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Abstract. In this paper, we investigate the relations involving the generalized von Neumann-
Jordan type constant of the absolute normalized norms ‖.‖ψ and ‖.‖φ , where the convex func-
tions ψ and φ are comparable.These conclusions which not only contain some previous results,
but also give the exact value of the generalized von Neumann-Jordan type constant for some
practical examples in the application of geometric theory of Banach spaces.

1. Introduction

Let X be a Banach space with the unit ball BX and the unit sphere SX . Many
geometric constants for a Banach space X have been investigated, such as the von
Neumann-Jordan constant CNJ(X) [9] and the von Neumann-Jordan type constant
C−∞(X) [21]. On the one hand, it has been shown that these constants are very useful
in geometric theory of Banach space, which enable us to classify several important
concepts of Banach space such as uniformly non-squareness and normal structure[7, 16,
25, 28, 29, 30], on the other hand, the calculation of these geometric constants for some
concrete spaces is also of some interest [6, 12, 13, 19]. It is well known that the exact
values of the von Neumann-Jordan constants CNJ(X) have been calculated for many
classical spaces, such as the Lebesgue space [3], the Cesàro space, the Lorentz sequence
space [8] and the Bynum space [7] etc. Naturally, one hopes to know the exact values
of the von Neumann-Jordan type constant C−∞(X) for these spaces. Although the
exact values of the von Neumann-Jordan type constant C−∞(X) have been considered
in some concrete Banach spaces [21, 25, 28, 29, 30]. However, the exact values for
the von Neumann-Jordan type constant C−∞(X) remain undiscovered for the absolute
normalized norms of some concrete Banach spaces.

Mathematics subject classification (2020): Primary 46B20; Secondary 46B25.
Keywords and phrases: The generalized von Neumann-Jordan type constant, Absolute normalized

norm, Convex function.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-24-42

597

http://dx.doi.org/10.7153/mia-2021-24-42


598 Z.-F. ZUO, L.-W. WANG, Y.-X. ZHAO AND Y.-Q. WU

2. Preliminaries

Firstly, let us recall the definition of the von Neumann-Jordan constant CNJ(X)
and the von Neumann-Jordan type constant C−∞(X) ,

CNJ(X) = sup

{‖x+ y‖2 +‖x− y‖2

2(‖x‖2 +‖y‖2)
: x ∈ SX ,y ∈ BX

}
,

C−∞(X) = sup

{
min{‖x+ y‖2,‖x− y‖2}

‖x‖2 +‖y‖2 : x,y ∈ X ,(x,y) �= (0,0)
}

.

It is well known that C−∞(X) � CNJ(X) and some properties among them have been
indicated in [21, 25].

Recently, the von Neumann-Jordan type constant C−∞(X) is generalized in the
following form, for 1 � p < +∞ ,

C(p)
−∞(X) = sup

{
min{‖x+ y‖p,‖x− y‖p}

2p−2(‖x‖p +‖y‖p)
: x,y ∈ X ,(x,y) �= (0,0)

}
.

It is obvious that C(2)
−∞(X) = C−∞(X) , some geometric properties of Banach spaces X

in terms of the new constant C(p)
−∞(X) are investigated in [26, 27].

(i) Let X be a Banach space, then 1
2p−2 � C(p)

−∞(X) � 2 for all 1 � p < +∞ .

(ii) The Banach space X is uniformly nonsquare ⇔ C(p)
−∞(X) < 2 for some 1 � p <

+∞ .

(iii) Let X be a Banach space, if there exists some 1 � p < +∞ such that C(p)
−∞(X) <

(1+ 1
μ(X)p )p

2p−2(1+ 1
μ(X)p(p−1) )

, then X has normal structure, where μ(X) is weak orthogonal-

ity coefficient.

(iv) Let X be a Banach space, if there exists some 1 � p < +∞ such that C(p)
−∞(X) <

(1+ 1
R(1,X)p )p

2p−2(1+ 1
R(1,X)p(p−1) )

, then X has normal structure, where R(1,X) is Domı́nguez-

Benavides coefficient.

Therefore, the calculation of the new constant C(p)
−∞(X) is very important in geo-

metric theory of Banach space, which not only enable us to classify several important
concepts of Banach space, such as uniformly non-squareness and normal structure, but
also give the exact values of the von Neumann-Jordan type constant C−∞(X) for some
concrete Banach spaces. In this paper, we are interested in determining the generalized

von Neumann-Jordan type constant C(p)
−∞(X) for the absolute normalized norms. As an

application, we can compute the exact values of the generalized von Neumann-Jordan

type C(p)
−∞(X) for some concrete Banach spaces, such as the space �p , Cesàro space

ces(2)
p , Lorentz sequence spaces d(2)(ω ,q) , Banach lattice X p etc.
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Firstly, let us recall that a norm on R
2 is called absolute, if ‖(z,w)‖ = ‖(|z|, |w|)‖

for all (z,w) ∈ R
2 and the norm is called normalized, if

‖(1,0)‖ = ‖(0,1)‖ = 1.

Let Nα denote the family of all absolute normalized norms on R
2 , and Ψ denote

the family of all continuous convex functions on [0,1] such that

ψ(0) = ψ(1) = 1 and max{1− t,t}� ψ(t) � 1.

It has been shown that Nα and Ψ are a one-to-one correspondence in [1].

THEOREM 1. If ‖.‖ ∈ Nα , then ψ(t) = ‖(1− t,t)‖ ∈ Ψ and conversely, if ψ(t) ∈
Ψ , then

‖(z,ω)‖ψ :=

⎧⎨
⎩ (|z|+ |ω |)ψ

(
|ω|

|z|+|ω|

)
, (z,ω) �= (0,0),

0, (z,ω) = (0,0).

is a norm and ‖.‖ψ ∈ Nα .
In particular, for the �p norm the corresponding convex function ψp(t) is given

by

ψp(t) =

{
{(1− t)p + t p} 1

p , 1 � p < ∞,
max{1− t,t}, p = ∞.

By Theorem 1, we can also get some Banach spaces which have non-�p norms on
R

2 , such as the X p space, Cesàro sequence space and the following Examples 3, 4, 5,
6, 8, 9 in this paper.

For any p ∈ (1,+∞) and X = R
2 with different absolute normalized norms, the

norm of the space X p is given by

‖x‖ = ‖|x|p‖
1
p
X .

It is proved that if X is a Banach lattice, then X p space is a Banach lattice for p ∈
(1,+∞) , some more results about X p space can be found in [14, 15].

The Cesàro sequence space was defined by Shue in [20], it is very useful in the
theory of matrix operators and others. For 1 < q < ∞ , let us restrict ourselves to the

two-dimensional Cesàro sequence space ces(2)
q , which is just R

2 equipped with the
norm defined by

‖(x,y)‖ =
(
|x|q +

( |x|+ |y|
2

)q) 1
q

.

The geometry of Cesàro sequence spaces have been extensively studied in [4, 5, 10, 17,
18].
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3. Main results

LEMMA 1. Let ‖.‖1 and ‖.‖2 be two equivalent norms on X , namely for b � a >
0 , a‖.‖2 � ‖.‖1 � b‖.‖2 , then

apC(p)
−∞(‖.‖2)
bp � C(p)

−∞(‖.‖1) � bpC(p)
−∞(‖.‖2)
ap .

Moreover, if ‖.‖1 = a‖.‖2 , then C(p)
−∞(‖.‖1) = C(p)

−∞(‖.‖2).

Proof. By the definition of C(p)
−∞(‖.‖) , we have that

C(p)
−∞(‖.‖1) = sup

{
min{‖x+ y‖p

1,‖x− y‖p
1}

2p−2(‖x‖p
1 +‖y‖p

1)
: x,y ∈ X ,(x,y) �= (0,0)

}

� sup

{
bp min{‖x+ y‖p

2,‖x− y‖p
2}

ap2p−2(‖x‖p
2 +‖y‖p

2)
: x,y ∈ X ,(x,y) �= (0,0)

}

=
bp

ap sup

{
min{‖x+ y‖p

2,‖x− y‖p
2}

2p−2(‖x‖p
2 +‖y‖p

2)
: x,y ∈ X ,(x,y) �= (0,0)

}

� bp

apC(p)
−∞(‖.‖2).

Similarly, we can get the inequality

apC(p)
−∞(‖.‖2)
bp � C(p)

−∞(‖.‖1). �

Let us put

M1 = max
0�t�1

φ(t)
ψ(t)

and M2 = max
0�t�1

ψ(t)
φ(t)

.

THEOREM 2. Let ψ(t),φ(t) ∈ Ψ and ψ(t) � φ(t) , if the function φ(t)
ψ(t) attains its

maximum at t = 1
2 and C(p)

−∞(‖.‖φ ) = 1
2p−1φ p( 1

2 )
, then

C(p)
−∞(‖.‖ψ) =

1

2p−1ψ p( 1
2 )

.

Proof. By the condition of ψ(t) � φ(t) and the definition of M1 , we have that

1
M1

‖.‖φ � ‖.‖ψ � ‖.‖φ .

Take a = 1
M1

and b = 1 in Lemma 1, which implies that

C(p)
−∞(‖.‖ψ) � Mp

1C(p)
−∞(‖.‖φ ).
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It is noted that the function φ(t)
ψ(t) attains its maximum at t = 1

2 , i.e.,M1 = φ( 1
2 )

ψ( 1
2 )

and

C(p)
−∞(‖.‖φ ) = 1

2p−1φ p( 1
2 )

, then

C(p)
−∞(‖.‖ψ) � Mp

1C(p)
−∞(‖.‖φ ) =

1

2p−1ψ p( 1
2 )

. (1)

On the other hand, let us put x1 = (1,1),y1 = (1,−1) , it follows that

‖x1‖ψ = ‖y1‖ψ = 2ψ
(1

2

)
,

‖x1 + y1‖ψ = ‖x1− y1‖ψ = 2,

min{‖x1 + y1‖p
ψ ,‖x1− y1‖p

ψ}
2p−2(‖x1‖p

ψ +‖y1‖p
ψ)

=
2p

2p−12pψ p( 1
2)

=
1

2p−1ψ p( 1
2 )

� C(p)
−∞(‖.‖ψ). (2)

By the inequality (1) and (2), we have that

C(p)
−∞(‖.‖ψ) = Mp

1C(p)
−∞(‖.‖φ ) =

1

2p−1ψ p( 1
2 )

. �

THEOREM 3. Let ψ(t)∈ Ψ and ψ(t) � φ(t) = ψp(t) (2 � p < ∞), if the function
ψp(t)
ψ(t) attains its maximum at t = 1

2 , then

C(p)
−∞(‖.‖ψ) = Mp

1 =
1

2p−1ψ p( 1
2 )

.

Proof. By the condition of ψ(t) � ψp(t) and Clarkson inequality,

min{‖x+ y‖p
ψ,‖x− y‖p

ψ} � 1
2
(‖x+ y‖p

ψ +‖x− y‖p
ψ)

� 1
2
(‖x+ y‖p

p +‖x− y‖p
p)

� 2p−2(‖x‖p
p +‖y‖p

p)

� 2p−2Mp
1 (‖x‖p

ψ +‖y‖p
ψ).

The definition of C(p)
−∞(‖.‖ψ) implies that

C(p)
−∞(‖.‖ψ) � Mp

1 . (3)

On the other hand, note that the function ψp(t)
ψ(t) attains its maximum at t = 1

2 , i.e. M1 =
ψp( 1

2 )
ψ( 1

2 )
. Let us put x2 = ( 1

2 , 1
2 ),y2 = ( 1

2 ,− 1
2 ) , then

min{‖x2 + y2‖p
ψ ,‖x2− y2‖p

ψ} = 1 = 2p−1ψ p
p

(1
2

)
,
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‖x2‖p
ψ = ‖y2‖p

ψ = ψ p
(1

2

)
.

The definition of C(p)
−∞(‖.‖ψ) implies that

C(p)
−∞(‖.‖ψ) �

min{‖x2 + y2‖p
ψ ,‖x2− y2‖p

ψ}
2p−2(‖x2‖p

ψ +‖y2‖p
ψ)

=
ψ p

p ( 1
2 )

ψ p( 1
2 )

= Mp
1 =

1

2p−1ψ p( 1
2 )

. (4)

By the inequality (3) and (4), we can get that

C(p)
−∞(‖.‖ψ) = Mp

1 =
1

2p−1ψ p( 1
2 )

. �

COROLLARY 1. Let X p be a two-dimensional Banach spaces, if the correspond-
ing function ψX attains its minimum at the point t = 1

2 . For 2 � p < ∞ , then

C(p)
−∞(‖.‖X p) =

1

2p−1ψ p
X p( 1

2 )
.

Proof. It is clear that ‖x‖= ‖|x|p‖
1
p
X ∈ Nα from the norm of the space X p , and its

corresponding convex function is

ψX p(t) = ‖(1− t,t)‖X p = [(1− t)p + t p]
1
p ψ

1
p

X

(
t p

(1− t)p + t p

)
.

Since ψX � 1, then ψX p(t) � ψp(t) , it is easy to check that the function

ψp(t)
ψX p(t)

= ψ
−1
p

X

(
t p

(1− t)p + t p

)
.

For arbitrary t ∈ [0,1] , the variable s = t p

(1−t)p+t p is also belongs to [0,1] . Since the

function ψX (t) attains its minimum at the point t = 1
2 , then ψX

(
t p

(1−t)p+t p

)
attains its

minimum at t = 1
2 , this implies that the function ψ

−1
p

X

(
t p

(1−t)p+t p

)
attains its maximum

at 1
2 . By Theorem 3, we have that

C(p)
−∞(‖.‖X p) =

1

2p−1ψ p
X p( 1

2)
. �

THEOREM 4. Let ψ(t),φ(t) ∈ Ψ and ψ(t) � φ(t) , if the function ψ(t)
φ(t) attains its

maximum at t = 1
2 and C(p)

−∞(‖.‖φ ) = 2φ p( 1
2) , then

C(p)
−∞(‖.‖ψ) = 2ψ p

(1
2

)
.
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Proof. By the condition of ψ(t) � φ(t) and the definition of M2 , we have that

‖.‖φ � ‖.‖ψ � M2‖.‖φ .

Take a = 1 and b = M2 in Lemma 1, then

C(p)
−∞(‖.‖ψ) � Mp

2C(p)
−∞(‖.‖φ ).

It is noted that the function ψ(t)
φ(t) attains its maximum at t = 1

2 , i.e.,M2 = ψ( 1
2 )

φ( 1
2 )

and

C(p)
−∞(‖.‖φ ) = 2φ p( 1

2 ) , then

C(p)
−∞(‖.‖ψ) � Mp

2C(p)
−∞(‖.‖φ ) = 2ψ p

(1
2

)
. (5)

On the other hand, let us put x3 = (1,0),y3 = (0,1) , then

‖x3‖ = ‖y3‖ = 1,

‖x3 + y3‖ψ = ‖x3− y3‖ψ = 2ψ
(1

2

)
,

min{‖x3 + y3‖p
ψ ,‖x3− y3‖p

ψ}
2p−2(‖x3‖p

ψ +‖y3‖p
ψ)

=
2pψ p( 1

2 )
2p−1 = 2ψ p

(1
2

)
� C(p)

−∞(‖.‖ψ). (6)

By the inequality (5) and (6), we have that

C(p)
−∞(‖.‖ψ) = Mp

2C(p)
−∞(‖.‖φ ) = 2ψ p

(1
2

)
. �

THEOREM 5. Let ψ(t) ∈ Ψ and ψ(t) � φ(t) = ψp(t) (1 � p � 2 ), then

C(p)
−∞(‖.‖ψ) = 22−pMp

2 .

Proof. By the condition of ψ(t) � ψp(t) and the Clarkson inequality, we can get

min{‖x+ y‖p
ψ,‖x− y‖p

ψ} � 1
2
(‖x+ y‖p

ψ +‖x− y‖p
ψ)

� 1
2
Mp

2 (‖x+ y‖p
p +‖x− y‖p

p)

� Mp
2 (‖x‖p

p +‖y‖p
p)

� Mp
2 (‖x‖p

ψ +‖y‖p
ψ).

The definition of C(p)
−∞(‖.‖ψ) implies that

C(p)
−∞(‖.‖ψ) � 22−pMp

2 . (7)
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On the other hand, if the function ψ(t)
ψp(t)

attains its maximum at t = t0 ∈ [0,1] , i.e.

M2 = ψ(t0)
ψp(t0)

. Let us put x0 = (1− t0,0),y0 = (0,t0) , then

‖x0‖p
ψ = (1− t0)p, ‖y0‖p

ψ = t p
0 ,

min{‖x0 + y0‖p
ψ ,‖x0− y0‖p

ψ} = ψ p(t0)
= Mp

2 [(1− t0)p + t p
0 ]

= Mp
2 (‖x0‖p

p +‖y0‖p
p).

C(p)
−∞(‖.‖ψ) �

min{‖x0 + y0‖p
ψ ,‖x0− y0‖p

ψ}
2p−2(‖x0‖p

ψ +‖y0‖p
ψ)

= 22−pMp
2 . (8)

By the inequality (7) and (8), we have that

C(p)
−∞(‖.‖ψ) = 22−pMp

2 . �

In fact, we can also get some results related to the general mean from Theorem 2
and Theorem 4. Firstly, we give the definition of general weighted mean of order s ,

m[s](a,b;ω ,1−ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ωas +(1−ω)bs)
1
s , s �= 0,+∞,−∞

aωb1−ω , s = 0

max{a,b}, s = ∞

min{a,b}, s = −∞

where a,b are positive real numbers, ω ∈ (0,1) . In the following, let us state a con-
clusion related to the general mean and then applied it to the weighted mean of order
s .

COROLLARY 2. Let ψ(t),φ(t) ∈ Ψ and ψ(t) � φ(t) , m(t) := m(ψ(t),φ(t)) be
a mean of functions ψ(t),φ(t) , if the function m(t) be a convex function, then

(i) m(t)
ψ(t) attains its maximum at t = 1

2 and C(p)
−∞(‖.‖ψ) = 2ψ p( 1

2 ) , then

C(p)
−∞(‖.‖m) = 2mp

(1
2

)
.

(ii) φ(t)
m(t) attains its maximum at t = 1

2 and C(p)
−∞(‖.‖φ ) = 1

2p−1φ p( 1
2 )

, then

C(p)
−∞(‖.‖m) =

1

2p−1mp( 1
2 )

.
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Proof. The general mean m(t) has the property

ψ(t) � m(t) � φ(t).

Since ψ(t),ϕ(t) ∈ Ψ and the assumption of the function m(t) is convex, it is easy to
check that m(t) ∈ Ψ . Now, statements of the results follows by the Theorem 2 and
Theorem 4. �

For the general case ψ(t) ∈ Ψ , we can only estimate the lower bound or upper

bound of the generalized von Neumann-Jordan type constant C(p)
−∞(‖.‖ψ) .

COROLLARY 3. Let ψ(t) ∈ Ψ , then

(i) if 1 � p � 2 , then

22−pMp
2 � C(p)

−∞
(‖ · ‖ψ

)
� 22−pMp

1 Mp
2 ,

(ii) if 2 � p � ∞ , then

C(p)
−∞

(‖ · ‖ψ
)

� Mp
1 Mp

2 .

Proof. (i) It is well known that from Theorem 5

C(p)
−∞

(‖ · ‖ψ
)

� 22−pMp
2 .

Note that the inequality
1

M1
‖.‖p � ‖.‖ψ � M2‖.‖p.

Take a = 1
M1

and b = M2 in Lemma 1, we have that

C(p)
−∞

(‖ · ‖ψ
)

� C(p)
−∞(‖.‖p)M

p
1 Mp

2 . (9)

If 1 � p � 2, it is known that C(p)
−∞(‖.‖p) = 22−p from Example 1, then

C(p)
−∞(‖.‖ψ) � 22−pMp

1 Mp
2 .

(ii)If 2 � p � ∞ , it is known that C(p)
−∞(‖.‖p) = 1 from Example 1, we can similarly get

the estimate (ii)

C(p)
−∞

(‖ · ‖ψ
)

� Mp
1 Mp

2

from the inequality (9). �

However, we can get some conditions of ψ(t) that the von Neumann-Jordan type
constant C−∞(‖.‖ψ) coincides with the upper bound M2

1M2
2 .
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THEOREM 6. Let ψ(t) ∈ Ψ and ψ(t) = ψ(1− t) for all t ∈ [0,1] . If M1 = ψ2( 1
2 )

ψ( 1
2 )

and M2 = max0�t�1
ψ(t)
ψ2(t)

, then

C−∞(‖.‖ψ) = M2
1M2

2 .

Proof. By the definition of M1 , M2 and inequality (9), we can have that

C−∞(‖.‖ψ) � C−∞(‖.‖2)M2
1M2

2 .

Since C−∞(‖.‖2) = 1, which implies that

C−∞(‖.‖ψ) � M2
1M2

2 . (10)

Take an arbitrary t ∈ [0,1] and put x = (t,1− t) , y = (1− t,t) , then

‖x‖ψ = ‖y‖ψ = ψ(t).

‖x+ y‖ψ = ‖(1,1)‖ψ = 2ψ
(1

2

)
, ‖x− y‖ψ = ‖(2t−1,1−2t)‖ψ = 2|2t−1|ψ

(1
2

)
.

4min{‖x‖2
ψ ,‖y‖2

ψ}
‖x+ y‖2

ψ +‖x− y‖2
ψ

=
ψ2(t)

(1+(2t−1)2)ψ2( 1
2)

=
ψ2(t)

2ψ2
2 (t)ψ2( 1

2 )

=
ψ2(t)
ψ2

2 (t)
ψ2

2 ( 1
2 )

ψ2( 1
2 )

= M2
1M2

2 .

Since t is arbitrary, from the equivalent definition of C−∞(‖.‖ψ) , then

C−∞(‖.‖ψ) � M2
1M2

2 . (11)

The inequalities (10) and (11) show that C−∞(‖.‖ψ) = M2
1M2

2 . �

THEOREM 7. Let ψ(t) ∈ Ψ and ψ(t) = ψ(1− t) for all t ∈ [0,1] . If there exist
unique points t1, t2 ∈ [0, 1

2 ] such that

M1 =
ψ2(t1)
ψ(t1)

, M2 =
ψ(t2)
ψ2(t2)

and (1− t1)(1− t2) =
1
2
,

then
C−∞(‖.‖ψ) = M2

1M2
2 .
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Proof. On the one hand, by Theorem 6, we have that

C−∞(‖.‖ψ) � M2
1M2

2 . (12)

On the other hand, note that (1− t1)(1− t2) = 1
2 , put x = (1− t1,t1) , y = (t1,t1 − 1) ,

then x+ y = (1,2t1−1) x− y = (1−2t1,1) and

‖x‖ψ = ψ(t1) =
ψ2(t1)

M1
, ‖y‖ψ = ψ(1− t1) =

ψ2(t1)
M1

,

‖x+ y‖ψ = (2−2t1)ψ
(

1−2t1
2−2t1

)
=

ψ(t2)
(1− t2)

=
M2ψ2(t2)
(1− t2)

,

‖x− y‖ψ = (2−2t1)ψ
(

1
2−2t1

)
=

ψ(1− t2)
(1− t2)

=
M2ψ2(t2)
(1− t2)

.

Since √
2(1− t)ψ2

(
1

2−2t

)
= ψ2(t).

Consequently

C−∞(‖.‖ψ) �
min{‖x+ y‖2

ψ,‖x− y‖2
ψ}

(‖x‖2
ψ +‖y‖2

ψ)
= M2

1M2
2 . (13)

By the inequalities (12) and (13), we have that C−∞(‖.‖ψ) = M2
1M2

2 . �

4. Some Examples

In this section, we will calculate the exactly values of C(p)
−∞(X) for some concrete

Banach spaces. These results which not only give the exact value of the generalized

von Neumann-Jordan type constant C(p)
−∞(X) , but also give some new supplement re-

sults about the von Neumann-Jordan type constant C−∞(X) for some concrete Banach
spaces.

EXAMPLE 1. If X is the �p (1 � p � ∞) space, then

C(p)
−∞(X) =

{
22−p, 1 � p � 2,
1, 2 < p < ∞.

In particular, C(p)
−∞(‖.‖1) = C(p)

−∞(‖.‖∞) = 2.

Proof. Let 1 � p � 2, then ψp(t) � ψ2(t) and

ψp(t) � 2
1
p− 1

2 ψ2(t),
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where the constant 2
1
p− 1

2 is the best possible. On the other hand, the function ψp(t)
ψ2(t)

attains maximum at t = 1
2 .

ψp( 1
2 )

ψ2( 1
2)

=
((1− 1

2)p +( 1
2)p)

1
p

((1− 1
2 )2 +( 1

2)
2)

1
2

= 2
1
p− 1

2 .

Therefore, by Theorem 4, we have

C(p)
−∞(‖.‖p) = 2ψ p

p

(1
2

)
= 22−p. (14)

Similarly, for 2 < p < ∞ , then ψp(t) � ψ2(t) . By Theorem 3, then

C(p)
−∞(‖.‖p) =

1

2p−1ψ p
p ( 1

2 )
= 1. (15)

Let p = ∞ , since

ψ∞(t) =
{

1− t, 0 � t � 1
2 ,

t, 1
2 < t < 1.

(i) Let 0 � t � 1
2 , ψp(t)

ψ∞(t) = ((1−t)p+t p)
1
p

1−t = g(t) , then g′(t) > 0 and M1 = g( 1
2) = 2

1
p .

(ii) Let 1
2 � t � 1, ψp(t)

ψ∞(t) = ((1−t)p+t p)
1
p

t = h(t) , then h′(t) < 0 and M1 = h( 1
2) = 2

1
p .

Therefore, C(p)
−∞(‖.‖∞) = Mp

1 = 2 by Theorem 3. �

EXAMPLE 2. Let X = R
2 , the convex function ψ(t) is defined on [0,1] as

ψX(t) = (1− t + t2)
1
2 .

The corresponding norm is

‖(x,y)‖ = (|x|2 + |x||y|+ |y|2) 1
2 .

It is obvious that ‖(x,y)‖ is an absolute normalized norm on R
2 . By a standard

discussion, it is easy to check that the corresponding function ψX (t) =
√

1− t + t2

attains its minimum at the point 1
2 . For p � 2, then the corresponding space X p has

the norm
‖(x,y)‖ = ((|x|2p + |x|p|y|p + |y|2p)

1
2p .

And the corresponding convex function is

ψX p(t) = ‖(1− t,t)‖X p = [(1− t)p + t p]
1
p ψ

1
p

X

(
t p

(1− t)p + t p

)
.

By Corollary 1, we have that

C(p)
−∞(‖.‖ψX p ) =

1

2p−1ψ p
X p( 1

2 )
=

2
√

3
3

.
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EXAMPLE 3. Let 0 < ω < 1 and 2 � q < ∞ . The two-dimensional Lorentz se-
quence space d(2)(ω ,q) is R

2 with the norm

‖(x,y)‖ω,q = ((x∗)q + ω(y∗)q)
1
q ,

where (x∗,y∗) is the rearrangement of (|x|, |y|) satisfying x∗ � y∗ , then

C(p)
−∞(‖.‖ω,q) = 2

( 1
1+ ω

) p
q
.

Proof. It is well known that ‖(x,y)‖ω,q is an absolute normalized norm on R
2 ,

and the corresponding convex function is

ψω,q(t) =

{
((1− t)q + ωtq)

1
q , 0 � t � 1

2 ,

(tq + ω(1− t)q)
1
q , 1

2 � t � 1.

It is easy to check that ψω,q(t) � ψq(t) . Since 0 < ω < 1, ψq(t)
ψω,q(t)

is symmetric with

respect to t = 1
2 , it suffices to consider ψq(t)

ψω,q(t)
for t ∈ [0, 1

2 ] . For any t ∈ [0, 1
2 ] , put

f (t) = ψq(t)q

ψω,q(t)q
. Taking derivative of the function f (t) , then

f ′(t) =
q(1−ω)[t(1− t)]q−1

[(1− t)q + ωtq]2
.

We always have f ′(t) � 0 for 0 � t � 1
2 , this implies that the function f (t) is increased

for 0 � t � 1
2 . Therefore, the function ψq(t)

ψω,q(t)
attains its maximum at t = 1

2 . By
Theorem 3, then

C(p)
−∞(‖.‖ω,q) = 2

( 1
1+ ω

) p
q
. �

EXAMPLE 4. Let X = R
2 with the norm ‖.‖p,q,λ = max{‖.‖p,λ‖.‖q} , where

1 � q � p � ∞ and λ ∈ [2
1
p− 1

q ,1] , then

C(p)
−∞(‖.‖p,q,λ ) =

⎧⎨
⎩

2λ p2
p
q −p, if 1 � q < p � 2,

21− p
q

λ p , if 2 � q < p � ∞.

Proof. It is very easy to check that ‖.‖p,q,λ = max{‖.‖p,λ‖.‖q} ∈ Nα and its
corresponding function is

ψ(t) = ‖(1− t,t)‖p,q,λ = max{ψp(t),λ ψq(t)}.
Let t0 ∈ [0, 1

2 ] be a point such that ψp(t0) = λ ψq(t0) , then

ψ(t) =

{
ψp(t), t ∈ [0, t0],

λ ψq(t), t ∈ [t0, 1
2 ].
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In fact, ψ(t) is symmetric with respect to t = 1
2 , which is expanded to the whole

interval [0,1] .

(i) Suppose that 1 � q < p � 2, from the definition of ψ(t) , it is obvious that ψ(t)�
ψp(t) and the function

ψ(t)
ψp(t)

=

⎧⎨
⎩

1, t ∈ [0,t0]∪ [1− t0,1],
λ ψq(t)
ψp(t)

, t ∈ [t0,1− t0].

attains its maximum at t = 1
2 . Hence, by Theorem 5, we can have that

C(p)
−∞(‖.‖p,q,λ ) = 2λ p2

p
q −p.

(ii) Suppose that 2 � q < p � ∞ , since ψp(t) � ψq(t) and λ ψq(t) � ψq(t) , then
ψ(t) � ψq(t) , it is easy to check that the function

ψq(t)
ψ(t)

=

{ ψq(t)
ψp(t)

, t ∈ [0,t0]∪ [1− t0,1],
1
λ , t ∈ [t0,1− t0].

attains its maximum at t = 1
2 . By Theorem 3, then

C(p)
−∞(‖.‖p,q,λ) =

21− p
q

λ p . �

In the following, we will consider a wide class of absolute normalized norms
which involve weighted means of p -norms after normalization.

EXAMPLE 5. Let 1 � p < q � ∞ , 1 � s < ∞ and λ > 0, the convex function
ψλ ,p,q,s(t) is defined on [0,1] as

ψλ ,p,q,s(t) = (1+ λ )−
1
s (ψs

p(t)+ λ ψs
q(t))

1
s .

i.e. ψλ ,p,q,s(t) is a weighted mean of order s of functions ψp and ψq with weights
1

1+λ and λ
1+λ . The corresponding norm is

‖.‖λ ,p,q,s = (1+ λ )−
1
s (‖.‖s

p + λ‖.‖s
q)

1
s .

Then

(i) If 1 � p < q � 2, then C(p)
−∞(‖.‖λ ,p,q,s) = 2(1+ λ )

−p
s (2

s
p + λ2

s
q )

p
s .

(ii) If 2 � p < q � ∞ , then C(p)
−∞(‖.‖λ ,p,q,s) = 2(1+ λ )

p
s (2

s
q + λ2

s
q )

−p
s .
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Proof. Since ψλ ,p,q,s(t) is a weighted mean of order s of functions ψp(t) and
ψq(t) , then

ψq(t) � ψλ ,p,q,s(t) � ψp(t).

(i) Let 1 � p < q � 2, since ψλ ,p,q,s(t) � ψq(t) and
ψs

λ ,p,q,s(t)
ψs

q(t)
attains its maximum

at the same point as ψp(t)
ψq(t)

attains its maximum at t = 1
2 by the simple calculation.

Take ψ = ψq(t) and φ = ψp(t) in Corollary 2 (i), we have

C(p)
−∞(‖.‖λ ,p,q,s) = 2ψ p

λ ,p,q,s(
1
2
) = 2(1+ λ )

−p
s (2

s
p + λ2

s
q )

p
s .

(ii) Suppose that 2 � p < q � ∞ , since ψλ ,p,q,s(t) � ψp(t) and ψp(t)
ψλ ,p,q,s(t)

attains its

maximum at t = 1
2 . Similarly, take ψ = ψq(t) and φ = ψp(t) in Corollary 2 (ii),

then

C(p)
−∞(‖.‖λ ,p,q,s) =

1

2p−1ψ p
λ ,p,q,s(

1
2 )

= 2(1+ λ )
p
s (2

s
q + λ2

s
q )

−p
s . �

REMARK 1.

(i) In fact, take q = 2 in Example 3 and take p = 2, q = 1 or p = ∞ , q = 2 in Exam-
ple 4, these concrete Banach spaces which have been studied in the paper [8, 9],
some classical constants such as von Neumann-Jordan constant CNJ(X) have

been calculated for these spaces. Now, we get the exact values of C(p)
−∞(‖.‖p,q,λ )

for the general Banach space. However, there are some problems which re-

main unsolved: the exact values of C(p)
−∞(‖.‖ω,q) for the case 1 � q < 2 and

C(p)
−∞(‖.‖p,q,λ ) for the case 1 � q < 2 < p � ∞ , λ ∈ (2

1
p− 1

q ,2
1
2− 1

q ) .

(ii) In particular, take p = 2, q = ∞ , s = 2 in Example 5, the concrete Banach space
which has been studied in some papers [12, 22, 23, 24]. The generalized von

Neumann-Jordan type constant C(p)
−∞(‖.‖λ ,p,q,s) is calculated for the general case

in the paper. However, the exact value of C(p)
−∞(‖.‖λ ,p,q,s) for the case 1 � p <

2 < q � ∞ remain undiscovered.

In the above Examples, the maximum value M1 and M2 always attains at t = 1
2 .

However, there are some examples that maximum value M2 attains not at t = 1
2 .

EXAMPLE 6. If the corresponding convex function is given by

ψ(t) =

{
ψ2(t) (0 � t � 1

2 ),

(2−√
2)t +

√
2−1 ( 1

2 � t � 1),

then
C(p)
−∞(‖.‖ψ) = 22−pMp

2 = 22−p(4−2
√

2)
p
2 .



612 Z.-F. ZUO, L.-W. WANG, Y.-X. ZHAO AND Y.-Q. WU

Proof. Let ψ(t) ∈ Ψ and the norm of ‖‖ψ is

‖(a,b)‖ψ =

{ √|a|2 + |b|2 (|a| � |b|),
(
√

2−1)|a|+ |b| ((|a| � |b|).
Since ψ(t) � ψ2(t) , from Theorem 5, then

C(p)
−∞(‖.‖ψ) = 22−pMp

2 = 22−p ψ p(
√

2
2 )

ψ p
2 (

√
2

2 )
= 22−p(4−2

√
2)

p
2 . �

EXAMPLE 7. Let X be two-dimensional Cesàro space ces(2)
q , then

C(p)
−∞(‖.‖ψ) = 22−pMp

2 = 22−p max
0�t�1

ψ p(t)
ψ p

2 (t)
.

Where

ψ(t) =
[
2q(1− t)q

1+2q +
(

1− t

(1+2q)1/q
+ t

)q] 1
q

and
ψ2(t) = ((1− t)2 + t2)

1
2 .

Proof. Let us first define

|x,y| =
∥∥∥∥
(

2x

(1+2q)
1
q

,2y

)∥∥∥∥
ces

(2)
q

for (x,y) ∈ R
2 . ces(2)

q is isometrically isomorphic to (R2, |.|) and |.| is an absolute and
normalized norm ([17]), and the corresponding convex function is given by

ψ(t) =
[
2q(1− t)q

1+2q +
(

1− t

(1+2q)1/q
+ t

)q] 1
q

.

Note that ψ(t) � ψ2(t) and Theorem 5, then

C(p)
−∞(‖.‖ψ) = 22−pMp

2 = 22−p max
0�t�1

ψ p(t)
ψ p

2 (t)
. �

REMARK 2. In fact, the function ψ(t)
ψ2(t) attains the maximum at t = 1

2 if and only

if q = 2 for the two-dimensional Cesàro space ces(2)
q .

As the application, we will present two practical examples [6, 11] which satisfy
the conditions of Theorem 6 and Theorem 7, thus the exact value of the von Neumann-
Jordan type constant C−∞(X) coincides with their upper bound in some concrete Ba-
nach spaces.
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EXAMPLE 8. Let 1
2 � β � 1, X∗

β is the Banach space and its corresponding func-
tion is

ψ∗
β (t) =

⎧⎨
⎩

1− 2β−1
β s, i f 0 � s � 1

2 ,

1−β
β + 2β−1

β s, i f 1
2 � s � 1.

Then

(i) If 1
2 � β � 1√

2
, then C−∞(‖.‖ψ∗

β
) = β 2+(1−β )2

β 2 .

(ii) If 1√
2

< β � 1, then C−∞(‖.‖ψ∗
β
) = 2(β 2 +(1−β )2).

Proof. Note that ψ∗
β (t) is symmetric, therefore we discuss the function g1(s) =

ψ2(s)
ψ∗

β (s) on [0, 1
2 ] , then

M1 =

⎧⎨
⎩

1 (β ∈ [ 1
2 , 1√

2
]),

ψ2( 1
2 )

ψ∗
β ( 1

2 )
=
√

2β (β ∈ ( 1√
2
,1]).

Similarly, we discuss the function g2(s) =
ψ∗

β (s)
ψ2(s)

on [0, 1
2 ] , then

M2 =

√
(1−β )2 + β 2

β
.

(ii) If β ∈ ( 1√
2
,1] , since ψ∗

β (1−β ) = ψ∗
β (β ) and

ψ2( 1
2 )

ψ∗
β ( 1

2 )
= M1 =

√
2β . By Theorem

6, we have

C−∞(‖.‖ψ∗
β
) = M2

1M2
2 = 2(β 2 +(1−β )2), β ∈

( 1√
2
,1

]

(i) For each 1
2 � β � 1√

2
, it is easy to check that X∗

β is isometrically isomorphic to X∗
1
2β

under the identification

X∗
β 
 (x1,x2) ↔ 1

2β
(x1 + x2,x1 − x2) ∈ X∗

1
2β

,

since max{|x1 + x2|, |x1 − x2|} = |x1|+ |x2| for all x1,x2 ∈ R . If β ∈ ( 1
2 , 1√

2
] , then

1
2β ∈ ( 1√

2
,1] and

C−∞(X∗
β ) = C−∞(X∗

1
2β

)

= 2
(( 1

2β

)2
+

(
1−

( 1
2β

))2)

=
β 2 +(1−β )2

β 2 . �
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EXAMPLE 9. Let 0 � c � 1, the corresponding convex function is given by

ψc(t) = max
{

1− ct,1− c+ ct,1− c2

2

}
for 0 � t � 1.

Then

(i) If 0 � c � −1+
√

3, then C−∞(‖.‖ψc) = (2−c2)2
2 .

(ii) If −1+
√

3 < c � 1, then C−∞(‖.‖ψc) = 2(c2−2c+2)2

(2−c2)2 .

Proof. As the discussion in [6], if 0 � c � −1+
√

3, then ψc(t) � ψ2(t) . From
Theorem 5, then

C−∞(‖.‖ψc) = M2
2 =

(2− c2)2

2
.

If −1+
√

3 < c � 1, then

M2
1 =

ψ2
2 (t1)

ψ2
c (t1)

=
2(c2−2c+2)

(2− c2)
, M2

2 =
ψ2

c (t2)
ψ2

2 (t2)
= c2−2c+2,

where t1 = c
2 , t2 = 1−c

2−c , which satisfy the condition (1− t1)(1− t2) = 1
2 in Theorem 7,

then

C−∞(‖.‖ψc) = M2
1M2

2 =
2(c2−2c+2)2

(2− c2)2 . �
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