AN INEQUALITY FOR THE PERIMETER OF THE CENTROID BODY IN THE PLANE

Zamantha Guerrero-Zarazua, Jesús Jerónimo-Castro*, Francisco G. Jimenez-Lopez and Ulises Velasco-García

(Communicated by M. A. Hernández Cifre)

Abstract

Let K be a centrally symmetric convex body in the plane. In this paper we prove an inequality relating the perimeter of the centroid body of K to the perimeter of K, establishing a new Busemann-Petty type inequality.

1. Introduction

Let K be a convex body in \mathbb{R}^{2}, i.e., a compact and convex set with non-empty interior in the plane. We say that K is centrally symmetric if it is O-symmetric, that is, if $K=-K$. We say that a line ℓ is a supporting line of K if $\ell \cap K \neq \emptyset$ and K is contained in one of the half-planes determined by ℓ. Given a unit vector $u \in \mathbb{S}^{1}$, the support function of K, h_{K}, is defined as $h_{K}(u)=\max _{x \in K}\langle u, x\rangle$. The width function of $K, w_{K}: \mathbb{S}^{1} \rightarrow \mathbb{R}$, is defined as $w_{K}(u)=h_{K}(u)+h_{K}(-u)$, that is, the distance between the two supporting lines of K which are orthogonal to u. We can associate with K some interesting convex bodies which share some properties with K. Here we are interested in the so called centroid body introduced by C. M. Petty in [6]. The centroid body, denoted by ΓK, is defined as the convex body whose support function is

$$
h_{\Gamma K}(u)=\frac{1}{A(K)} \int_{K}|\langle u, x\rangle| d A,
$$

where $A(\cdot)$ denotes the area functional, i.e., the 2 -dimensional Lebesgue measure on the plane. The name centroid body is justified by the fact that every boundary point of ΓK is the centroid of a half of K, when K is a centrally symmetric body. Recall that the centroid of K is the point $c \in \mathbb{R}^{2}$ of the form

$$
c=\frac{1}{A(K)} \int_{K} x d A
$$

[^0]Also in [6], Petty proved (as a particular case) the following inequality between the areas of K and ΓK :

$$
\frac{A(\Gamma K)}{A(K)} \geqslant\left(\frac{4}{3 \pi}\right)^{2}
$$

where equality holds if and only if K is an ellipse centered at the origin.
In the opposite direction, it was proved by T. Bisztriczky and K. Böröczky the following in [1]: let K be a convex body containing the origin O, then

$$
\frac{A(\Gamma K)}{A(K)} \leqslant \frac{16}{27}
$$

where equality holds if and only if K is a triangle with O as a vertex.
However, with the assumption that K has center of symmetry, they proved more:

$$
\frac{A(\Gamma K)}{A(K)} \leqslant \frac{5}{27}
$$

with equality if and only if K is a parallelogram.
With respect to the perimeter (Minkowsky content) $L(\cdot)$ of ΓK, it was proved in [4] that for every convex body K of area 1,

$$
L(\Gamma K) \geqslant \frac{8}{3 \sqrt{\pi}}
$$

with equality if and only if K is a Euclidean disk with center at O.
We would like to find a bound without any restriction on the area of K. In this article we show (see Theorem 1) that if K is a centrally symmetric convex body, then

$$
\frac{1}{3} \leqslant \frac{L(\Gamma K)}{L(K)} \leqslant \frac{1}{2}
$$

Equalities on the left and right sides are not possible for convex bodies; however the quotient comes arbitrarily close to these bounds by proper choices of K. For the left side we proceed as follows: consider a very thin rhombus \mathscr{P} centred at the origin and with diagonals of length 2 and 2ε, as shown in Figure 1. Each diagonal divides the rhombus into two triangles, obtaining in this way four triangles whose centroids are p, q, r, and s, as shown in the figure. Since \mathscr{P} is a centrally symmetric convex set, the points p, q, r, and s, are in the boundary of $\Gamma \mathscr{P}$. The lines through these points which are perpendicular to the segments $[O, p],[O, q],[O, r]$, and $[O, s]$, respectively, are support lines of $\Gamma \mathscr{P}$. It follows that the perimeter of $\Gamma \mathscr{P}$ is smaller than or equal to $\frac{4}{3}(1+\varepsilon)$. We also have that $L(\mathscr{P})=4 \sqrt{\varepsilon^{2}+1}$, then

$$
\frac{L(\Gamma \mathscr{P})}{L(\mathscr{P})} \leqslant \frac{\frac{4}{3}(1+\varepsilon)}{4 \sqrt{\varepsilon^{2}+1}}=\frac{(1+\varepsilon)}{3 \sqrt{\varepsilon^{2}+1}}
$$

Taking the limit when ε approximates to 0 we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{L(\Gamma \mathscr{P})}{L(\mathscr{P})} \leqslant \lim _{\varepsilon \rightarrow 0^{+}} \frac{(1+\varepsilon)}{3 \sqrt{\varepsilon^{2}+1}}=\frac{1}{3}
$$

Figure 1: Perimeter of the centroid body for a thin rhombus

However, as established in the inequality $\frac{L(\Gamma \mathscr{P})}{L(\mathscr{P})} \geqslant \frac{1}{3}$, hence $\lim _{\varepsilon \rightarrow 0^{+}} \frac{L(\Gamma \mathscr{P})}{L(\mathscr{P})}=\frac{1}{3}$.
For the equality in the right side the procedure is analogous. We consider a very thin rectangle centred at the origin. Let \mathscr{R} be a rectangle centred at O with sides of length 1 and ε. Let p, q, r, and s be the centroids of four of the half parts of \mathscr{R} obtained by division of \mathscr{R} by lines through the origin (see Figure 2). We know that p, q, r, and s belong to the boundary of $\Gamma \mathscr{R}$ and since $\Gamma \mathscr{R}$ is a convex set then the rhombus pqrs is contained in $\Gamma \mathscr{R}$. The perimeter of $\Gamma \mathscr{R}$ is bigger than or equal to $\sqrt{\varepsilon^{2}+1}$ and so

$$
\frac{L(\Gamma \mathscr{R})}{L(\mathscr{R})} \geqslant \frac{\sqrt{\varepsilon^{2}+1}}{2+2 \varepsilon} .
$$

Taking the limit when ε approximates to 0 we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\sqrt{\varepsilon^{2}+1}}{2+2 \varepsilon}=\frac{1}{2}
$$

and since $\frac{L(\Gamma \mathscr{R})}{L(\mathscr{R})} \leqslant \frac{1}{2}$ for every $\varepsilon>0$, we have that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{L(\Gamma \mathscr{R})}{L(\mathscr{R})}=\frac{1}{2} .
$$

Figure 2: Perimeter of the centroid body for a thin rectangle

2. Some auxiliary results

In this section K is a convex body, not necessarily centrally symmetric, whose centroid is at the origin. For every $u \in \mathbb{S}^{1}$, let $K_{u}^{+}=\{x \in K:\langle x, u\rangle \geqslant 0\}$ and $K_{u}^{-}=$ $\overline{K \backslash K_{u}^{+}}$, where \bar{A} represents the closure of a set A. Denote the centroids of K_{u}^{+}and K_{u}^{-}by c_{u}^{+}and c_{u}^{-}, respectively.

LEMMA 1. For every $u \in \mathbb{S}^{1}$ we have that $h_{\Gamma K}(u)$ is the harmonic mean of the distances from c_{u}^{+}and c_{u}^{-}to the line u^{\perp}.

Proof. From the definition of centroid, it is easy to see that c_{u}^{+}, O, and c_{u}^{-}are aligned and that

$$
\begin{equation*}
\frac{\left\|c_{u}^{+}\right\|}{\left\|c_{u}^{-}\right\|}=\frac{A\left(K_{u}^{-}\right)}{A\left(K_{u}^{+}\right)} \tag{1}
\end{equation*}
$$

Now, for the support function of the centroid body of K we have that

$$
\begin{aligned}
h_{\Gamma K}(u) & =\frac{1}{A(K)} \int_{K}|\langle u, x\rangle| d A \\
& =\frac{1}{A(K)}\left[\int_{K_{u}^{+}}\langle x, u\rangle d A-\int_{K_{u}^{-}}\langle x, u\rangle d A\right] \\
& =\frac{1}{A(K)}\left[\frac{A\left(K_{u}^{+}\right)}{A\left(K_{u}^{+}\right)} \int_{K_{u}^{+}}\langle x, u\rangle d A-\frac{A\left(K_{u}^{-}\right)}{A\left(K_{u}^{-}\right)} \int_{K_{u}^{-}}\langle x, u\rangle d A\right] \\
& =\frac{A\left(K_{u}^{+}\right)}{A(K)}\left\langle\frac{1}{A\left(K_{u}^{+}\right)} \int_{K_{u}^{+}} x d A, u\right\rangle-\frac{A\left(K_{u}^{-}\right)}{A(K)}\left\langle\frac{1}{A\left(K_{u}^{-}\right)} \int_{K_{u}^{-}} x d A, u\right\rangle \\
& =\left\langle\frac{A\left(K_{u}^{+}\right)}{A(K)} c_{u}^{+}, u\right\rangle-\left\langle\frac{A\left(K_{u}^{-}\right)}{A(K)} c_{u}^{-}, u\right\rangle \\
& =\left\langle\frac{A\left(K_{u}^{+}\right)}{A(K)} c_{u}^{+}-\frac{A\left(K_{u}^{-}\right)}{A(K)} c_{u}^{-}, u\right\rangle .
\end{aligned}
$$

It follows that $h_{\Gamma K}(u)$ is the projection of the vector obtained as the convex combination of c_{u}^{+}and $-c_{u}^{-}$given by

$$
\begin{equation*}
\frac{A\left(K_{u}^{+}\right)}{A(K)} c_{u}^{+}+\frac{A\left(K_{u}^{-}\right)}{A(K)}\left(-c_{u}^{-}\right) \tag{2}
\end{equation*}
$$

over the vector u. Let $q_{u}=\lambda_{0} u$ be the point of intersection between the segment $\left[c_{u}^{+}, p_{u}\right]$ with the ray $\{\lambda u: \lambda \geqslant 0\}$, where p_{u} denotes the reflection of c_{u}^{-}along the line u^{\perp}. Suppose that the u-coordinates of c_{u}^{+}and c_{u}^{-}are given by y_{u}^{+}and $-y_{u}^{-}$, respectively. By the similarity of the triangles $\triangle c_{u}^{+} O q_{u}$ and $\triangle c_{u}^{+} c_{u}^{-} p_{u}$ (see Figure 3) we have that

$$
\begin{equation*}
\frac{\lambda_{0}}{2 y_{u}^{-}}=\frac{\left\|c_{u}^{+}\right\|}{\left\|c_{u}^{+}\right\|+\left\|c_{u}^{-}\right\|}=\frac{y_{u}^{+}}{y_{u}^{+}+y_{u}^{-}} \tag{3}
\end{equation*}
$$

and thus

$$
\lambda_{0}=\frac{y_{u}^{-}}{y_{u}^{-}+y_{u}^{+}} y_{u}^{+}+\frac{y_{u}^{+}}{y_{u}^{-}+y_{u}^{+}} y_{u}^{-}
$$

Moreover, from (1) we get $y_{u}^{+} / y_{u}^{-}=A\left(K_{u}^{-}\right) / A\left(K_{u}^{+}\right)$and hence

$$
\lambda_{0}=\frac{A\left(K_{u}^{+}\right)}{A(K)} y_{u}^{+}+\frac{A\left(K_{u}^{-}\right)}{A(K)} y_{u}^{-} .
$$

Comparing with (2) we conclude that $\lambda_{0}=h_{\Gamma K}(u)$. The assertion now follows from (3), since

$$
\lambda_{0}=\left(\frac{1}{2}\left(y_{u}^{+}\right)^{-1}+\frac{1}{2}\left(y_{u}^{-}\right)^{-1}\right)^{-1}
$$

Figure 3: λ_{0} is the harmonic mean of y_{u}^{+}and y_{u}^{-}

REMARK 1. Since $\lambda_{0}=\frac{2 y_{u}^{+} y_{u}^{-}}{y_{u}^{-}+y_{u}^{-}}$is the harmonic mean of y_{u}^{+}and y_{u}^{-}, and the harmonic mean is smaller than or equal to the arithmetic mean, i.e.,

$$
\frac{2 y_{u}^{+} y_{u}^{-}}{y_{u}^{+}+y_{u}^{-}} \leqslant \frac{y_{u}^{+}+y_{u}^{-}}{2}
$$

we have that $\lambda_{0} \leqslant \frac{y_{u}^{+}+y_{u}^{-}}{2}$. Now, the width of ΓK in direction u, denoted by $w_{\Gamma K}(u)$, is equal to $2 \lambda_{0}$, and then

$$
\begin{equation*}
w_{\Gamma K}(u) \leqslant y_{u}^{+}+y_{u}^{-} . \tag{4}
\end{equation*}
$$

Now, let $A B C D$ be an isosceles trapezium of height 1 with bases $A B$ and $C D$ that are parallel to the x axis. Let P and Q be points on $A D$ and $B C$, respectively, such that $P Q$ is parallel to $A B$. Then $A B C D$ is divided into two trapeziums, namely $A B Q P$ with height h and $P Q C D$ with height $1-h$. Suppose that $A B, P Q$ and $C D$ have lengths $2 a, 2 b$ and 2 , respectively, with $a \leqslant b \leqslant 1$. Then the distance from the centroid of $A B Q P$ to the segment $P Q$ is given by (see for instance [5])

$$
\frac{b+2 a}{3(b+a)} h
$$

Similarly, the distance from the centroid of $P Q C D$ to the segment $P Q$ is given by

$$
\frac{b+2}{3(b+1)}(1-h)
$$

We will prove that for $0 \leqslant a \leqslant 1$ and $\frac{1}{2} \leqslant h \leqslant \frac{2}{3}$ the distance between the centroids of both trapeziums is at most $\frac{1}{2}$. In other words, we will prove the following lemma.

Lemma 2. For every $(a, h) \in D=[0,1] \times\left[\frac{1}{2}, \frac{2}{3}\right]$ we have that

$$
f(a, h)=\frac{(b+2 a)}{3(b+a)} h+\frac{(b+2)}{3(b+1)}(1-h) \leqslant \frac{1}{2} .
$$

Figure 4: The circumscribed trapezium

Proof. By similarity of triangles (see Figure 4) we have that

$$
b=(1-a) h+a
$$

Then, we may write

$$
f(a, h)=\frac{1}{3} \cdot \frac{(1-a) h+3 a}{(1-a) h+2 a} h+\frac{1}{3} \cdot \frac{(1-a) h+a+2}{(1-a) h+a+1}(1-h) .
$$

Now we determine the critical points of $f(a, h)$ in D by solving $f_{a}(a, h)=0$ and $f_{h}(a, h)=0$, where f_{a} and f_{h} denote the partial derivatives of f with respect to a and h, respectively.

Solving $f_{h}(a, h)=0$ is equivalent to solve

$$
(a-1)(a+h-a h)=0
$$

which is true when $a=1$ or $a=\frac{h}{h-1}$. Nonetheless, the equality $a=\frac{h}{h-1}$ is not satisfied in D, since $a<0$ for $\frac{1}{2} \leqslant h \leqslant \frac{2}{3}$. Then $a=1$ and $f_{h}(1, h)=0$.

Solving $f_{a}(a, h)=0$ is equivalent to solve

$$
(a(h-1)-h)\left(a(h-1)^{2}-h^{2}\right)=0 .
$$

This equality holds when $a=\frac{h}{h-1}$ or $a=\frac{h^{2}}{(h-1)^{2}}$. By the comment above, we conclude that $a=\frac{h^{2}}{(h-1)^{2}}$. Since we know that $a=1$, we have $h=\frac{1}{2}$.

We conclude that f has only one critical point given by $\left(1, \frac{1}{2}\right)$, and it lies on the boundary of D. It follows that f attains its maximum at the boundary of D.

Since $f_{a}\left(a, \frac{2}{3}\right) \neq 0$ for every $0 \leqslant a \leqslant 1$ then $f\left(a, \frac{2}{3}\right)$ achieves its maximum when $a=0$ or $a=1$. By a simple calculation this maximum is equal to $\frac{1}{2}$ and occurs at $a=1$. Similarly, we can see that $f\left(a, \frac{1}{2}\right)$ reaches its maximum $\frac{1}{2}$ at $a=1$, and $f(0, h)$ reaches its maximum $\frac{4}{9}$ at $h=\frac{1}{2}$. On the other side, $f(1, h) \leqslant \frac{1}{2}$ for every $\frac{1}{2} \leqslant h \leqslant \frac{2}{3}$. This completes the proof of the lemma.

Now, consider K is a convex body enclosed by the interval $[-b, b]$ and the convex arc (symmetric with respect to the y-axis) from the point $(b, 0)$ to the point $(-b, 0)$ in the upper half-plane. Let T be the isosceles trapezium with base $[-b, b]$, altitude equal to the width of K in the vertical direction, and with the same area as K (see Figure 5).

Lemma 3. Let y_{K} and y_{T} be the y-coordinates of the centroids of K and T, respectively. Then $y_{K} \leqslant y_{T}$ with equality if and only if $K=T$.

Figure 5: The centroids of T and K

Proof. Since K and T have equal area, the boundary of K must cross the boundary of T in two points p and q, as shown in Figure 5. By the symmetry of K and T with respect to the y-axis, it is sufficient to prove the assertion of the lemma for the parts of them contained in the first quadrant, namely K^{*} and T^{*}. Let g, g_{T}, g_{K}, s_{T} and s_{K}, be the centroids of $K^{*} \cap T^{*}, T^{*}, K^{*}, T^{*} \backslash K^{*}$ and $K^{*} \backslash T^{*}$, respectively. Since all points of $T^{*} \backslash K^{*}$ are above the line $p q$ and all points of $K^{*} \backslash T^{*}$ are below, we have that the y-coordinate of s_{T} is larger than the y-coordinate of s_{K}. Since $T^{*} \backslash K^{*}$ and
$K^{*} \backslash T^{*}$ have equal area, the points g_{T} and g_{K} divide the segments $\left[g, s_{T}\right]$ and $\left[g, s_{K}\right]$ in the same ratio. It follows that the y-coordinate of g_{T} is larger than or equal to the y-coordinate of g_{K} and equality is only possible if $T^{*}=K^{*}$. Therefore, $y_{K} \leqslant y_{T}$ with equality if and only if $K=T$.

3. Proof of the main result

THEOREM 1. Let K be a centrally symmetric planar convex body. Then

$$
\frac{1}{3} \leqslant \frac{L(\Gamma K)}{L(K)} \leqslant \frac{1}{2}
$$

Proof. Consider a fixed direction $u \in \mathbb{S}^{1}$ and suppose the x-axis is the line orthogonal to u and the y-axis is in the direction of u. Let K^{+}and K^{-}be the parts of K over and below the x-axis, respectively. Now we apply to K the Steiner symmetrization (see for instance [7]) with respect to the y-axis and name the symmetrized body as K_{sim}. Set

$$
K_{\mathrm{sim}}^{+}=\left\{(x, y) \in K_{\mathrm{sim}}: y \geqslant 0\right\}, \text { and } K_{\mathrm{sim}}^{-}=\overline{K_{\mathrm{sim}} \backslash K_{\mathrm{sim}}^{+}}
$$

Let us denote by T^{+}the trapezium contained in the upper half-space of the plane that coincides with K_{sim}^{+}on the x-axis, and has the same area and height as K_{sim}^{+}. Define T as the trapezium having bases parallel to the x-axis, tangent to $K_{\text {sim }}$ on both bases, and which coincides with T^{+}in the half-space above the x-axis. Let T^{-}be the trapezium resulting from the restriction of T to the half-space below the x axis. We clearly have that $A\left(T^{-}\right) \geqslant A\left(K_{\text {sim }}^{-}\right)$.

The Steiner symmetrization with respect to the y-axis preserve the y-coordinates of the centroids, so we have that y_{K}^{+}is the y-coordinate of the centroids of K^{+}and $K_{\text {sim }}^{+}$. Analogously, we have that y_{K}^{-}is the y-coordinate of the centroids of K^{-}and $K_{\text {sim }}^{-}$. Denote the y-coordinates of the centroids of T^{+}and T^{-}by y_{T}^{+}and y_{T}^{-}, respectively. From Lemma 3 we know that

$$
y_{K}^{+} \leqslant y_{T}^{+} \text {and } y_{K}^{-} \geqslant y_{T}^{-}
$$

and using (4) it follows that

$$
w_{\Gamma K}(u) \leqslant y_{K}^{+}-y_{K}^{-} \leqslant y_{T}^{+}-y_{T}^{-} .
$$

Now, there are two possible cases.
(a) The height of T^{+}is greater than or equal to $\frac{w_{K}(u)}{2}$. By a known result in Convexity (see for instance [2]) we also have that the distance from the centroid of a convex body to a support line is at least one third of the width in the direction orthogonal to such line. This implies that the height of T^{+}is at most $\frac{2}{3}\left(w_{K}(u)\right)$. It follows from Lemma 2 that $y_{T}^{+}-y_{T}^{-} \leqslant \frac{w_{K}(u)}{2}$ holds. Hence we have that $w_{\Gamma K}(u) \leqslant \frac{w_{K}(u)}{2}$.
(b) The height of T^{+}is less than $\frac{w_{K}(u)}{2}$. Suppose the length of the bases of T^{+} are λ_{1} and λ_{2}, where λ_{1} is the base of T^{+}on the x-axis. By the choice of T^{+}we have that $\lambda_{1}>\lambda_{2}$. We have two subcases. First subcase arises when the area of K_{sim}^{+}is more than half the area of K_{sim}. Let Q be the trapezium with the same area and height as $K_{\text {sim }}^{-}$, contained in the halfplane below the x axis and coinciding with $K_{\text {sim }}$ on the x-axis. Let λ_{3} be the length of the other base of Q. Since the area of Q is smaller than the area of T^{+}and its height is greater than the height of T^{+}, we have that $\lambda_{3}<\lambda_{2}<\lambda_{1}$. It follows that $-y_{Q} \leqslant \frac{h_{K}(-u)}{2}$, where y_{Q} is y-coordinate of the centroid of Q. By Lemma 3 we have that $-y_{K}^{-} \leqslant-y_{Q} \leqslant \frac{h_{K}(-u)}{2}$ and since $y_{K}^{+} \leqslant \frac{h_{K}(u)}{2}$, it follows that $y_{K}^{+}-y_{K}^{+} \leqslant$ $\frac{h_{K}(u)}{2}+\frac{h_{K}(-u)}{2}=\frac{w_{K}(u)}{2}$.
Now consider the subcase when the area of $K_{\text {sim }}^{+}$is less than half the area of $K_{\text {sim }}$. Then

$$
-y_{K}^{-}<y_{K}^{+}<\frac{1}{2}\left(\frac{w_{K}(u)}{2}\right)
$$

which implies that $y_{K}^{+}-y_{K}^{-}<\frac{w_{K}(u)}{2}$.
By Remark 1 we have that

$$
w_{\Gamma K}(u) \leqslant \frac{w_{K}(u)}{2}
$$

Since u is an arbitrary direction, by Cauchy's formula for the perimeter of K (see [7]) we have that

$$
L(\Gamma K)=\int_{0}^{\pi} w_{\Gamma K}(u) d \theta \leqslant \frac{1}{2} \int_{0}^{\pi} w_{K}(u) d \theta=\frac{1}{2} L(K) .
$$

Therefore,

$$
\frac{L(\Gamma K)}{L(K)} \leqslant \frac{1}{2}
$$

Now for the lower bound we proceed as follows: if K is considered to be a centrally symmetric set then every centroid c_{u}^{+}is in the boundary of ΓK and the exterior normal vector at c_{u}^{+}is precisely the unit vector u (see [6] or [1]). This means that the width of ΓK in direction u is exactly $y_{K}^{+}-y_{K}^{-}$and by the result of Convexity mentioned at the beginning of case (a) we have that $y_{K}^{+}-y_{K}^{-} \geqslant \frac{1}{3} w_{K}(u)$, for every $u \in \mathbb{S}^{1}$. Using again Cauchy's formula, it follows that

$$
\frac{L(\Gamma K)}{L(K)} \geqslant \frac{1}{3}
$$

This concludes the proof.
REMARK 2. For the proof of the upper bound in the inequality, it is not necessary to assume that K is centrally symmetric. Furthermore, using a result proved by M. Fradelizi in [3] we can prove that if K is not a centrally symmetric convex body then

$$
\frac{L(\Gamma K)}{L(K)} \geqslant \frac{1}{4}
$$

However, we believe that it must be true that $\frac{L(\Gamma K)}{L(K)} \geqslant \frac{1}{3}$ in this case as well.

REFERENCES

[1] T. BISZTRICZKY, AND K. BÖRÖCZKY Jr., About the centroid body and the ellipsoid of inertia, Mathematika 48, 1 (2001), 1-13.
[2] T. Bonnesen, and W. Fenchel, Theory of convex bodies, translated from the German and edited by L. Boron, C. Christenson and B. Smith. BCS Associates, Moscow, 1987.
[3] M. Fradelizi, Hyperplane sections of convex bodies in isotropic position, Contrib. Algebra Geometry 40, 1 (1999), 163-183.
[4] Z. Guerrero-Zarazua and J. Jerónimo-Castro, Some comments on floating and centroid bodies in the plane, Aequationes Math. 92, 2 (2018), 211-222.
[5] J. W. Harris and H. Stocker, Handbook of mathematics and computational science, SpringerVerlag, New York, 1998.
[6] C. M. Petty, Centroid surfaces, Pacific J. Math 11, 4 (1961), 1535-1547.
[7] I. M. Yaglom and V. G. Boltyanski, Convex figures, Translated by Paul J. Kelly and Lewis F. Walton, Holt Rinehart and Winston, New York, 1960.

Jesús Jerónimo-Castro Facultad de Ingeniería Universidad Autónoma de Querétaro Cerro de las Campanas s / n
C.P. 76010, Querétaro, México
e-mail: jesus.jeronimo@uaq.mx
Francisco G. Jimenez-Lopez
Facultad de Ingeniería
Universidad Autónoma de Querétaro Cerro de las Campanas s / n
C.P. 76010, Querétaro, México
e-mail: fjimenez@uaq.mx
Ulises Velasco-García
Facultad de Ingeniería
Universidad Autónoma de Querétaro Cerro de las Campanas s/n
C.P. 76010, Querétaro, México
e-mail: ulises.velasco@uaq.mx

[^0]: Mathematics subject classification (2020): 52A10, 52A38, 52A40.
 Keywords and phrases: Centroid body, perimeter inequality, centrally symmetric.
 We thank the unknown referee for many valuable suggestions which improve the exposition of the paper.

 * Corresponding author.

