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ON WEIGHTED HARDY INEQUALITY WITH
TWO-DIMENSIONAL RECTANGULAR OPERATOR
— EXTENSION OF THE E. SAWYER THEOREM

VLADIMIR D. STEPANOV* AND ELENA P. USHAKOVA

(Communicated by L. E. Persson)

Abstract. A characterization is obtained for those pairs of weights v and w on Ri , for which the

two—dimensional rectangular integration operator is bounded from a weighted Lebesgue space
LE(R%) to L}(R%) for 1 < p < g < e, which is an essential complement to E. Sawyer’s result
[13] given for 1 < p < g < eo. Besides, we demonstrate that the E. Sawyer theorem is actual if
p = q only, for p < g the criterion is the finiteness of the Muckenhoupt-type constant. The case
g < p is also discussed.

1. Introduction

Let n € N. For Lebesgue measurable functions f(yi,...,y,) on R 1= (0,00)"
the n—dimensional rectangular integration operator I, is given by the formula

X1 Xn
Lif(x1,...,%): :/0 /0 SO,y yn)dyr ... dyy (X150, %0 > 0).

The dual transformation /;; has the form

Lif(x1,. . x): :/ / SO, yn)dyr ... dyn (X152, %0 > 0).
X1 Xn

Let 1 < p,q < e and v,w > 0 be weight functions on R’ . Consider Hardy’s

inequality
(/R (Inf)qW>E<Cn</Mf”V)F (f=0) (D

on the cone of non-negative functions in weighted Lebesgue space LI (R" ). The con-
stant C, > 0 in (1) is assumed to be the least possible and independent of f. For a fixed
weight v and a parameter p > 1 the space LI (IR") consists of all measurable on R”.
functions f such that fRi |f1PV < eo.

The problem of characterizing the inequality (1) is well known and has been con-
sidered by many authors (see [1, 3, 7, 11, 13, 15, 16] and references therein). The

n
+
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one—dimensional case of this inequality has been completely studied (see [0, 4, 5, 12]).
However, for n > 1 difficulties arise, preventing characterizing (1) without additional
restrictions on v and w. Nevertheless, E. Sawyer’s result is well known for arbi-
trary v,w in the case 1 < p < g < o. To formulate it we denote p’ := p/(p —1)
and o :=v!"7 .

THEOREM 1. [13, Theorem 1A] Let n =2 and 1 < p < g < oo. The inequality
(1) holds for all measurable non-negative functions [ on Ri if and only if

1 1
A= sup  [Lw(t,n)]?[Lo(t,n)]7 < e, 2
(11,12)€RT
1y tz 1
Ay = sup (/ (Lo)? ) [Lo(ty,1)] 7 <eo, 3)
(t1,12)€RZ
1 1
Az:= sup (/ / (Iw) a) [Bw(t,n)] 7 <o, 4)
(t1,12)ERY.

and Cy = A1 4+ Ay + Az with equivalence constants depending on parameters p and q
only.

Note that in one—dimensional case the analogs of the conditions (2)—(4) are equiv-
alent to each other [2]. For n = 2 this, generally speaking, is not true. Moreover,
as shown in [13, §4] for p = ¢ = 2, no two of the conditions (2)—(4) guarantee (1).
However, the construction of the second counterexample in [13, §4] fails in the case
p<gq.

The purpose of this paper is to obtain new conditions for the fulfilment of Hardy’s
inequality (1) for n =2 and 1 < p # g < . Relatively to the case 1 < p < g < oo,
the solution to this problem is contained in Theorem 2 in a criterion form. In Theorem
3 we give separate necessary condition and sufficient condition on v and w, when (1)
is true for n =2 and 1 < g < p < oo. Recall that the criterion for (1) when n =2 and
1 < p < g < oo, established in [13], is that the sum of three independent functionals
is bounded (see Theorem 1). It is proven in Theorem 2 that for 1 < p < g < oo the
inequality (1) is characterized by only one Muckenhoupt-type functional.

Analogs of Theorems 2 and 3 are also valid for the dual operator /; and mixed
Hardy operators (see [13, Remark 1] for details).

In § 3, for completeness, we present known results about the operator I, for arbi-
trary n, provided that at least one of the two weight functions in (1) is factorizable, that
is, can be represented as a product of n one—dimensional functions.

Since A; < C;, we may and shall assume that Lo (x,y) < e and Lw(x,y) <
for any (x,y) € R%. In particular, o,w € LL (R?).

Throughout the work, the notation of the form ® < W means that the relation
@ < ¥ holds with some constant ¢ > 0, independent of @ and ¥. We write ® ~ ¥
in the case of ® <YW < @. The symbols Z and N are used for denoting the sets of
integers and natural numbers, respectively. The characteristic function of the subset
E C R’ is denoted by yr. Symbols := and =: are used to define new values.
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2. Main result

Denote A :=Aj,

2

p-(g—1
a(p,q):=7( ), P<q;

q—p

and
_ </R (0] dedy [Bw(x.) ;> |

+

([, lwie)

+

‘
~ =

_~

dxdy[lzﬁ(m)]"’) . q<p,

where the last two equalities follow by integration by parts.
We start with some auxiliary technical statements.

LEMMA 1. Let 0<a<b<ooand 0<c<d<eo. If1 < p < q<ocothen

b rd XY o\4 bord %
V(g,b)x(c,d)(w76) ;:/a /; W()C,y)(/a /C G) dydx<a(l?,6])(/a /; o)’

Proof. Assume 1 < p < g < o and write

v(a,b)x<c,d)(w,a)=/h/d ([ [ o) "dy{ wix dt]dx
<[ [([[°) “/ i) (o) dva
=o[ [ ([ [ o) ([ otna)al-[ [ w]as
o P L)) [
+(/:/Cyc “a(w)} / /y w) dxdy.

V(aﬂb)x(c’d)(w’a)quq/ah/cd{ _1 // %72 /x sy)a’S)(/cyG(x,t)dt)
* (/a /Cy6>%_10(x7y)}dxdy.
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The assertion of the lemma follows from the chain of estimates:

o [ 0([ [ ([ ot ([ o)

// 7’1 }dxdy q
AL L L[ o e

q

// 71 }dxdy
o {2 [ ([oted o)

p //VG zlG(XJ)}dxdy
qu ) / /{ 1></ax/cy6>%72</ax0(57y)ds>(/Cyc(x,t)dt>
/ / %_ }dxdy
:[er%]/a /c {E %_1> (/ax/cyaﬁiz(/axc(&y)ds) (/jc(x,t)dt)
ﬂ /x yG %_IG(x,y)}dxdy

e {8 [ (oo
// %_ xy}dxdy a(p,q) // 0)".

A similar statement holds with the opposite integration of w and the proof follows

'E

ﬁ

(o

TR N

by the same arguments.

LEMMA 2. Let 0<a<b<ooand 0<c<d <o If1 <p<q<ocothen

b d b rd v_,
W o0)x(ca) (O, W) 12/ / G(x7y)(/ / W) dydx < a(q,p') / /
a Je x Jy
Introduce notations: o := a(p,q), o := o(q’,p'),
24\ ¢ q or—1 4 1,1 €
, = 3q = AN p 4 7
Cow =3 K3> max{a’2‘I(")' }(2,771_1) +3r (e )p]'

The main result of this paper for 1 < p < g < o is the following statement.
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THEOREM 2. Let 1 < p < q < oo. Then the inequality

<G ( L. f”V> " =0 )

</Ra (f) qW) q

holds if and only if A < oo. Besides,
A<G <Cy A,

Proof. The necessity part of the statement follows from Theorem 1 (by substitut-
ing f = X(0,5)x(0,) into the initial inequality (5)). To establish the sufficiency, similarly
to how it was done in E. Sawyer’s paper [13] for the case 1 < p < g < e, we show
that the conditions of the theorem are sufficient, limiting ourselves to proving the in-
equality (5) on the subclass M C LY (R%) of all functions f > 0 bounded on R% with
compact supports contained in the set {/;0 > 0}. Then the inequality (5) for arbitrary
o< felt (Ri) follows by the standard arguments.

V1
s
[ N (s s s A
3 o Iy
0Qy,
Fig. 1

Suppose A < e and fix f € M. In analogy with the proof of [13, Theorem 1A],
we define the domains

. :{12f>3’<}, keZ.

Then, by our assumptions on f, there exists K € Z such that Q; # @ for k < K,
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Q=@ for k> K, Upez & = R? and
3k<12f(xay)<3k+la k<K, (x’y)e(Qk\QkJrl)'

We can write down that
L@pw=3 [ (nyme<3 3 391000\ Ll
]R k<K—2 Q2\ Q43 k<K—-2
where |Q 12\ Qi3 = ka+2\Qk+3 w and Qg \ Qg1 = Qk, since Qg is empty.

Next, as in the proof of [13, Theorem 1A], we introduce rectangles. For this, we
fix k such that Q| # @, and choose points (x’}y’j), 1 < j <N =N, lying on the
boundary dQ; in such a way to have (x’;, y’j?_l) belonging to dQ; | for 2 < j <N
and Qi C UY, S% where S is a rectangle of the form (xlj‘,oo) (¥,%0). We also
deﬁnerectangles S’j‘- = (xk, 2k ) (y’j‘-,y’j?_l) for 1 <j< N and Rj = (0, x’;H) (O,y’;),

XjoXj+1
= (x4, xk ) x (y’j?H,yJ)andek:(xk- oo)x(y’;-,oo)forlgj\N—l.Puty’(‘):

Joj+l J+1
x§v+1 = oo (see Figure 1).

Now we choose the sets Ej C T} so that EfNEf = @ for j #i and U;E} =
(Qu2\ 13) N <Uj j ) Since 12\ Qi3 CQy1 C (Uj ,-) <Uj j) , then

3.—3q/Rz (Lf)tw < Z3kq}Ef|w+z3kq|§7jgm (Qura—Quis)| =1+ (6)
+ k.j k.j

To estimate // we denote D’j‘- = :97]‘ \ Q3 and turn to the reasoning by E. Sawyer
on page 6 in [13], from which it follows that

Iz(XD/Jc.f)(X,Y) >335 if (x,y) € 55N (Quin \ Quss).

Further, according to [13, p. 6],

S50 (Quia\ Qer3)], <37F [ L f) (x,y)w(x, y) dxdy
! SEO(Q42\Q43) Y

<37k / / w(x,y)dxdy
Dk
=3 /Dl;f(sj) [ /t WXD;;>dsdt

<3_k</uk.fpv>’1)</Dk s,1) //wka dsdt)

By applying Lemma 2 to (a,b) x (¢,d) = Sk we obtain for p < ¢ that

N o o [ P rap
Ws/;(GXDﬁi’W?CDﬁ:) = /D’;.G(S’t)<[ /t WXU;.) dsdt < o'A
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From this and Holder’s inequality with ¢ and ¢’

N k(g—1) ’ (| 7 kq| ok 7 aK
(o) UgA%sq (Aﬁﬂo |jw<A<23ﬂD}> [;(Lﬂm)]

J
Thus, Jensen’s inequality with p/q and the estimate Y ; 75D§ < Xk X0\ S 3 entail

<3 ()7 7 A (/ fp>)<A;(bffw>?. 7

To evaluate I in (6), in accordance with the proof of [13, Theorem 1A, pp. 8-9],
we put go := f and write:

341:%3("+1)‘1|Eﬂw:%|Ef}w</ 7) -3/, |R'<}q(|Rk| /. w). ®

For an integer /, by T; we denote the set of pairs (k, j) such that |[E%| >0 and

1
21<W,/ng0<21+17 (k,j)el"l.
Jlo "%

For fixed [ the family {U’ }i(:l)l consists of maximal rectangles from the collection

{R’;}(k’ j)er, » that is, each R’; with (k, j) € T} is contained in some U’ (or coincides
with it). In [13, p. 8] it is shown that l7il are disjoint for fixed /, where we denote
U'=RLif U =R

Let x! be the characteristic function of the union of the sets E’; overall (k,j) €T
such that R’j‘- C U!. Further, following [13, (2.13)], we arrive to

i)
SELRE=Y % [ eleye)ea o)

(k.j)eT; =1 (k,j): REcU!
i(l)
! q
<Z /]R xwlb(y0)]". ©)
i=1 +
In analogy with [13, (2.8)], let us first show the validity of the estimate
! q N AUVITTIE
2w (B (o))" < maxq o.2q(q') 7 (A U] |2 (10)
RZ i
for U' = (0,a) x (0,b). In view of Lemma 1,
4q
Vy = [ wli0)" < ant|ul}

On the rectangles (a,) X (b,), (0,a) x (b,) and (a,) x (0,b) analogous esti-
mates were established in [13, (2.8)] (see also [6, §1.3.2]). Therefore, (10) is true.
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Continuing (9), we obtain, using [13, (2.11)] and Jensen’s inequality with p/g:

S £, RS <max{e24(q) }A‘12|U’}

(k,j)eT;
q
<max{a,2 *'}Aq (2 ”3/ a) b
a(q’) 2 o2

3 N 1 »
<27 max{a72q(q)l” }Aq2 P / go ) .
{g>2173}

The last estimate is valid due to the fact that for fixed / the rectangles ﬁil do not intersect
(see [13, p. 8]). Combining this with (8) and taking into account the relation

q

3r—1pp-1

22 x{g>2z 1S f_lg”_l for p>1,

we obtain since g > p:

1<(3)'s2 Y |Ef, IR

l (k,j)€Ty

) oz s (2 )
8
<2% (%)qmax{a 24(q }Aq (221 /{ 2 3}80)Z
g>2
() a2 Y () e (o)
+

The (11) and (7) lead to the required upper bound, where the final upper estimate

[Lrrwsc( [ m) ([ mom) ver( [ )

follows from (6) combined with (7) and (11), where C=A-Cgy ov. [

N

REMARK 1. Recall that in the case p < g the best constant C, of the two—dimen-
sional inequality (5) is equivalent to 213: 1A; (see Theorem 1). However, by virtue of
the statements of Lemmas | and 2, for p < g the following inequalities take place:

A <G <CrifA1+Ar+A3] <Cpi[1+alp, Q)q +oa(d,p) AL (12)

Moreover,

lim[a(p,q) +a(q'.p")] =

Thus, the last estimate in (12) and the upper bound in Theorem 2 have blow-up for
plq.

The one—dimensional analog of the condition (2) is the boundedness of the Muck-
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enhoupt constant [8], of the condition (3) — the boundedness of the Tomaselli functional
[14, definition (11)], and the analog of the constant B is the Maz’ya—Rozin functional
[6, § 1.3.2]. The constants have been generalized to the scales of equivalent condi-
tions in [10] (see also [2] for the case p < ¢). In the following theorem we find a
sufficient condition for the inequality (5) to hold in the case g < p, having the form
(13), where B, is a two—dimensional analog of the constant %’}MR( ) from [10] in the
one—dimensional case. A necessary condition is given with the functional B.

THEOREM 3. Let 1 < g < p < co. Then the inequality (5) holds if

BV::</ uz(// (ho)?'w ) dudz) < oo, (13)

C, < 3%12%B,,.

where

If (5) is valid, then B < oo, moreover,
/ 1

1 L L
277 <i> 4 (p—> "B<Co.
r r

Proof. (Sufficiency) We apply Sawyer’s scheme of partitioning R? < into rectan-
gles from the proof of Theorem 2. Compared to Figure 1, Figure 2 below has a rectangle

0% = (0,%5) x (0,)%) added.
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Denote Ef = Ef U (§’; N (k12 — Q43)) - Then (see (6))
/ (ILf)iw < 33‘123’“1|Ek’ (14)
R2

+ k.j

Put go := f and write

~ ~ q ~ 1
3ka| gkl — Y |EF ( ) =Y |EX k.q<
S, = ZIEL ([, /) = ZELIZE (g

ilo

q
/ngc) . (15)

For an integer [, by I'; we denote the set of pairs (k, j) such that |I§f’w >0 and

i
l 1+1 .
<—— [ go <27, (k,j) eT.

k

}Qj}o Q.,;

In analogy with the proof of [13, Theorem 1A], we show that
1
o=l T/kgcx{gﬁzfl}, forall j, k. (16)
|Qj|0' gj

Indeed, this follows from the fact that

1 1
RO R S
|0%| . Jot 04, Loknig>2-1y on{g<2i-1}

1 / -1
< go 4271,
95 /ehnie2)

Further, we write for fixed /:

T [BLlgl <o S B [ oty

(k.j)€r; (k.j)€r;

_ Xy
< 27 2 /Nkw(x,y)[lgc(x,y)]q 1(/0 /0 gG)({g>211}>dxdy.

(k,j)er; " Ej

Combining the last estimate and (15), we obtain
kq| gk l Tk k|q
23E], <2722 X |E]|Qj]6
k.j I (kJj)eT
2q+1221 q-1) 2 /N w(x,y) [Izd(x y (/ / 80X (=21~ 1}>dxdy
[ (k )eF,

<2242 /way Izaxy (/ / gG)({g>21 1})dxdy

<22‘12/ w(x,y) [Lo(x,y)]? (// qG)dxdy
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From this and Hoélder’s inequality with exponents p/q and r/q, we find that

2‘123]“1}Ek| <2/ w(x,y) Igcxy (//g $,1)0 (8,1 dsdt)dxdy

_/ w(x,y) 126 (/ / gl(s,t)o(s,1 dsdt)dxdy
:/RZ gq(s,t)g(s,t)</ / w(x,y) [Izo‘(x,y)]qldxdy)dsdt

(o) (o[ o) sa)

+

=B€(/&2gpo) 7 (a7)

+

T

since the sets Ek are disjoint and g”’c = fPv. The estimates (14) and (17) imply the
validity of (5) for all f from the subclass M.

(Necessity) We apply the test function

1

[Lw(x,y)] 5 /yww Xt dt)dx] =:0(s,y)J(s,y)

U~

o) =05 [ o)
into (5). Then

R2 i :/Rz o (s,y) [/ (5,y)] "dsdy

+

:/R2+ (b0 (x.y)] ¢ [Bw(x.y)]? (/ymw(x,t)dt> (/Oxﬁ(s,y)ds> dxdy

=21 o SlRo@]7 d = [Bwey)] =Bl (18)

To estimate the left-hand side of the inequality (5), we write
)" = no(sy)] 7 [Bw(s.y)]

+4 [ Tnoten] 7 Eee) ([ o

:;M@w]+;mwwv. (19)

(x,1) dt) dx

Then, for our chosen f,

u 7 u gz
u,z) :/O /fz/ / o(s,y)J(s,y)dyds
1
22[),( I)// sy]lsydde‘F // sy]zsydde>
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To estimate F5>, we observe that

(%)Ilsz :/M/ZG(&y)Jz(S,y)dyds

> [Lw(u,z)] / / (s,) {/ Lo(x,y)] 7! (/OyO'(x,t)dt>dx] deds.

Since

~

/Su [no(xy)] 7! (/Oyff(x,t)dt)dx <Llno(u.y) 7 (20)

then

1

// sy[/ Lo(x,y) rl(/()yc(x,t)dt>dx} 7ﬁdyds

1

s 0
L ,_1 y
> (Lo (u,z)] o (s,y) (Lo (x,y)] o(x,t)dt )dx|dyds
> v 1 I dt )dx|dyd
0
1 Y
= I2GMZ // Lo(x,y)] / sy)ds)(/ G(x,t)dt)dydx
0 0

and, therefore,

5) < ) [ho(u,z)] v [Lw(u Z)]#
// Lo(x,y)] / y)d)(/oyc(x,t)dt)dxdy

= (4)" 2 120062] T [l )} (2.

~

For F| we obtain:
F _<6r1> ’ /OM /0Z (s,y)[ o (s, y)] r [Lw(s,y)] »  dyds
( ) (126 (,2)] 77 [w(u,2)] 7 // (5.9) [0 (5,y)] 7 dyds

= <cr1> 7[R0 (u,2)] T [Bw(u,2)] 731 (u.2).
It holds that

I—

Flu,2) =27 (4)" [bow2)] 77 [BEw(w2)] 7 ((x, )+ L Yo(u,2)).
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Integrating by parts we find:

(u,2) q / dx/ / [Izg(x Y)]

q / / o (x,1) dt 126(x7z)]q_r’dx—q7.]1(u7z)

r
/

:qrp [Lo(u, z)]L’ le(%Z)-

Hence,

==

Flu,2) >2 —(g) pT[IQG(u )] [Gw(u,2)] 7. @1

We write making use of (19):

/R2+ (Lf)'w :/2 f(x,y) </°° /w w(u,z) [F(u,z)]q_ldzdu) dxdy

>2 P’/ X,y (/ / wFI~ 1){ [120(36 V)77 [Bw(x,y)] 7

+ <1>% wa [bo(s,)] 7 [Bwls,y)] (/OyG(S,t)dt>ds} ’ }dxdy

q/
27 (G1+G). (22)

G is evaluated with (21) as follows:

a=(9)" [ , ot aote| T o) ([ [ ) (e sy

r

22*‘1,,;/1 (g> ’ <p_/>q71/]1§ o(x,y) [126(x7y)]

2
r r 4

=~

7 [Lw(x,y)] 7 dxdy. (23)

It is true for G, :

(4) 6= [, ot [ o) ? Eowie)
X (/: /ww(u,z) [F(mz)]qldzdu) dxdy
_/RZ / (x,) [/ Lo(s,y)] 7 7! [Bw(s,y)] z (/ch(s,t)dt>ds} %dx

x ( / w(,2) [F(u,2)] 7 dz) dudy

/ Lo(s,y)] Lﬁ [Lw(s,y)]

L

(/Oy G(s,t)dt)ds] !

2~

1

</0y6(s,t)dt>ds] Fdx

0~

>
/ R2
+

( /y ) [F(u,2)]" ) dudy
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1—

>/+ [Ew(u,y)] 7 b /Ou (x,) [/xu [Lo(s,y)] 7! (/OyO'(S7t)dt>dSi| dx
( u,2)]"” dz) dudy

(20) r pl IR i
(q—) / (Lo (u,y)] 77 [Lw(u,y)]®

></0 olx [/ [ho(s,y)] 7 1(/()y6(s7t)dt>ds]dx
(7w

~|-

X w(u (u,2) ]q dz) dudy

y

L r
>(7)" /Rg o] 77 [ty ([t )z ey
u %71 X
X {/0 [Lo(s,y)] </0 o(x,y)dx )(/0 o(s,t )d)ds] dudy.
Integrating by parts we find
u L/,l S y
/0 [Lo(s,y)] </0 G(x,y)dx) (/0 G(s,t)dt)ds
/ u r ! u r
= %(/0 G()@y)dx) [Izo'(u y)] dd —%/O [Izo'(s y)] 7 o(s,y)ds.
Hence, continuing the reasoning, we obtain for G, using (21):

(9 052 5 (1) (4) 7 (5)" [ lawtaont? ([ wtwoa)
u

r

X [[lza(u,y)]q_r’/ouc(x,y)dx—/o [Lo(s, y)]L’ (&y)ds] dudy. (24)

/ [Ew(u,y) p</y wuzdz) [/ [ho(s,y)]7 o (s,y)ds]dudy

-1 / [Bw(w.y)]? [bo(.y)]¥ o(u,y) dudy

then from (22) we obtain, applying (23) and (24),
4 q % p/ q-1 I r
7 q > 9 P ,
2r /Ri(bf) w > ( ) < ) /]R2+ o (x,)[Lo(x,)] 7 [Bw(x,y)] @ dxdy

r r
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<~

_<g>%(p7/>q_1%/ﬂ§z 0(x.y) [0 ()] 7 [Bw(x,y)] dxdy

r

= (D)L [ ot moten)]? i)

r

+<g>%+l(d>q/Rz du<—[15‘w(u7y)]§>d [Lo(u, y)]L’

r r

(0 ()
r r

In view of (18), the required lower bound for C, is proven. []

=~

dxdy

There is also a dual statement of the first part of Theorem 3 with the functional
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instead of B,. The proof is similar and can be carried out through the operator I3 f.
If the weights v and w are factorizable, then the condition B, < e (or B,, < o) is
necessary and sufficient for the (5) to hold if 1 < g < p < e, moreover C; =~ B, ~

3. Multidimensional case with factorizable weights

It was established by A. Wedestig in [15] (see also [16]) for the case n = 2 that if
the weight function v in (1) is factorizable, that is, v(xj,x2) = v (x;)va(x2), then it is
possible to characterize the inequality (1) by only one functional forall 1 < p < g < ee.

THEOREM 4. [16, Theorem 1.1] Let n=2, 1 <p < g <o, 51,5 € (1,p) and
v(x1,x2) = vi(x1)va(x2). Then the inequality (1) holds for all f > 0 if and only if
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where o;:=v; ©, i=1,2. Moreover, C; = Aw(s1,52) with equivalence constants
dependent on parameters p, q and sy, sy only.
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The result of this theorem can be generalized to n > 2.
A number of statements similar to [16, Theorem 1.1] were obtained in [11] under
the condition that weight functions v or w satisfy

V1Y) = Vi) - va(vn) (25)
or
WXy, X)) = wi(xr) ..o wa(X,). (26)
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THEOREM 5. [11, Theorems 2.1,2.2] Let 1 < p < g < oo and the weight function
v satisfy the condition (25). Then the inequality (1) holds for all f >0
(1) if and only if Ay, < oo, where

Q=
\\~

AMHI = sup [I;:W(tl,.., )] [Ilcl(tl)]i, [Ilcn(tn)] )

(t150stn) ERYL
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Besides, C, ~ Ay, ~ At, with equivalence constants depending on p, q and n.
THEOREM 6. [11, Theorems2.4,2.5] Let 1 < p < g < oo and the weight w satisfy

the condition (26). Then the inequality (1) is true
(1) if and only if Ay, < oo, where with ¢ := yl=p
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Besides, Cy = Ay, ~ A7 with equivalence constants depending on p, q and n.

Next assertions are devoted to the case 1 < g < p < e and we use multidimen-
sional analogs of Maz’ya-Rozin [6, § 1.3.2] and Persson-Stepanov [9, § Theorem 3]
functionals.

THEOREM 7. [11, Theorems 3.1, 3.2] Let 1 < g < p < eo. Suppose that the
weight function v in (1) satisfies the condition (25) and 1,01 (c0) = ... = [ 0,,(e0) = oo.

Then (1) is valid for all f >0 on R\ with C, < oo independent of functions f
(1) if and only if Byg, < oo, where
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(ii) if and only if Bps, < oo, where
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Moreover;, C, =~ Byr, =~ Bps, with equivalence constants dependent on p, q and n.
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THEOREM 8. [11, Theorems 3.3,3.4] Let 1 < g < p < oo. Assume that w in (1)
satisfies (26) and Iyw1(0) = ... = Iw,(0) = oo. Then (1) is valid for all f >0 on R’
with C, < o independent of functions f
(1) if and only if Byp < oo, where
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(ii) if and only if Bpg < o, where
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Moreover, Cy = Byp =~ Bpg with equivalence constants dependent on p, q and n.
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