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Abstract. In this paper, a sufficiency condition for boundedness of the Steklov operator

Sh f (x) =
1
h

∫ x+h

x
f (t)dt, h > 0

has been proved in variable exponent Lebesgue space Lp(.)(0,∞) . Here an infinite interval
(0,∞) has been considered with a new decay condition on infinity. A finite interval [0,2π]
case with a local log- regularity condition has been studied previously in order to be applied on
approximation problem.

1. Introduction

In this study, we derive a boundedness result for the classical Steklov operator

Sh f (x) =
1
h

∫ x+h

x
f (t)dt, h > 0 (1)

in variable exponent Lebesgue space Lp(.)(0,∞) (For the notation and main properties
of variable exponent Lebesgue space see, e.g. [1, 2]).

A boundedness problem for main integral operators in variable exponent Lebesgue
spaces has been studied by many authors. A local log-regularity condition and a decay
condition at infinity are used on the exponent functions in the study of boundedness
and compactness problems for the main integral operators of harmonic analysis. For a
survey of this topic see, e.g. in monographs [1, 2, 8, 14].

A function p : (0,∞) → (1,∞) satisfies local regularity condition if

|p(x)− p(y)| ln 1
|x− y| � C1 where |x− y|< 1

2
. (2)

A function p : (0,∞) → (1,∞) satisfies a decay condition if

|p(x)− p(∞)| ln(e+ x) � C2, x > 0. (3)
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The Steklov operator was considered in [5] by Edmunds and Nekvinda. It was
given such example that Steklov operator is bounded and maximal operator is not
bounded, it was shown that the local regularity condition is not enough for boundedness
of Steklov operator see [5, Example 4.2].

Note that we have the estimates Sh f � M+ f and M+ f � M f , where M+ is one-
sided Hardy-Littlewood maximal operator. It is known that the one-side maximal op-
erator M+ is bounded on wider class of exponent functions then maximal function M ,
(see [13]).

In this paper, we continue a study on variable exponent boundedness of Steklov’s
operator, started by I. Sharapuddinov in case of bounded interval [0,2π ] in [15] (see
also [16, 17]), where a local regularity condition has been assumed in order to apply it
in the approximation problems in variable exponent spaces Lp(.)[0,2π ] (see, also [6]).
It is also was considered in the case of periodic functions f on (0,∞) not using a decay
condition. In our study, we insert two type conditions for the exponent function p(.) ,
one is the same local regularity condition (2) and another is a new condition (5) below
given near infinity, to govern the inequality

||Sh f ||Lp(.)(0,∞) � C|| f ||Lp(.)(0,∞) (4)

with a constant C independent on 0 < h < 1.
In contrast to the mentioned works, we consider a case of infinite interval and not

periodic functions f , therefore obligated some condition on infinity. Since it holds an
inequality Sh f (x) � M f (x), via maximal operator, one can think, those results (see,
e.g. a proper result in [3] or say, [12]) entail ours. It does not so by the followings.

A decay condition at infinity that we have used in this paper is the condition

|p(t)− p(x)| ln(e+ x) � C3, x < t � x+1, x > 0, (5)

with a positive constant C3 independent x .
In general, (5) is weaker than a decay condition (3). Indeed, since t < y � t +

1, t > 0 from (3) it follows

|p(t)− p(y)| ln(1+ t)

� |p(t)− p(∞)| ln(1+ t)+ |p(y)− p(∞)| ln(1+ y) � 2C2.

The reverse assertion is not true, as it follows from the example (see, [10])

p(x) = 4+
1√

ln(e+ x)
x > 0. (6)

It is not difficult to verify that, this function satisfies (5) but does not satisfy (3) the
weaker decay condition

1 ∈ Ls(.),
1

s(x)
=
∣∣∣ 1
p(x)

− 1
p(∞)

∣∣∣ (7)

that usually is used in proving a boundedness result for maximal operators in Lp(.) (see,
e.g. in [2], Remark 4.2.8). Since the condition (7) excludes the above example (6), our
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results does not follow from a boundedness result for maximal operator. To be sure it,
note that (7) means ∫ ∞

0
e
− C

| 1
p(x)−

1
p(∞) | dx � 1

by some positive C. For the above example, the left hand side for any C > 0 yields∫ ∞

0
e−2C

√
ln(e+x)dx =

∫ ∞

1
2ueu2−2Cudu = ∞,

i.e. (7) is violated.
The boundedness results of the type of given in the present paper (e.g. as in (4))

is used in proving the density and embedding results for the variable exponent Sobolev
spaces [2, 3, 4, 7]. There arises a need for a boundedness result for approximate operator
(it can be e.g. the Steklov operator, a mollifying operator with smooth kernel etc.
). Having such estimates and proving the approximation property in the smooth and
compact support class of functions and further applying Banach-Steinhaus theorem is
handed the density result. For example, let us show the convergence as h → +0 for
arbitrary function f ∈ Lp(·)(R+) :

Ip(·)(Sh f − f ) =
∞∫

0

∣∣∣1
h

x+h∫
x

f (t)dt− f (x)
∣∣∣p(x)

dx → 0. (8)

For a function f ∈ L1,loc(R+) the convergence Sh f (x)→ f (x) a.e. x∈R is well known
(see, e.g. [2]). Then the convergence (8) for a bounded compact support continues
function f (x) easily follows from this fact and the Lebesgue convergence theorem. For
further establishing this convergence on functions f ∈ Lp(·)(R+) it suffices to apply
the estimate (4) and the Banach-Steinhaus theorem and the fact on density of compact
support continuous functions in Lp(·).

In this paper, we use following notation.
By C,Ci we denote a positive and greater then 1 constant depending on p+ and

C1 from the conditions (2) . We use a notation p+ = sup{p(x) : x ∈ (0,∞)} and
p− = inf{p(x) : x ∈ (0,∞)}. Recall, the norm in variable exponent Lebesgue space

Lp(.)(0,∞) given as ‖ f‖ = inf
{

λ > 0 : Ip(.)
( f

λ
)

� 1
}

makes it a Banach space, with a

modular Ip(.) ( f ) =
∫ ∞
0 | f (t)|p(t)dt. We use the notation ‖ f‖p(.) or ‖ f‖Lp(.)(0,∞) for the

Lp(.)(0,∞) variable exponent Lebesgue norm of function f . For a function p : [0,∞)→
[1,∞) denote p′(x) the function satisfying 1

p(x) + 1
p′(x) = 1 and p′ = ∞ if p = 1.

2. Main result

Main result of this paper is stated as following.

THEOREM 1. Let p : [0,∞) → (1,∞) be a continuous function with p+ < ∞ and
the conditions (2), (5) be satisfied. Then for any measurable positive function f :
(0,∞)→ (0,∞) it holds the inequality (4) with a constant C0 depending on C1,C3, p−, p+.
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We present two lemmas which we need in the proof.

LEMMA 1. It holds an estimate

‖χ(x,x+h)‖p′(.) � C5h
1

(p−x,h)′
, 0 < h < 1, x > 0, (9)

where C5 is a constant greater then 1.

LEMMA 2. It holds an inequality

h

p−x,h−p(x)

p−x,h � e
2C1
p− , 0 < h < 1, x > 0 (10)

The proof of Lemma 1 easily follows from Remark 2.40 of [1] and proof of Lemma
2 follows from Lemma 4.1.6 of [2].

Proof of Theorem 1. Let f be a positive measurable function on (0,∞) such that

|| f ||p(.) � 1. To prove Theorem 1, it suffices to show ‖Sh f (x)‖p(.) � C1/p−
4 , or more

explicitly, Ip(.)(Sh f ) � C4 by some constant C3 depending on C1,C3, p−, p+. Let p :
(0,∞) → (1,∞) be a continuous function satisfying the conditions (2) and (5). Let
x∈ (0,∞) be fixed. Denote p−x,h = inf{ p(t) : x < t < x+h} and p+

x,h = sup{ p(t) : x <

t < x+h} . Using Minkowski’s inequality for p(.) -norms we have

‖Sh f‖Lp(.)(0,∞) � ‖Sh f‖Lp(.)(0,1) +‖Sh f‖Lp(.)(1,∞).

To get an estimation for the left hand side, we get estimation of proper modulars:

i1 =
∫ 1

0
(Sh f (x))p(x)dx and i2 =

∫ ∞

1
(Sh f (x))p(x)dx .

By definition,

i1 =
∫ 1

0

(
Sh f (x)

)p(x)
dx =

∫ 1

0

(1
h

∫ x+h

x
f (t)dt

)p(x)
dx.

Using Hölder’s inequality for p(x)-norms it follows that∫ x+h

x
f (t)dt � 2‖ f (.)χ(x,x+h)(.)‖p(.)‖χ(x,x+h)(.)‖p′(.) .

From this and the assumption ‖ f‖p(.) � 1, for x > 0 we get
∫ x+h

x
f (t)dt � 2‖χ(x,x+h)‖p′(.). (11)

Now, we pass to the estimation of i1 .

i1 =
∫ 1

0

(1
h

∫ x+h

x
f (t)dt

)p(x)
dx

=
∫ 1

0

(
1
h

∫ x+h
x f (t)dt

C5h
− 1

p−x,h

)p(x)

Cp(x)
5 h

− p(x)
p−x,h dx, h > 0 .

(12)
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By using (11) and estimate (9) of Lemma 1, the parentheses term does not exceed 1. To
increase its value, we may decrease the exponent p(x) to p−x,h . Then

i1 �
∫ 1

0

(
1
h

∫ x+h
x f (t)dt

)p−x,h

Cp−
5

Cp+

5 h

p−x,h−p(x)

p−x,h dx. (13)

From this applying Holder’s inequality

1
h

∫ x+h

x
f (t)dt �

(
1
h

∫ x+h

x
f (t)p−x,hdt

) 1
p−x,h

the right hand side of (13) is exceeded by

Cp+−p−
5

∫ 1

0

(1
h

∫ x+h

x
f (t)p−x,hdt

)
h

p−x,h−p(x)

p−x,h dx.

Whence,

i1 � Cp+−p−
5

h

∫ 1

0

(∫ x+h

x
f (t)p−x,hdt

)
h

p−x,h−p(x)

p−x,h
dx. (14)

Using Lemma 2, from (14) it follows

i1 � Cp+−p−
5 e

2C1
p−
∫ 1

0

(
1
h

∫ x+h

x
f (t)p−x,hdt

)
dx. (15)

Since p(t) � p−x,h for t ∈ (x,x+h), it is clear that

∫ x+h

x
f (t)p−x,hdt =

∫ x+h

x
χ{ f (t)�1}(t) f (t)p−x,hdt +

∫ x+h

x
χ{ f (t)<1}(t) f (t)p−x,hdt

�
∫ x+h

x
f (t)p(t)dt +

∫ x+h

x
dt. (16)

From (15) using (16) and Fubini’s theorem it follows that

i1 � Cp+−p−
5 e

2C1
p− 1

h

∫ 1

0

(∫ x+h

x
f (t)p(t)dt

)
dx+Cp+−p−

5 e
2C1
p−

or

i1 � Cp+−p−
5 e

2C1
p− 1

h

∫ 1

0

(∫ x+h

x
f (t)p(t)dt

)
dx+Cp+−p−

5 e
2C1
p−

� Cp+−p−
5 e

2C1
p−

(∫ 1+h

0
f (t)p(t)dt +1

)
� 2Cp+−p−

5 e
2C1
p−
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by assumption Ip(.)( f ) � 1 due to [9, (2.9)].
Therefore, it has been proved that

i1 � 2Cp+−p−
5 e

2C1
p− . (17)

Derive an estimation for i2,

i2 =
∫ ∞

1

(
1
h

∫ x+h

x
f (t)dt

)p(x)

dx, h > 0.

Using the estimate (9) of Lemma 1 for x > 1 it follows that

∫ x+h

x
f (t)dt � C5h

1
(p−x,h)′

, 1 < x < ∞, h > 0. (18)

We shall use this estimation in our further argues. Since

1
h

∫ x+h
x f (t)dt

C5h
− 1

p−x,h

� 1, x > 1, h > 0,

it follows that

i2 �
∫ ∞

1

(
1
h

∫ x+h
x f (t)dt

C5h
− 1

p−x,h

)p(x)

Cp(x)
5 h

−p(x)
p−x,h dx

� Cp+−p−
5

∫ ∞

1

(
1
h

∫ x+h

x
f (t)dt

)p−x,h
h

p−x,h−p(x)

p−x,h dx, h > 0

since p(x) � p−x,h.
Now, using Holder’s inequality

1
h

∫ x+h

x
f (t)dt �

(
1
h

∫ x+h

x
f (t)p−x,hdt

) 1
p−x,h

it follows that

i2 � Cp+−p−
5

1
h

∫ ∞

1
h

p−x,h−p(x)

p−x,h

(∫ x+h

x
f (t)p−x,hdt

)
dx, h > 0. (19)

Use the estimate (10) of Lemma 2 for x > 1 :

h

p−x,h−p(x)

p−x,h = e

p(x)−p−x,h
p−x,h

ln 1
h � e

2C1
p− , h > 0, x > 1.
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Therefore, from (19) it follows

i2 � Cp+−p−
5 e

2C1
p− 1

h

∫ ∞

1

[∫ x+h

x
f (t)p−x,hdt

]
dx. (20)

The interior integral is estimated as

∫ x+h

x
f (t)p−x,hdt =

∫ x+h

x

(
f (t)(1+ t2)

)p−x,h( 1
1+ t2

)p−x,h
dt

=
∫ x+h

x

(
f (t)(1+ t2)

)p−x,h
χ{s: f (s)(1+s2)�1}(t)

( 1
1+ t2

)p−x,h
dt

+
∫ x+h

x

(
f (t)(1+ t2)

)p−x,h
χ{s: f (s)(1+s2)<1}(t)

( 1
1+ t2

)p−x,h
dt

�
∫ x+h

x
f (t)p(t)(1+ t2)p(t)−p−x,hdt +

∫ x+h

x

dt
1+ t2

. (21)

By using the condition (5),

(1+ t2)p(t)−p−x,h = e2(p(t)−p−x,h) ln(1+t) � e4C3 , 1 < x < t � x+h. (22)

Indeed, as in the proof of (10) for t ∈ (x,x+h) it holds[
p(t)− p−x,h

]
ln(1+ t) � 2|p(t)− p(ξ )| ln(1+ t) � 2C3,

where ξ ∈ (x,x+h).
Using (22) and (21), it follows that∫ x+h

x
f (t)p−x,hdt �

(
e2C3

∫ x+h

x
f (t)p(t)dt +

∫ x+h

x

dt
1+ t2

)
. (23)

Insert (23) into the estimate (20). Then

i2 � Cp+−p−
5 e2C3+2C1

1
h

∫ ∞

1

(∫ x+h

x
f (t)p(t)dt

)
dx

+Cp+−p−
5 e2C1

1
h

∫ ∞

1

(∫ x+h

x

dt
1+ t2

)
dx.

(24)

Apply here Fubini’s theorem; then

i2 � Cp+−p−
5 e2C3+2C1

1
h

∫ ∞

1
f (t)p(t)

(∫ t

t−h
dx

)
dt

+Cp+−p−
5 e2C1

1
h

∫ ∞

1

(∫ t

t−h
dx

)
dt

1+ t2

� Cp+−p−
5 e2C3+2C1

∫ ∞

1
f (t)p(t)dt +Cp+−p−

5 e2C1

∫ ∞

1

dt
1+ t2

(25)
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since Ip(.)( f ) � 1 and the last integral is equal π
2 , we have proved that

i2 � C6 (26)

with
C6 = Cp+−p−

5 e2C3+2C1 +Cp+−p−
5 e2C1

π
2

.

Combining the estimates (17) and (26) we get

Ip(.) (Sh f (x)) � C7 := C6 +2Cp+−p−
5 e2C1 .

Using an inequality between modular and p(.) norm (see e.g. [9] or [7]), the last
inequality gives an estimate

‖Sh f (x)‖p(·) � C
1

p−
7 .

Theorem 1 has been proved. �
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