the critical points of f (a,h) in D by solving fa(a,h) = 0 and
fh(a,h) = 0, where fa and fh denote the partial derivatives of f with respect to a and
h , respectively.

Solving fh(a,h) = 0 is equivalent to solve

(a−1)(a+h−ah)= 0,

which is true when a = 1 or a = h
h−1 . Nonetheless, the equality a = h

h−1 is not satisfied

in D , since a < 0 for 1
2 � h � 2

3 . Then a = 1 and fh(1,h) = 0.
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Solving fa(a,h) = 0 is equivalent to solve

(a(h−1)−h)(a(h−1)2−h2) = 0.

This equality holds when a = h
h−1 or a = h2

(h−1)2 . By the comment above, we conclude

that a = h2

(h−1)2 . Since we know that a = 1, we have h = 1
2 .

We conclude that f has only one critical point given by (1, 1
2 ) , and it lies on the

boundary of D . It follows that f attains its maximum at the boundary of D .
Since fa(a, 2

3 ) �= 0 for every 0 � a � 1 then f (a, 2
3 ) achieves its maximum when

a = 0 or a = 1. By a simple calculation this maximum is equal to 1
2 and occurs at

a = 1. Similarly, we can see that f (a, 1
2 ) reaches its maximum 1

2 at a = 1, and f (0,h)
reaches its maximum 4

9 at h = 1
2 . On the other side, f (1,h) � 1

2 for every 1
2 � h � 2

3 .
This completes the proof of the lemma. �

Now, consider K is a convex body enclosed by the interval [−b,b] and the convex
arc (symmetric with respect to the y-axis) from the point (b,0) to the point (−b,0) in
the upper half-plane. Let T be the isosceles trapezium with base [−b,b] , altitude equal
to the width of K in the vertical direction, and with the same area as K (see Figure 5).

LEMMA 3. Let yK and yT be the y-coordinates of the centroids of K and T ,
respectively. Then yK � yT with equality if and only if K = T.

T

K

O b−b x− axis

y − axis

h

gK

gT

g

sT

sK

p
q

Figure 5: The centroids of T and K

Proof. Since K and T have equal area, the boundary of K must cross the bound-
ary of T in two points p and q , as shown in Figure 5. By the symmetry of K and T
with respect to the y-axis, it is sufficient to prove the assertion of the lemma for the
parts of them contained in the first quadrant, namely K∗ and T ∗ . Let g , gT , gK , sT

and sK , be the centroids of K∗ ∩T ∗ , T ∗ , K∗ , T ∗ \K∗ and K∗ \T ∗ , respectively. Since
all points of T ∗ \K∗ are above the line pq and all points of K∗ \T ∗ are below, we have
that the y-coordinate of sT is larger than the y-coordinate of sK . Since T ∗ \K∗ and
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K∗ \T ∗ have equal area, the points gT and gK divide the segments [g,sT ] and [g,sK ]
in the same ratio. It follows that the y-coordinate of gT is larger than or equal to the
y-coordinate of gK and equality is only possible if T ∗ = K∗. Therefore, yK � yT with
equality if and only if K = T. �

3. Proof of the main result

THEOREM 1. Let K be a centrally symmetric planar convex body. Then

1
3

� L(ΓK)
L(K)

� 1
2
.

Proof. Consider a fixed direction u∈ S
1 and suppose the x -axis is the line orthog-

onal to u and the y-axis is in the direction of u . Let K+ and K− be the parts of K over
and below the x -axis, respectively. Now we apply to K the Steiner symmetrization (see
for instance [7]) with respect to the y-axis and name the symmetrized body as Ksim .
Set

K+
sim = {(x,y) ∈ Ksim : y � 0}, and K−

sim = Ksim \K+
sim.

Let us denote by T+ the trapezium contained in the upper half-space of the plane
that coincides with K+

sim on the x -axis, and has the same area and height as K+
sim .

Define T as the trapezium having bases parallel to the x -axis, tangent to Ksim on both
bases, and which coincides with T+ in the half-space above the x -axis. Let T− be the
trapezium resulting from the restriction of T to the half-space below the x axis. We
clearly have that A(T−) � A(K−

sim) .
The Steiner symmetrization with respect to the y-axis preserve the y-coordinates

of the centroids, so we have that y+
K is the y-coordinate of the centroids of K+ and

K+
sim . Analogously, we have that y−K is the y-coordinate of the centroids of K− and

K−
sim . Denote the y-coordinates of the centroids of T+ and T− by y+

T and y−T , respec-
tively. From Lemma 3 we know that

y+
K � y+

T and y−K � y−T ,

and using (4) it follows that

wΓK(u) � y+
K − y−K � y+

T − y−T .

Now, there are two possible cases.

(a) The height of T+ is greater than or equal to wK(u)
2 . By a known result in Con-

vexity (see for instance [2]) we also have that the distance from the centroid
of a convex body to a support line is at least one third of the width in the di-
rection orthogonal to such line. This implies that the height of T+ is at most
2
3 (wK(u)). It follows from Lemma 2 that y+

T −y−T � wK (u)
2 holds. Hence we have

that wΓK(u) � wK(u)
2 .
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(b) The height of T+ is less than wK(u)
2 . Suppose the length of the bases of T+

are λ1 and λ2, where λ1 is the base of T+ on the x -axis. By the choice of
T+ we have that λ1 > λ2. We have two subcases. First subcase arises when
the area of K+

sim is more than half the area of Ksim . Let Q be the trapezium
with the same area and height as K−

sim , contained in the halfplane below the x -
axis and coinciding with Ksim on the x -axis. Let λ3 be the length of the other
base of Q . Since the area of Q is smaller than the area of T+ and its height
is greater than the height of T+ , we have that λ3 < λ2 < λ1. It follows that
−yQ � hK(−u)

2 , where yQ is y-coordinate of the centroid of Q . By Lemma 3 we

have that −y−K � −yQ � hK(−u)
2 and since y+

K � hK(u)
2 , it follows that y+

K − y+
K �

hK(u)
2 + hK(−u)

2 = wK(u)
2 .

Now consider the subcase when the area of K+
sim is less than half the area of Ksim .

Then

−y−K < y+
K <

1
2

(
wK(u)

2

)
,

which implies that y+
K − y−K < wK(u)

2 .

By Remark 1 we have that

wΓK(u) � wK(u)
2

.

Since u is an arbitrary direction, by Cauchy’s formula for the perimeter of K (see [7])
we have that

L(ΓK) =
∫ π

0
wΓK(u)dθ � 1

2

∫ π

0
wK(u)dθ =

1
2
L(K).

Therefore,
L(ΓK)
L(K)

� 1
2
.

Now for the lower bound we proceed as follows: if K is considered to be a cen-
trally symmetric set then every centroid c+

u is in the boundary of ΓK and the exterior
normal vector at c+

u is precisely the unit vector u (see [6] or [1]). This means that the
width of ΓK in direction u is exactly y+

K −y−K and by the result of Convexity mentioned
at the beginning of case (a) we have that y+

K − y−K � 1
3wK(u) , for every u ∈ S

1 . Using
again Cauchy’s formula, it follows that

L(ΓK)
L(K)

� 1
3
.

This concludes the proof. �

REMARK 2. For the proof of the upper bound in the inequality, it is not necessary
to assume that K is centrally symmetric. Furthermore, using a result proved by M.
Fradelizi in [3] we can prove that if K is not a centrally symmetric convex body then

L(ΓK)
L(K)

� 1
4
.
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However, we believe that it must be true that L(ΓK)
L(K) � 1

3 in this case as well.

RE F ER EN C ES
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[4] Z. GUERRERO-ZARAZUA AND J. JERÓNIMO-CASTRO, Some comments on floating and centroid
bodies in the plane, Aequationes Math. 92, 2 (2018), 211–222.

[5] J. W. HARRIS AND H. STOCKER, Handbook of mathematics and computational science, Springer-
Verlag, New York, 1998.

[6] C. M. PETTY, Centroid surfaces, Pacific J. Math 11, 4 (1961), 1535–1547.
[7] I. M. YAGLOM AND V. G. BOLTYANSKI, Convex figures, Translated by Paul J. Kelly and Lewis F.

Walton, Holt Rinehart and Winston, New York, 1960.

(Received April 20, 2020) Zamantha Guerrero-Zarazua
Instituto de Matemáticas
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