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Abstract. In this study, the Aczél inequality is considered and a new simple proof of the inequal-
ity is provided. An extension and a sharper version of this inequality are obtained by performing
the results based on the optimality conditions of abstract convex functions.

Aczél inequality is one of the inequalities that have been studied and developed
occasionally in the last fifty years. The statement of this inequality is as follows.

Let n be positive integer and let A,B,xk,yk (1 � k � n) be real numbers such that

A2 �
n

∑
i=1

x2
i or B2 �

n

∑
i=1

y2
i . (1)

Then (
A2−

n

∑
i=1

x2
i

)(
B2 −

n

∑
i=1

y2
i

)
�
(

AB−
n

∑
i=1

xiyi

)2

with the equality if only if the sequences A,a1, . . . ,an and B,b1, . . . ,bn are proportional.
This inequality is originated from the study of Aczél [1]. Since then, many gener-

alizations, refinements, extensions of it have been done by many researchers [5, 6, 7, 8,
9, 12, 13, 14, 15, 16, 18, 19, 20, 21].

Most generalizations or refinements are based on the older refinement or gener-
alization of the inequality and some useful inequalities given as lemmas naturally. In
this study, after suggesting a new proof to the Aczél inequality, we give an extension
and a sharper version of the inequality by a different approach. This approach uses the
optimality condition of a function that is obtained in the context of abstract convex-
ity. The notion of abstract convexity (concavity) uses the representation of a function
as a supremum (infimum) of a certain class of minorant (majorant) functions. Some
properties and examples of different abstract convex functions and the related studies
involving inequalities can be seen in [2, 3, 4, 10, 17] and the references therein. In
[11], it has been shown that a function with Lipschitz continuous gradient mapping
is abstract concave with respect to a certain class of quadratic functions, which gives
the necessary optimality condition for this kind of function. This property of abstract
concave functions allows us to establish some new Aczél type inequalities.
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1. Preliminaries

Let us set up the notation and terminology used throughout the paper. R denotes
the set of real numbers;Rn is an Euclidean space; R

n
+, R

n
++ are nonnegative and

positive orthants, respectively; X is a Hilbert space with the inner product 〈., .〉 and
the norm ‖x‖ =

√〈x,x〉; B∗(x0;r) = {x ∈ X : ‖x− x0‖∗ � r} is a closed ball. Let f :
X → R and H be a set of real valued functions defined on X . f is said to be majorized
by H if for all h ∈ H,

f (x) � h(x), x ∈ X

i.e., every element of H majorizes f .
Rubinov [10] defines abstract concave function as follows .

DEFINITION 1. Let H be a set of functions h : Ω → R. A function f : Ω → R is
called abstract concave with respect to H (or H− concave) if there exists a set U ⊂ H
such that

f (x) = inf
h∈U

h(x)

for all x ∈ Ω .

Let H be the set of all quadratic functions h of the form

h(x) = a‖x‖2 + 〈l,x〉+ c, x ∈ X (2)

where a > 0, l ∈ X and c ∈ R.

Let Ω⊂X and let H be the set of quadratic functions given in (2). Then a function
f : Ω → R is abstract concave with respect to H if and only if f is majorized by H
and f is upper semicontinuous (see [11]).

Assuming some differentiability conditions on f allows us to provide a certain
way of building quadratic functions majorizing f . The following proposition elabo-
rates this fact [11].

PROPOSITION 2. [11] Let Ω ⊂ X be a convex set and let f be a differentiable
mapping defined on an open set including Ω . Suppose that ∇ f (x) is Lipschitz contin-
uous on Ω , i.e.

K = sup
x,y∈X

x	=y

‖∇ f (x)−∇ f (y)‖
‖x− y‖ < +∞.

Let a � K and for each t ∈ Ω

ft (x) = f (t)+ 〈∇ f (t),x− t〉+a‖x− t‖2, x ∈ X .

Then f (x) = min
t∈Ω

ft(x), x ∈ Ω.
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In [11], different aspects of optimality conditions for the functions that can be
expressed as the infimum of a family of convex functions over a convex set are stud-
ied in detail. One important result therein establishes a lower bound for the func-
tions whose gradient is Lipschitz continuous, i.e., there exists K > 0 satisfying that
‖∇ f (x)−∇ f (y)‖ � K ‖x− y‖ for all x,y ∈ X .

It states that if f is a function with Lipschitz continuous gradient mapping and x∗
is a global minimum point of f over X , then for some real number a > K,

f (x)− f (x∗) � 1
4a

‖∇ f (x)‖2 (3)

for all x ∈ X .
The following theorem in [11] gives detailed information about such a real number

“a” in (3).

THEOREM 3. Let ‖.‖ and ‖.‖◦ be norms on R
n . Let Ω ⊂ R

n be a set with
nonempty interior (denoted by int(Ω)) and let f ∈C1 (Ω) . Suppose that the mapping
x �−→ ∇ f (x) is Lipschitz on Ω and

K = sup
x,y∈X

x	=y

‖∇ f (x)−∇ f (y)‖
‖x− y‖ < ∞.

Let f have global minimum at x∗ ∈ int(Ω) over Ω. Define

M := max{‖∇ f (x)‖◦ : x ∈ B◦(x∗;r)}
where

B◦(x∗;r) = {x : ‖x− x∗‖◦ � r} ⊂ int(Ω).

If q is a positive real number such that B◦(x∗,r+q)⊂ Ω and a � max

(
K,

M
2q

)
, then

1
4a

‖∇ f (x)‖2 � f (x)− f (x∗), x ∈ B◦(x∗;r).

Theorem 3 enables us to obtain a sharper version of the Aczél inequality.

2. Main results

In this section, we first present a new simple proof of the Aczél inequality. This
proof involves only straightforward algebraic calculations. Also it extends the sufficient
condition (1) of the Aczél inequality. Next, by a similar argument in this proof, we give
a lemma and obtain an Aczél type inequality. Then, a sharpened version for the Aczél
inequality is presented.

THEOREM 4. Let A and B any real numbers. If x,y∈R
n satisfies AB � ‖x‖‖y‖+〈x,y〉

2 ,
then the following inequality holds:

(A2 −‖y‖2)(B2 −‖x‖2) � (AB−〈x,y〉)2
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Proof. Start with 0 � (A‖y‖−B‖x‖)2. Adding and subtracting ‖x‖2 ‖y‖2−〈x,y〉2
to the righthand side yields

0 � (A‖y‖−B‖x‖)2 +‖x‖2 ‖y‖2−〈x,y〉2−‖x‖2 ‖y‖2 + 〈x,y〉2 .

On the other hand ‖x‖‖y‖+〈x,y〉
2 � AB implies ‖x‖2 ‖y‖2−〈x,y〉2 � 2AB(‖x‖‖y‖−

〈x,y〉). Using this above yields

0 � (A‖y‖−B‖x‖)2 +2AB(‖x‖‖y‖−〈x,y〉)−‖x‖2 ‖y‖2 + 〈x,y〉2 .

Expanding the squared expression and simplifications, we get

0 � A2 ‖y‖2 +B2‖x‖2−2AB〈x,y〉−‖x‖2 ‖y‖2 + 〈x,y〉2

Substracting A2 ‖y‖2 + B2 ‖x‖2 −‖x‖2 ‖y‖2 from and adding A2B2 to both sides
yields (

A2−‖x‖2
)(

B2−‖y‖2
)

� (AB−〈x,y〉)2 . �

COROLLARY 5. (Aczél Inequality) If A � ‖x‖ or B � ‖y‖ , then

(
A2−‖x‖2

)(
B2−‖y‖2

)
� (AB−〈x,y〉)2 .

The following extension of the Aczél inequality does not involve any conditions. It
will allow us to set up a function to use abstract convexity approach to get a refinement.

LEMMA 6. Let A,B real numbers and x,y ∈ R
n . Then

(A2−‖y‖2)(B2−‖x‖2)+ 〈x,y〉2− (‖x‖‖y‖)2 � (AB−〈x,y〉)2 .

Proof. From 0 � ‖Ax−By‖2 , it is clear that

−A2‖x‖2 −B2‖y‖2 � −2AB〈x,y〉

Adding A2B2 + 〈x,y〉2 +‖x‖2 ‖y‖2 to both sides, we have

−A2‖x‖2−B2‖y‖2 +A2B2 + 〈x,y〉2 +‖x‖2 ‖y‖2

� −2AB〈x,y〉+A2B2 + 〈x,y〉2 +‖x‖2 ‖y‖2

(A2 −‖y‖2)(B2 −‖x‖2)+ 〈x,y〉2 − (‖x‖‖y‖)2 � (AB−〈x,y〉)2 �

The following theorem establishes an Aczél type inequality and it employs the
abstract convexity approach via Theorem 3.
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THEOREM 7. Let A,B,xk,yk,(1 � k � n) be real numbers. Then

(
A2−

n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
+

1
2
√

n

n

∑
k=1

[Bxk −Ayk]
2 +

(
n

∑
i=1

xiyi

)2

−
n

∑
i=1

x2
i

n

∑
i=1

y2
i

�
(

AB−
n

∑
i=1

xiyi

)2

.

Proof. Let y=(y1,y2, . . . ,yn) be arbitrary point in R
n and let fy(x) be given by

fy(x) =

(
AB−

n

∑
i=1

xiyi

)2

−
(

A2−
n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
−
(

n

∑
i=1

xiyi

)2

+
n

∑
i=1

x2
i

n

∑
i=1

y2
i

for R
n
++ . One can express the Aczél type inequality in Lemma 6 as fy(x) � 0 under

required conditions. Now accepting the function in Theorem 3 as fy(x) , we can have
the sharper version of the inequality.

The function fy(x) is nonnegative for all x ∈ R
n and it is clear fy(x) = 0 if and

only if x∗ = λy , λ = A
Bk, k ∈ R . It yields that x∗ is global minimum point over R

n . A
trivial calculation shows that

∇ fy(x) = 2
[
x1B

2−ABy1,x2B
2−ABy2, . . . ,xnB

2−AByn
]

Thus

‖∇ f (x)‖2 = 4
n

∑
k=1

[
xkB

2−AByk
]2

Accepting ‖.‖ = ‖.‖2 and ‖.‖◦ = ‖.‖∞ we can define

Ω = B∞(λy;d) = {x ∈ R
n : ‖x−λy‖∞ � d}

= {x ∈ R
n : λyi −d � xi � λyi +d, i = 1, . . . ,n}

where λ ′ := min
i
{λyi} > d > 0. Since d < λyi, it follows that Ω ⊂ R

n
++. To show

the fulfillment of Lipschitz condition, let us define the following function

ρi(x) = xiB
2 −AByi

and estimate ‖∇ρi(x)‖ for x ∈ Ω . For i ∈ {1, . . . ,n} ,

∂ρi

∂xi
(x) = B2

∂ρi

∂x j
(x) = 0 ( j 	= i)

so
‖∇ρi(x)‖2 = B4
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Let x,z ∈ Ω . The mean value theorem implies that there exist numbers θi ∈ (0,1) ,
i = 1, . . . ,n such that∥∥∇ fy(x)−∇ fy(z)

∥∥= 2‖[ρ1(x)−ρ1(z)] , [ρ2(x)−ρ2(z)] , . . . , [ρn(z)−ρn(z)]‖

= 2

(
n

∑
k=1

[ρk(x)−ρk(z)]
2

) 1
2

= 2

(
n

∑
k=1

[∇ρk(x+ θk(z− x))(x− z)]2
) 1

2

Taking into account that x + θi(z− x) ∈ Ω for all i and using the Cauchy-Schwarz
inequality, we have

(
n

∑
k=1

[∇ρk(x+ θk(z− x))(x− z)]2
) 1

2

�
(

n

∑
k=1

‖∇ρk(x+ θk(z− x))‖2

) 1
2

‖x− z‖

�
(

n

∑
i=1

B4

) 1
2

‖z− x‖

=
(
nB4) 1

2 ‖z− x‖

It follows that ∥∥∇ fy(x)−∇ fy(z)
∥∥ � a1(λ ,d)‖x− z‖ , x,z ∈ Ω

where
a1(λ ,d) = 2

√
nB2.

Thus it is deduced that the mapping x → ∇ f (x) is Lipschitz continuous on Ω with the
Lipschitz constant K � a1(λ ,d). Let us choose a positive number r ∈ (0,d) . Clearly
B∞(x∗,r) ⊂ Ω and we can take q = d − r . Let us estimate M = max{‖∇ fy(x)‖∞ :
x ∈ B∞(x∗,r)} as follows:

M = max
x∈B∞(x∗,r)

{‖∇ f (x)‖∞} = 2 max
x∈B∞(x∗,r)

{
max
1�i�n

∣∣xiB
2−AByi

∣∣}
� 2 max

B∞(x∗,r)

{
max{|xi|}B2 +max{|yi|}|AB|}

� 2
{
(λ max |yi|+ r)B2 +max{|yi|}|AB|}

Let

a2(λ ,d,r) =
M

2(d− r)

and
a(d) = max{a1(λ ,d),a2(λ ,d,r)} .
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Since a1(λ ,d) is constant, lim
d→r+

a2(λ ,d,r) = +∞ and decreasing on (r,λ ′) so the

function d �−→ a(d) takes its minimum on the interval (r,λ ′) and it equals to a1(λ ,d).
Let

a = min
r<d<λ ′a(d) = 2

√
nB2.

Hence

(
A2−

n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
+

1
2
√

n

n

∑
k=1

[xkB−Ayk]
2 +

(
n

∑
i=1

xiyi

)2

−
n

∑
i=1

x2
i

n

∑
i=1

y2
i

�
(

AB−
n

∑
i=1

xiyi

)2

for all x ∈ R
n such that ‖x−λy‖∞ � r . Since we can choose Ω as large as required

with extending d and a(d) = a1(λ ,d) is independent of the choice of d and λ , the
inequality holds for all x,y ∈ R

n . �

We can express the inequality above in the norm notation as follows

(A2−‖y‖2)(B2−‖x‖2)+
1

2
√

n
‖Ax−By‖2 + 〈x,y〉2− (‖x‖‖y‖)2 � (AB−〈x,y〉)2

By applying Theorem 3 in a similar way to the Aczél inequality, we have the
following sharper version of it.

THEOREM 8. Let A,B,xk,yk,(1 � k � n),λ ,r be real numbers such that A2 �
∑n

k=1 x2
k and B2 � ∑n

k=1 y2
k . Then

(
A2−

n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
+max{C,D} �

(
AB−

n

∑
i=1

xiyi

)2

(4)

where

C =

n
∑

k=1

[
xk

(
B2−

n
∑
i=1

y2
i

)
− yk

(
AB−

n
∑
i=1

xiyi

)]2

2n2

[
nB4 +(n−1)

(
n
∑
i=1

y2
i −2B2

)
n
∑

k=1
y2
k

] 1
2

,

D =

n
∑

k=1

[
yk

(
A2−

n
∑
i=1

x2
i

)
− xk

(
AB−

n
∑
i=1

xiyi

)]2

2n2

[
nA4 +(n−1)

(
n
∑
i=1

x2
i −2A2

)
n
∑

k=1
x2
k

] 1
2
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Proof. First, by choosing y ∈ R
n such that B2 � ∑n

k=1 y2
k and applying the similar

arguments in the proof of Theorem 7 to the function

fy(x) =

(
AB−

n

∑
i=1

xiyi

)2

−
(

A2−
n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
(x ∈ R

n)

we have

(
A2−

n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
+

n
∑

k=1

[
xk

(
B2 − n

∑
i=1

y2
i

)
− yk

(
AB− n

∑
i=1

xiyi

)]2

2n2

[
nB4 +(n−1)

(
n
∑
i=1

y2
i −2B2

)
n
∑

k=1
y2
k

] 1
2

�
(

AB−
n

∑
i=1

xiyi

)2

(5)

for all x ∈ R
n .

Second, choosing x ∈ R
n such that A2 � ∑n

k=1 x2
k and applying the similar argu-

ments in the proof of Theorem 7 to the function

fx(y) =

(
AB−

n

∑
i=1

xiyi

)2

−
(

A2−
n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
(y ∈ R

n)

we have

(
A2−

n

∑
i=1

x2
i

)(
B2−

n

∑
i=1

y2
i

)
+

n
∑

k=1

[
xk

(
B2 − n

∑
i=1

y2
i

)
− yk

(
AB− n

∑
i=1

xiyi

)]2

2n2

[
nB4 +(n−1)

(
n
∑
i=1

y2
i −2B2

)
n
∑

k=1
y2
k

] 1
2

�
(

AB−
n

∑
i=1

xiyi

)2

(6)

for all x ∈ R
n . Combining 5 and 6 with assumptions, one can have 4. �
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