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ON COMPLEX L, AFFINE ISOPERIMETRIC INEQUALITIES

YUCHI WU

(Communicated by M. A. Herndndez Cifre)

Abstract. Recently, Haberl [18] established the complex version of the Petty projection inequal-
ity and the Busemann-Petty centroid inequality. In this paper, we define the complex L, projec-
tion body operator Il¢ , and the complex L, centroid body operator I'c,,. When p > 1 and
C is a complex L, zonoid in the complex plane, we establish the complex extension of the L,
Busemann-Petty centroid inequality and the L, Petty projection inequality.

1. Introduction

Let R™,C" be the m-dimensional Euclidean space and n-dimensional complex
space respectively. For x,y € R™, we denote the standard Euclidean inner product of x
and y by “x-y”. For x,y € C", “x-y” denote the standard Hermitian inner product of
x and y (see Section 2 for details). Let S§"=1 and B,, be the unit sphere and the unit ball
in R™ respectively. Let S” and B, denote the complex unit sphere {c € C": ¢c-c =1}
and the complex unit ball {c € C":¢-c < 1} in C" respectively.

A nonempty compact convex set in R™ is called a convex body. A set K C C" is
called a complex convex body if 1K is a convex body in R?", where 1 is the canonical
isomorphism between C" (viewed as a real vector space) and R je.,

1(c)=Rc1],.--,R[cn],S 1], cn]), c¢=(c1,¢2, - cn) € C.

Here, R and 3 are the real part and imaginary part, respectively. It is easy to check
that
Rx-y] =1x-1y (1)

for all x,y € C".

Let .7 (R™) denote the set of convex bodies in R and .7, (R™) denote the set of
convex bodies that contain the origin in their interiors. The convex body K € .# (R™)
is uniquely determined by its support function /g : R” — R, where

hg(x) =max{x-y:ye K} VxeR™ 2)
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See [49, Theorem 1.7.1] for details.
The radial function, px = p(K,-) : R"\{0} — [0,0), of a compact star-shaped
(about the origin) K C R™, is defined, for x # 0, by

p(K,x) =max{A >0:Ax € K}. 3)

A star body (about the origin) in R is a compact star-shaped (about the origin) set
whose radial function is positive and continuous. Obviously, a convex body containing
the origin in its interior is a star body about the origin.

L, centroid bodies were introduced by Lutwak et al. [40]. Given a star body about
the origin K C R™ and p > 1, its L, centroid body is the convex body I',K with
support function

1
1 P
hr,k(u) = (E/Ku-)dpdx) Vu e smL 4)

Here, integration is with respect to the Lebesgue measure. For a real number ¢t € R, |¢]
is the norm of 7, and for a measurable set M C R™, |M| stands for the volume of M,
i.e., the m-dimensional Lebesgue measure of M.

When p =1, the L; centroid body is just the classical centroid body, which was
attributed by Blaschke to Dupin (see, e.g., Section 10.8 in [49] for references).

Lutwak et al. [40] prove the following real L, Busemann-Petty centroid inequality
(it should be mentioned that the coefficient in the definition of the L, centroid body in
this paper is different from that in [40]):

THEOREM 1.1. [40, Theorem 1] Let K C R™ be a star body about the origin.
Then, for p > 1,
K| K| = (Bl ™" [TpBu

) &)

with equality if and only if K is an origin-symmetric ellipsoid.

For the L, Busemann-Petty centroid inequality and its applications, we refer to
[11, 19, 22,37, 40, 41, 43, 45, 46].

Complex convex geometry has been studied in [1, 2, 3,4, 5, 6,7, 8, 18, 23, 30, 31,
32,33, 53, 54]. Inspired by Haberl [ 18], we first introduce the definition of the complex
L, centroid body.

Let # (C"), J#,(C") and .#,(C") denote the set of complex convex bodies,
the set of complex convex bodies containing the origin in their interiors, and the set
of complex star bodies about the origin, respectively. Here, a set K C C" is called a
complex star body (about the origin) if 1K is a star body (about the origin) in R>".

The volume of a complex measurable set M C C", |M|, is defined as the 2n-
dimensional Lebesgue measure of 1M, i.e., |M| := [itM|. The complex convex body
K € 2 (C") is uniquely determined by its support function Ak : C" — R, where

hk(x) = max{R[x-y]: y € K}.
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The uniqueness can be deduced from the fact that a real convex body in R?”* is uniquely
determined by its real support function and the relation

hg =ik ot, (6)

which follows from (1) and (2).
For p > 1 and C € # (C), the complex support function of the complex L, cen-
troid body I'c ,K of K € .7, (C") is defined as

) <|K/h dx>’ Vues', ™)

where the integration is with respect to the push forward of the Lebesgue measure
under the canonical isomorphism between R?” and C” (see Section 2 for the definition
of Cu).

When p = 1, the complex L; centroid body is just the complex centroid body
introduced by Haberl [18]. When K € .#,(C") and C = [—1,1], i.e., the line segment
between the points —1 and 1 in the complex plane, I'_y ) ,K is denoted by I',K for
short. It follows from (6), (4) and (7) that

I,K =1 (T,1K). (8)

We will prove the following complex L, Busemann-Petty centroid inequality (see
Section 2 for the definition of complex L, zonoid).

THEOREM 1.2. Let p> 1, K€ .%,(C"), and C € # (C) be a complex L,, zonoid.
Then,
‘K|_1 ’FC7pK| = ‘Bn|_1 ’Fc,pIBn’ . 9)

If dimC = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If dimC =
2 and p € [1,00) is not an even integer, equality holds if and only if K is an origin-
symmetric Hermitian ellipsoid.

Here, dimC denotes the dimension of 1C in R2.

When C = [—1,1], by (8), Theorem 1.2 generalizes the real L, Busemann-Petty
centroid inequality (5) in R?".

By Theorem 7.3 of [18], if K € %, (C") is origin-symmetric, then TcK = T'zcK,
where AC, the central symmetral of C, is an origin-symmetric convex body in the
complex plane (see Section 2 of [18] for details). In that section, Haberl also points
out that every origin-symmetric planar complex convex body is a complex L; zonoid.
Therefore, the complex L, Busemann-Petty centroid inequality (9) for p = 1 implies
the following complex Busemann-Petty centroid inequality.

THEOREM 1.3. [18, Theorem 1.2] Let C € #(C) and K € J#,(C"). If K is
origin-symmetric, then
K| [TeK]| > [By| ' [TcBy|-
If dimC = 1, equality holds if and only if K is an origin symmetric ellipsoid. If dimC =
2, equality holds if and only if K is an origin symmetric Hermitian ellipsoid.
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A further class of relevant convex bodies in this context is L, projection bodies
introduced in [40] for p > 1. Given K € JZ,(R") and p > 1, the L, projection body
of K is the origin-symmetric convex body IT,K with support function

1
hr,k (u) = (/ . lu-v|PdS, (K, v)) " vu esm !, (10)
s

where S, (K,-) is L, surface area measure of K.

There have been many relevant papers about L, projection bodies over the past
few decades (see [9, 10, 13, 19, 20, 30, 36, 37, 40, 44, 47, 50, 51, 56]). In particular,
L, projection bodies, i.e., projection bodies, were introduced at the turn of the previous
century by Minkowski. It is worth pointing out that projection bodies are the only
Minkowski valuations that are contravariant with respect to the real affine group (see
[17, 34, 35]).

Lutwak et al. [40] prove the following real L, Petty projection inequality (here,
H;‘,K denotes the polar set of IT,K as in [40]).

THEOREM 1.4. [40, Theorem 2] Let K € J2,(R™). Then, for p > 1,

K| |TT5K| < |B| 7 [TT5B,,

; (11)
with equality if and only if K is an origin-symmetric ellipsoid.

For p>1, Ce 2 (C) and K € %, (C"), we define the complex L, projection
body Ilc ,K as the convex body with support function

1
hne k(1) = (/S heu(v)PdS, (K, v)) " Vues. (12)

Here, S,(K,-) is the complex L, surface area measure of K (see Section 2 for the
precise definition). The set IIj_ ;) ,K is denoted by II,K for short. The equalities (6),
(10) and (12) give that

M,K =1~ 1(TT,1K). (13)

When p =1, Abardia and Bernig [3] proved that Ilc; are the only Minkowski
valuations that are contravariant with respect to the complex affine group. Complex L
projection bodies, i.e., complex projection bodies, have also been studied in [33, 52,
18].

We will prove the following complex L, projection inequality.

THEOREM 1.5. Let p > 1, K € J,(C"), and C € J(C) be a complex L,
zonoid. Then,

2—p np
K| "7 |Tg K| < |By| 7 [T By (14)
If dimC = 1, equality holds if and only if K is an origin-symmetric ellipsoid. If dimC =
2 and p € [1,o0) is not an even integer, equality holds if and only if K is an origin-
symmetric Hermitian ellipsoid.
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Here, H*a K denotes the polar set of the complex L, projection body of K (see Section
2 for the precise definition).

When C = [—1,1], by (13), Theorem 1.5 generalizes the real L, Petty projection
inequality (11) in R?".

When p =1, the complex L, Projection body inequality is the following complex
Petty Projection inequality.

THEOREM 1.6. [18, Theorem 5.6] Let C € ¥ (C) be origin-symmetric and K €
Ho (C"). Then,
K[> K] < By [TIEB,|-

If dimC = 1, equality holds if and only if K is an ellipsoid. If dimC = 2, equality
holds if and only if K is an Hermitian ellipsoid.

Haberl [18] also proves that this complex L; Petty projection inequality strength-
ens and directly implies the isoperimetric inequality, and it is invariant with respect to
the unitary group. Consequently, the affine inequalities are stronger than their unitary
counterparts. Similar phenomenon was observed in [12, 20, 21].

This paper is organized as follows. In Section 2, some basic facts regarding com-
plex convex bodies for quick reference are provided. In Section 3, some properties
of complex L, projection bodies and complex L, centroid bodies are presented. In
Section 4, we prove that the complex L, Busemann-Petty centroid inequality (9) is
equivalent to the complex L, Petty projection inequality (14). Theorem 1.5 is proved
in Section 5. In Section 6, we prove Theorem 1.2 by using Theorem 1.5.

2. Preliminaries

For a complex number ¢ € C, we write ¢ for its complex conjugate and |c| for its
norm. If ¢ € C"™" for an integer n > 1, then ¢* denotes the conjugate transpose of ¢ .
If ¢ is invertible, the inverse of ¢ is denoted by ¢ ~!. The standard Hermitian inner
product on C" is conjugate linear in the first argument, i.e., x-y =x"y Vx,y € C". For
aset N in S!, let N¢ denotes the complement of N.

The general linear group of C" and the special unitary group of degree n of C”
are denoted by GL(n,C) and SU(n,C), respectively. A linear transformation ¢ €
GL(n,C) is called an Hermitian matrix if and only if ¢* = ¢. Let ¢ € GL(n,C) be
decomposed in its real part and imaginary part, i.e., ¢ = R[@]+i3[¢p]. The real matrix
representation R[¢] € GL(2n,R) of ¢ is the block matrix

_ ( Re] —3[¢]>
Riol= (sm Rio| )
It is not hard to show that
|det¢|* = [ detR[9]| (15)

as well as
1(¢px) =RlpJix VxeC" (16)
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We present some properties of the volume of a complex set K C C". For ¢ €
GL(n,C), by (16),
[9K| = [1(¢K)| = [R[¢]tK].

Thus, relation (15) implies
|9K]| = | detg|*|K]. (17)

In particular, we have
|eK| = |c[*"[K]| (18)

forall ¢ € C, where ¢cK = {cx:x € K}.
For K,L € 2#(C"), K and L are real dilates if there exists # > 0 such that K =rL.
Next, we provide some properties of ellipsoids. A convex body K € ¢ (C") is
called an ellipsoid if 1K is areal ellipsoid, or equivalently, there exists a positive definite
symmetric matrix ¢ € GL(2n,R) and a r € C" such that

K={xeC":wx-pux<1}+1.
Aset K C C" is called a Hermitian ellipsoid if
K={xeC":x-px< 1} +1

for some positive definite Hermitian matrix ¢ € GL(n,C) and some 7 € C". The fol-
lowing fact is pointed out in Section 2 of [18]. For readers’ convenience, we offer a
short proof here.

LEMMA 2.1. Let K € ¢ (C"). Then, K is an origin-symmetric Hermitian ellip-
soid if and only if there exists a positive definite Hermitian matrix W € GL(n,C) such
that

K=vyB,.

Proof. Let

K=yB,={yxeC:ixx<1}={yeCy (v )y 'y<1},

where y € GL(n,C) is a positive definite Hermitian matrix. Since (y~!)*y~! is a

positive definite Hermitian matrix (see [55, Theorem 8.1]), K is an origin-symmetric
Hermitian ellipsoid.
Now, assume that K is an origin-symmetric Hermitian ellipsoid, i.e.,

K={xeC":x-¢x< 1}

for some positive definite Hermitian matrix ¢ € GL(n,C). An application of [55, The-
orem 8.1] shows that there exists a positive definite Hermitian matrix y € GL(n,C)
such that

o= )yl

Now, by the sesquilinearity of the Hermitian inner product,

v K= {l[/_le(C" x- (vl g 1} ={yeC":y-y<1}=B,. O
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The following lemma follows from [18, Lemma 3.1]. For readers’ convenience,
we offer a short proof here.

LEMMA 2.2. If K € JZ(C") is an origin-symmetric Hermitian ellipsoid, then
cK =K forall ccS'.

Proof. Let K be an origin-symmetric Hermitian ellipsoid. Then, there exists a
positive definite Hermitian matrix ¢ € GL(n,C) such that

K={xeC":x-¢gx<1}.
This gives that
cK={xeC": (c™x)-o(c7x) < 1}.

The sesquilinearity of the Hermitian inner product implies that

(c_lx) ¥0) (c_lx) = (cflc“)x-q)x: |c_1’2x~¢x.
Note that |¢~!| = 1. This implies that cK =K. [

We also need the following lemma to deal with the equality cases of Theorem 1.2
and Theorem 1.5. The following lemma is an easy application of [18, Theorem 3.4],
since, for any origin-symmetric convex body K in C", AK = %K—F %(—K) =K (see
Section 2 of [18] for details).

LEMMA 2.3. Let K € JZ (C") be an origin-symmetric ellipsoid. Then, K is Her-
mitian if and only if cK = K for some ¢ € S' with 3[c] # 0.

In the sequel, we collect complex reformulations of well known results from con-
vex geometry. These complex versions can be directly deduced from their real counter-
parts by an appropriate application of 1. The standard references for these real results
are the books of Gardner [13], Gruber [16] and Schneider [49].

Elements of complex support functions and complex radial functions
For K € JZ(C"), it is easy to see that
hoxk =hxo¢™ V¢ € GL(n,C) (19)
and
hyg = Ahg YA >0.

Let C € % (C) and u,v € S". The convex body Cu € # (C") is defined as
Cu = {cu:c € C}. By the conjugate symmetry of the Hermitian inner product and
the definition of support functions,

heu(v) = max{R[v- (cu)]} = max{R[(v-u)c]} = max{Ruw-vc]}

=max{R[(u-v) -c]} = hc(u-v). (20)

ceC
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Using a similar method, we obtain
hex(v) = hg(cv) VeeS! 21)

and
hg,(v) = hey(u), (22)
where C:= {¢:c€C}.
The complex radial function, px = p(K,-) : C"\{0} — [0,0), of a complex star
body (about the origin) K C C", is defined, for x # 0, by
p(K,x) =max{A >0:Ax € K}.

It is easy to see that

poxk =pxod ' V¢ € GL(n,C). (23)
It follows from (3) that
PK =pPik ol 24)
and
Pax =Apx VA >0. (25)

Given M C C", its polar set M* is defined by
M ={xeC":Rx-y]<1forallye M}.
It is easy to see that
(oM)* =0 *M* (26)

and
(AM)* =A"'M* VA >o0. (27)

If K € %,(C"), itis easy to verify that
px+ =i (28)

An application of polar coordinates to the volume of a complex star body K € .#,(C")
gives that

1
K =55 [, pRdo. (29)

where o stands for the push forward with respect to 1~! of ##>"~! onthe (2n—1)-
dimensional Euclidean unit sphere. Here, #>"~! denotes the (21 — 1)-dimensional
Hausdorff measure in R?".

A change to polar coordinates in (7) shows

1 2
Hepkt) = Tt pR] "GPk G0
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Elements of complex L, mixed volume

For two real numbers ¢,d > 0 and K,L € J%,(R™), the real L, Minkowski com-
bination ¢-K+,d-L for p > 1 is defined as

4 — P P
W, ar = chiy +dhy.

The real L, mixed volume V,(K,L) is defined by

K+,e-L—|K
V,(K.L) = £ lim [K+pe-L| — K| G1)

me—0+t €

See [38] for details.
We turn to the complex case. Given two real numbers ¢,d >0 and K, L € %,(C"),
the complex L, Minkowski combination ¢-K +,d-L for p > 1 is defined as

4 — P P
W, ar = chiy +dhy.

By (19), we have ¢K +,€-9L=¢(K+,e-L) V¢ € GL(n,C), € > 0. We define the
complex L, mixed volume V,(K,L) by

K+,e-L|—|K
P Ko LIZIK]

WKL) =5, e—0" € G2
By (31), this definition gives that
Vp(K,L) =V,(1K,1L). (33)
Obviously,
Vo(K,K) = |K], (34)

and for ¢ € GL(n,C), the relation ¢K +,€- 9L = ¢(K+,¢e-L), (32) and (17) imply
Vo(9K 9L) = |det|*V, (K. L). (35)

The complex surface area measure S(K,-) of K € J#,(C") is the Borel measure
on S" defined in[18] for every Borel set @ C S" by

S(K,0) =" (1{x €K :Ju e o with Rlx-u] = hg(u)}). (36)
By (21) and the sesquilinearity of the Hermitian inner product, we obtain
S(cK,w) =S(K,cw) 37)

forall ¢ €S! and each Borel set @ C S". For p = 1, we define the complex L, surface
area measure S,(K,-) of K € J,(C") as

S,(K,0) = /w hy P(v)dS(K,v). (38)
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Therefore, S,(K,-) can be viewed as the push-forward of the real L, surface area

measure (introduced in [38]) S,(1K,-) with respect to L

By (21) and (37), we get
Sp(cK,0) =S,(K,co) (39)

forall ¢ € S! and each Borel set o C S".
For K,L € JZ,(C"), as it was shown in [38], the real L, mixed volume V,(1K,1L)
has the following representation

1
V(KoL) = 5 /S (LS, (1K u),

where SP(LK, -) is the L, surface area measure of tK. Thus, by (6) and (33), we get
the representation

1
Vy(K,L) = » th(L,u)pdSp(K,u). (40)

The complex L, Minkowski inequality states that, for K,L € J£,(C"),
n—p P
Vy(K,L) > |K| ™2 |L| 2, 41

with equality if and only if K and L are real dilates. The inequality (41) follows from
(33) and the real L, Minkowski inequality in R?" proved in [38].

Elements of complex L, dual mixed volume

For K,L€ ¢ (C"), p>1and & >0, the L,-harmonic radial combination K+_ &
L is the star body defined by

p(K"T_—pS ‘L, _)—p = P(K7 .)—p +ep (L7 .)—p.

By (23), we have ¢(K+_,e-L) = ¢K+_pe-9L V¢ € GL(n,C). The complex L,
dual mixed volume V_,(K,L) is defined by

- K+_,e-L)—V(K
P o VKT e L) - V(K)

V_,(K,L)= 42
p( ’ ) n g—0t ) ( )
By (29), we obtain
~ 1 D
V(KoL) =5 /S PR do 43)
and
V_,(K,K) = |K]|. (44)

For ¢ € GL(n,C), the relation ¢(K+_pe-L) = ¢K+_,&- ¢L, (42) and (17) imply

V_p(9K,OL) = |det§[’V_,(K,L). (45)
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An application of Holder’s inequality to (43) and (29) gives that

2n+

V_op(K,L) > K| 2" |L| 2, (46)

with equality if and only if K and L are real dilates.
For the real L,-harmonic radial combination, the real L, dual mixed volume and
related inequalities, we refer to [39].

Elements of complex L, zonoids

For p > 1, a real origin-symmetric convex body K € ¢ (R™) is called a real
L, zonoid if its support function equals the L,-cosine transform (see [40, 42] for this
subject) of some finite even Borel measure on the real unit sphere. Namely, there exists
a finite even Borel measure p on the sphere $”~! such that

hy(x) = </s1 |x-v|pd,u(v)) " Vxerm

Note that the right-hand side of this equality is positively homogeneous and subaddi-
tive by Minkowski’s inequality with respect to x, and thus is a support function of a
convex body by [49, Theorem 1.7.1]. If p € [1,0) is not an even integer, U is uniquely
determined by K. Indeed, when p € [1,c0) is not an even integer, Lutwak et al. (see
page 178 of Section 5 of [42]) point out that the L, -cosine transform is injective, i.e.,
Lemma 2.4. See also Goodey and Weil [14, 15], Koldobsky [24, 25, 26, 27, 28, 29],
and Rubin [48].

LEMMA 2.4. Suppose that p € [1,0) is not an even integer. If U is a finite signed
even Borel measure on the unit sphere S™~' satisfying

[, Jevdu) =o

forall uc S™ ', then u=0.
u

Using (1), Lemma 2.4, the uniqueness of the L, surface measure for p > 1 (see
[38, Corollary 2.3 and Corollary 2.6]) and the fact that a convex body is uniquely de-
termined by its surface area measure (i.e., the case of p = 1) up to translations (see
Section 2 of [18]), one can obtain the following lemma.

LEMMA 2.5. Suppose that p € [1,0) is not an even integer. If two origin-symmetric
complex convex bodies K,L € J,(C") satisfy

[, Sl Py (K.v) = [ [ Ru-v]ds, (L)

forall ueS", then K =1L.
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Note that K and L are origin-symmetric in this lemma. Thus, when p = 1, there
is no translation between K and L.

For p > 1, a convex body K € J# (C") is called a complex L, zonoid if 1K is a
real L, zonoid in R2" . That is, there exists a finite even Borel measure Wk on the unit
sphere 2"~ ! such that

hu (x) = ( Lo b VdeJlK(V)) !

for every x € R?". Define the measure ux on S" as the push-forward of u;x with
respect to 1~ 1. By (6), we get

) = ([, e nPau)” e @)

LEMMA 2.6. Let p > 1 and C € J# (C) be a complex L, zonoid. Then, there
exists a finite even Borel measure lic on the complex unit circle S' such that for all
u,ves",

heus) = ( [, BlewiPane(c))

Moreover, when p € [1,0) is not an even integer, Uc is uniquely determined by C.

Proof. Let p>1, u,v €S" and C be a complex L, zonoid. Then, there exists a
finite even Borel measure ¢ on the complex unit circle S! such that

hl(u-v) = /Sl Rc- (u-v)]|Pduc(c) Vu,veS'.

It follows from the fact ¢+ (u-v) = ¢(u-v) = (cu) - v and (20) that

() = 1(u-v) = [ ¥few-viPdpc(e),

which is the desired equality.

When p € [1,00) is not an even integer, by Lemma 2.4, the measure L,c on the
unit sphere S' is uniquely determined by 1C. Therefore, L is uniquely determined by
c. O

3. Some properties of the complex L, projection body and
the complex L, centroid body

LEMMA 3.1. Let p > 1, ¢ € GL(n,C) and C € # (C). Then,

FC,p(¢K) = (bFC’pK VK € 5”(,(((3”)
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Proof. Let K € .7,(C"), p>1, ¢ € GL(n,C) and C € ¥ (C). The definition
of I'c,, (17) together with the transformation formula, (19) and the equality ¢*Cu =
C(¢*u) yield

1 1
h —— | W’ (x)dx= /hp d
Te (oK) () 6K Jox cu(x)dx KT Jx L (9x)dx
1 » 1 »
- |K‘ /Kh(P*Cu(x)dx: |K‘ /th((p*u)(x)dx

for all u € S". Thus, we have I'c ,(¢K) = ¢I'c, K. O

LEMMA 3.2. Let p > 1 and C € # (C) with dimC > 0. Then, T'c ,, maps origin-
symmetric balls to origin-symmetric balls. That is, for r >0, I'c ,(rB,) is an origin-
symmetric ball.

Proof. Let p>1, r >0 and C € #(C) with dimC > 0. By (30) and (18), we
get

1 rP
h? 27/ W PP = 7/ K do. 48
Fcﬁp(rIB,l)(u) (2n+p)|an| N cu” ° (2n+p)|IB%n‘ s cu?9 (48)

Now, fix some uy € S”. Then, for each u € S", there exists a ¥, € SU(n) with
Uyug = u. Note that Cu = 9,,Cuy,
rp

4 - P *
Rre By (1) = (2n+p)|Bn| Js» icu, © Vudo

Noting that ¢ is SU(n)-invariant, the right-hand side is independent of u. Mean-
while, it is greater than zero since dimC > 0. Therefore, Fap(rIPBn) is an origin-
symmetric ball. [

REMARK 3.1. If K is an origin-symmetric Hermitian ellipsoid, by Lemma 2.1,
Lemma 3.1 and Lemma 3.2, I'c ,K is also an origin-symmetric Hermitian ellipsoid.

LEMMA 3.3. Let p > 1. If C C C is origin-symmetric with dimC = 1, then there
exists some ¢ € C such that

Te K =cT,K VK e.7,(C").

Proof. Let K € #,(C") and p > 1. By our assumption, C is an origin-symmetric
line segment. Therefore, there exists a d € C\{0} with C = [—d,d| and thus

1
k) = 7 /K i)y (¥)dx = Wy ().

So, (21) implies hrox = hp,. If we set ¢ := d, the assertion is proved. [
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LEMMA 3.4. Let p > 1 and C € # (C) with dimC > 0. Then, Ilc, maps
origin-symmetric balls to origin-symmetric balls. That is, for r > 0, Il¢c ,(rB,) is
an origin-symmetric ball.

Proof. Let p> 1, r>0 and C € #(C) with dimC > 0. By the definition of the
surface area measure (36), we get S(rB,,-) = r*~1g. Thus, by (38), the L, surface
area measure S,(rB,, ) = r*"Po. By (12),

2n—
B ) ) =77 /S Wl do. (49)

A similar method to Lemma 3.2 shows that the right hand side is independent of
u and greater than zero. Therefore, Ilc ,(rB),) is an origin-symmetric ball. [J

The following lemma connects the complex L, Petty projection inequality (14)
and the complex L, Busemann-Petty centroid inequality (9). For details, see Section 4.

LEMMA 3.5. Let p > 1 and C € J# (C) with dimC > 0. Then,

1
vy (K.Te L) = e (B TeK)

forall K € #,(C") and all L € .7,(C").

Proof. Let p>1 and C € # (C) with dimC > 0. By (40), (30), (22), Fubini’s
theorem, (28), (12) and (43), we get

Vo (K’FCPL 2n/ Iy »(K,u)
2n+l? 2n(2n+p)|L]| /Sn /n Cu (v)*"*Pdo (v)dSy (K, u).
m Snp v)HEr / h?. (u)dS,(K,u)do(v)
- m » pL(vV)*" Phiy. x(v)do(v)
- m o pL(v)*" P, k(v) Pdo(v)
1

_ v *
G 1K)

forall K € /%, (C") andall L € .7,(C"). O

LEMMA 3.6. Let p > 1, ¢ € GL(n,C) and K € J,(C"). Then, Tlc ,(¢K) =
|deto| 79~ Tlc, K
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Proof. Let p> 1, ¢ € GL(n,C) and K € .%,(C"). By Lemma 3.5, Lemma 3.1,
(35), (45) and (17), we get

Vo, (L,TTE ,0K) = (2n+ p)[LIV, ((bK,l"apL)
2 ~1
= (2n+ p)|Ll|detg PV, (KT ,07'L)
‘ det ¢ |2 7 -1 *
=|L|————=V- LI K
| ‘|det¢*1L| p((P 1 2C,p )
= |det¢[*V_, (L,9TI;. K)
for each L € .#,(C"). Therefore, by (43) and (25),
~ ~ 2 N
Vop (LTI ,0K) = V- (L, detg| 79T, K )
for each L € .#,(C"). Now, an application of (46) and its equality case imply that
M. ,0K = |detg| 7 1Tz K.
Thus, (26) and (27) give the desired conclusion. [J

REMARK 3.2. If K is an origin-symmetric Hermitian ellipsoid, by Lemma 2.1,
Lemma 3.4 and Lemma 3.6, Il¢ ,K is also an origin-symmetric Hermitian ellipsoid.

4. The complex L, Busemann-Petty inequality is equivalent
to the complex L, Petty projection inequality

Let

2n

Z-p * -1 —P *
p,(C.K) = (K17 [1z,K]) (B 7" 1., B

for K € #,(C") and

_ _ -1
bP(C:K) = (|K‘ ! |FC.,pK}) (mn‘ ! |FC7pB"|)
for K € .7,(C").

Note that the complex L, Petty projection inequality (14) is equivalent to p p(C, K)
> 1, whereas the complex L, Busemann-Petty centroid inequality (9) is equivalent to
b,(C,K) > 1.

LEMMA 4.1. Let p > 1, K € J#,(C") and C € 2 (C) with dimC > 0. Then,

p,(C.K) > b, (€11 K ).

with equality if and only if K and T'z pl’[é_ pK are real dilates.
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Proof. Let p > 1, K € %#,(C") and C € J#(C) with dimC > 0. By Lemma 3.2
and Lemma 3.4, T'c ,B, and Tl¢ ,B, are origin-symmetric balls. Thus, I1. B, is also
an origin-symmetric ball. Furthermore, by (48) and (49), the ratio between the radius

1
of T¢.,B, and the radius of T, B, is (2n+ p)? B,|7 . Thus,

Me,B,| wm

Te B, CHFP) IRl
which implies

CerPl ~ _ 04 py¥ B, 3

m

Therefore, it suffices to prove that

(|K\27"*1|H5p1<}) > n+p)7 (I0e,k| 7 e, e, k]), 50)

with equality if and only if K and FE.pH*C oK are real dilates.
Since dimC > 0 and K € J#,(C"), Il¢ ,K contains the origin in its interior and

thus IT¢. K € J%,(C"). By (44) and Lemma 3.5,
|HC pK‘ (HC pK HCF ) (2n+p) ’HZ'7I7K|VI7 <K7r6,pH2‘7PK> '

Applying (41), we get that

2n—p D
1> (2n+p)|K| "7 [T T K|,

with equality if and only if K and l"cpl'[*a ,K are real dilates. This is equivalent to
(50). O '

LEMMA 4.2. Let p > 1. For C € % (C) with dimC >0 and K € .7, (C"),
b,(C,K) = p, (drCJ,K) :

with equality if and only if K and H*c pl"q pK are real dilates.

Proof. Let p> 1, K €.7,(C") and C € 2#(C) with dimC > 0. Similar to the
proof of Lemma 4.1, we need to prove that

e -1
1 2n—p
K| Te K| > (m) : (’Fc.,pK’ a )Héﬁpl"apKD : (51)

Since dimC >0 and K € ., (C"), I'c ,K contains the origin in its interior. By
(34) and Lemma 3.5,

1

I'c K F KTc,K)=—""——
IFepk| = Vo (e K.TerK) = G R

v, (K,H*él"a ,,K) .
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The inequality (46) applied to the right-hand side gives
P
o

)

T K| > —— k|5
P 2n+p

I'Ic K

with equality if and only if K and l'[*é pFC pK are real dilates. Rearranging terms yields
(5. O '

5. Proof of the complex L, Petty projection inequality

We need the following two lemmas to prove the L, complex Petty projection
inequality (14).

LEMMA 5.1. Let p > 1 and C € % (C) be a complex L, zonoid. Then, for each
K € # (C"), there is a finite even Borel measure Uc on the unit circle S' such that

1
hnie k(1) = (/Sl hgnpK(u)duc(c))’ YueS". (52)

Moreover; the total mass |Uc| = uc(S') satisfies

Proof. Let p>1, K € 2 (C") and C € % (C) be a complex L, zonoid. Then,
(12), Lemma 2.6, Fub1n1 s theorem and (21) yield that there is a finite even Borel mea-
sure e on the unit circle S! such that

hllzl(;),,l((u) = /S" /Sl [R[cu-v]|[Pduc(c)dS, (K,v)
- /S /S [R[(cu) -v]|"dS) (K, v) duc(c)
= [ lcwduic(c)

_ /S g (Wdpc(c) Vues,

By Lemma 3.4, hr,p is constant on S". Thus, by (21), hc—.npﬁ is also constant

and hzn,p = hr, forall c € S!'. The equality (52) and the homogeneity property of
support function give

Bt ) = ( [, 0dnclc)) :

e, 5 (s (/ dpic(c )

= vh —h
|#C\’ H,,IB(M) ‘IJC‘%HP]B(M)
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1
forall u € S". Thus, Ilc ,B = [uc[?I1,B. By (27) and polarizing, we have Il B =
1
| uc|_FH;B. Therefore, taking the volume on both sides and using (18), we obtain the
desired result. [

LEMMA 5.2. Let p > 1 and C € % (C) be a complex L, zonoid with dimC > 0.
Then, for each K € .%,(C"), there is a finite even Borel measure ¢ on the unit circle
S! such that o

ITIe K| < lucl ™ [TK], (53)

with equality if and only if there exists a point d € S with cIl,K = dI1,K for pc-
almost every c € S'.

Proof. Let p > 1, K € /,(C") and C € # (C) be a complex L, zonoid with
dimC > 0. By (29), (28), Lemma 5.1, Jensen’s inequality and Fubini’s theorem, we
obtain

e K] = 55 [ At 2 dota)

- \ucz\f /S {i / lh’C’HPK(u)d;,Lc(c)} " do(u)
<l T 2’ / [, e, ) duc(e)do )

‘”C‘ [ et ot

= \.uc\_T ' [ e K] duc(o)

= lucl 7 / T K| de(c)
= \uc\*7 K|

for some finite even Borel measure pic on the unit circle S!.
It remains to establish the equality condition. To do so, let us first prove the fol-
lowing equivalence for K € .%,(C").

For each u € §" : ¢ — hey k(1) is constant fic — almost everywhere (54)

<
Jeo €S hgr[pK(u) = hEOHpK(M) holds for all u € S" and pc-almost all ¢ € S'. (55)

Note that (55) implies (54). Next, we prove that (54) implies (55).
Assume that (54) holds. Then, for each u € S”, there exist ¢, € S! and a Borel set
N, C S! with

U (Nu) =0 and hgr[p]((u) = hgunp]((u) forall c € N; (56)
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Let u € S" and b € supp(Uc), i.e., b belongs to the support set of . By defini-
tion, each open neighborhood of b has positive y¢c measure and therefore non-empty
intersection with NS . So, we can find a sequence {by}reny With by € NS and by — b.
By the continuity of ¢ — hery, k(1) and (56), we get

h,;npK(u) = kliif}oh;;knp;((u) = ha,n,,K(u) = hm,,K(“)
for all ¢ € N¢. Since dimC > 0, we have supp(Uc) # 0 and NS # 0. Thus, there is a
co € supp(Uc) such that, for all u € S" and ¢ € supp(Uc),

hen, k() = hzon,x ().

This concludes the proof of the equivalence of (54) and (55), since uc(supp(tc)©) =0.

Now, we turn to deal with the equality case. Assume that the equality in (53) holds.
Inspecting the above derivation of (53), we know that this happens if and only if, for all
u € S", equality holds when Jensen’s inequality is applied. Therefore, the equality in
(53) holds if and only if, for all u € ", the map ¢ — hz,x(u) is constant fic-almost
everywhere. From the equivalence of (54) and (55), we get that this happens if and only
if there exists a ¢o € S' with hery k() = heyn, k(1) for c-almost every ¢ € S'. That
is, ¢I1,K = ¢oI1,K for pc-almost every ¢ € S'. Set d := ¢y, we conclude the proof
of equality condition. [J

Next, we turn to prove Theorem 1.5.

Proof of Theorem 1.5. Let p > 1, K € %, (C") and C € J# (C) be a complex L,
zonoid.

Assume that dimC = 0. Since C is a complex L, zonoid, by (47), C is origin-
symmetric and thus C = {o}. By (12), we have Il¢ ,K =Il¢ B, = {o}. Thus,
¢ K =T1¢ B, = C" and [I1¢; K| = |I1¢; ,By| = . Therefore, the inequality (14) is
trivial.

Now, assume that dimC > 0. By Lemma 5.2, (13) and Theorem 1.4, we have

2n

Wm=p _2n -p *
K7 [T, K| < Jucl 7 KI5 K|

_ 2n—p

~ el ¥ K| T
mmp

el ok 7 T
_ 2n—p

< lpel ™7 1By P |H;an’
L np

= |uc|™ 7 [Ba| P }H;Bn}~

Plugging in the value of the total mass of y¢c from Lemma 5.1 proves (14).
By Lemma 5.2 and the equality conditions of Theorem 1.4, the equality in (14)
holds if and only if the following two conditions hold simultaneously.

(I) there exists a point d € S! with cIl,K = dIl,K for pc-almostevery c € St.
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(I) 1K is an origin-symmetric ellipsoid in R?", i.e, K is an origin-symmetric ellip-
soid in C".

We turn to deal with the two equality cases, since the range of ¢ in condition (I)
depends on the dimension of C.

Case 1. When dimC = 1, we prove that the equality in (14) holds if and only if
K is an origin-symmetric ellipsoid in C”".

First, suppose that the equality in (14) holds, which implies that condition (II)
holds. Thus, K is an origin-symmetric ellipsoid in C".

Now, suppose that K is an origin-symmetric ellipsoid in C". We need to prove
that the equality in (14) holds, which happens if and only if condition (I) and condition
(IT) hold. Note that condition (II) holds obviously. It remains to prove that condition (I)
holds.

Since C is a complex L, zonoid, C is an origin-symmetric convex body. Thus,
dimC =1 implies that C is a line segment [—cg,co] for some ¢y € C\ {0}. Therefore,
by (47), we obtain

¢
He = |70‘ (8- (co) + 8(cy)) »
where & denotes the Dirac measure and (co) := co|co| " stands for the spherical pro-
jection of ¢q to the unit circle. Therefore, condition (I) holds if and only if coIl,K =
—coll,K . This is always true, since II,K is origin-symmetric.

Case 2. When dimC =2 and p € [1,0) is not an even integer, we prove that the
equality in (14) holds if and only if K is an origin-symmetric Hermitian ellipsoid in
c".

First, suppose that K is an origin-symmetric Hermitian ellipsoid. By Remark
3.2 and Lemma 2.2, we obtain that condition (I) holds. Note that condition (II) holds
obviously. Thus, condition (I) and condition (II) hold, which implies that the equality
in (14) holds.

Now, suppose that the equality in (14) holds, which implies that condition (I) and
condition (IT) hold. We need to show that K is an origin-symmetric Hermitian ellipsoid.

By (21), (12) and (39),

W) = ) = [ [Rleu-v]aS, (,v)
_ / R &][PdS,(K,v)
Sn
_ / R v]|PdS, (K, v).
Sn
Thus, condition (T) implies that there exists a point d € S! such that

/Sn IR[u-v]|PdS,(TK,v) = /S IR [u-v]|PdS,(dK,v)
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holds for pic-almost every ¢ € S'. By Lemma 2.5 and the fact that K is origin-
symmetric, we have
cK=dK

for c-almost every ¢ € S!. This implies the existence of a Borel set N C S! with
Uc(N) =0 such that cK =dK forall ¢ € N¢.

Since dim C =2, N contains two non-antipodal points, i.e., there exist cg,c; € N¢
such that ¢g # —cy and ¢oK = ¢ K. Clearly, ¢y and ¢, are also non-antipodal. So,
for c:= c_oc_l_1 we have

cK =K, where ¢ € S' with Sc] # 0.

Note that K is an origin-symmetric ellipsoid (by condition (II)). Thus, Lemma 2.3
gives that K is an origin-symmetric Hermitian ellipsoid. [

6. Proof of the complex L, Busemann-Petty centroid inequality

In this section, we will prove the complex L, Busemann-Petty centroid inequality
(9) by the complex L, Petty projection inequality (14) and Theorem 1.1.

Proof of Theorem 1.2. Let p>1, K € .#,(C") and C € J#(C) be a complex L,
zonoid.

Assume that dimC = 0. Since C is a complex L, zonoid, by (47), C is origin-
symmetric and thus C = {o}. Consequently, by (7), we have I'c ,K =T¢ ,B, = {o}
and thus inequality (9) holds trivially true.

Assume that dimC = 1. Since C is acomplex L, zonoid, C is an origin-symmetric
convex body. Thus, by dimC = 1, C is an origin-symmetric line segment in the com-
plex plane. By Lemma 3.3 and (18), the inequality (9) is equivalent to

K|7HToK| = [Ba] ' |T,pBy| .

By (8), this inequality is equivalent to the classical L, Busemann-Petty centroid in-
equality. Thus, Theorem 1.1 for m = 2n settles the case where dimC = 1.

Assume that dimC = 2. The inequality (9) follows from the complex L, Petty
projection inequality (14) and Lemma 4.2. That is,

by(C,K) = p, (C e ,,K) 1. (57)

We turn to deal the equality case for dimC = 2. We first prove the ‘if” part. If
p € [1,%) is not an even integer and these equalities in (57) hold, then by Lemma
4.2 and Theorem 1.5, K is a real dilate of IT%L pFC »K and T'c ,K must be an origin-

symmetric Hermitian ellipsoid. Thus, by Remark 3.2, T1z FC pK 1is also an origin-
symmetric Hermitian ellipsoid. Thus, by Lemma 2.1 and (26) H FC pK 1is also an
origin-symmetric Hermitian ellipsoid. Therefore, K, being a real dllate of H FC 2K,

is an origin-symmetric Hermitian ellipsoid as well.
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It remains to show that the equality condition is also sufficient. So, assume that

K is an origin-symmetric Hermitian ellipsoid. By Lemma 2.1, K = ¢B, for some
¢ € GL(n,C). Thus, by Lemma 3.1 and (17),

K| 7' TepK| = 9Ba] ! [T pdBa| = [Ba| " [TcpBa|. O
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