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ON COMPLEX Lp AFFINE ISOPERIMETRIC INEQUALITIES

YUCHI WU

(Communicated by M. A. Hernández Cifre)

Abstract. Recently, Haberl [18] established the complex version of the Petty projection inequal-
ity and the Busemann-Petty centroid inequality. In this paper, we define the complex Lp projec-
tion body operator ΠC,p and the complex Lp centroid body operator ΓC,p . When p � 1 and
C is a complex Lp zonoid in the complex plane, we establish the complex extension of the Lp

Busemann-Petty centroid inequality and the Lp Petty projection inequality.

1. Introduction

Let Rm,Cn be the m-dimensional Euclidean space and n -dimensional complex
space respectively. For x,y ∈ Rm , we denote the standard Euclidean inner product of x
and y by “x · y”. For x,y ∈ Cn , “x · y” denote the standard Hermitian inner product of
x and y (see Section 2 for details). Let Sm−1 and Bm be the unit sphere and the unit ball
in Rm respectively. Let Sn and Bn denote the complex unit sphere {c ∈ Cn : c ·c = 1}
and the complex unit ball {c ∈ Cn : c · c � 1} in Cn respectively.

A nonempty compact convex set in Rm is called a convex body. A set K ⊂ Cn is
called a complex convex body if ιK is a convex body in R

2n , where ι is the canonical
isomorphism between Cn (viewed as a real vector space) and R2n , i.e.,

ι(c) = (ℜ [c1] , . . . ,ℜ [cn] ,ℑ [c1] , . . . ,ℑ [cn]) , c = (c1,c2, · · · ,cn) ∈ C
n.

Here, ℜ and ℑ are the real part and imaginary part, respectively. It is easy to check
that

ℜ[x · y] = ιx · ιy (1)

for all x,y ∈ Cn.
Let K (Rm) denote the set of convex bodies in Rm and Ko (Rm) denote the set of

convex bodies that contain the origin in their interiors. The convex body K ∈ K (Rm)
is uniquely determined by its support function hK : Rm → R , where

hK(x) = max{x · y : y ∈ K} ∀x ∈ R
m. (2)
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See [49, Theorem 1.7.1] for details.
The radial function, ρK = ρ(K, ·) : Rn\{0} → [0,∞) , of a compact star-shaped

(about the origin) K ⊂ Rm , is defined, for x �= 0, by

ρ(K,x) = max{λ � 0 : λx ∈ K}. (3)

A star body (about the origin) in Rm is a compact star-shaped (about the origin) set
whose radial function is positive and continuous. Obviously, a convex body containing
the origin in its interior is a star body about the origin.

Lp centroid bodies were introduced by Lutwak et al. [40]. Given a star body about
the origin K ⊂ Rm and p � 1, its Lp centroid body is the convex body ΓpK with
support function

hΓpK(u) =
(

1
|K|

∫
K
|u · x|pdx

) 1
p

∀u ∈ Sm−1. (4)

Here, integration is with respect to the Lebesgue measure. For a real number t ∈ R, |t|
is the norm of t , and for a measurable set M ⊂ Rm , |M| stands for the volume of M ,
i.e., the m-dimensional Lebesgue measure of M .

When p = 1, the L1 centroid body is just the classical centroid body, which was
attributed by Blaschke to Dupin (see, e.g., Section 10.8 in [49] for references).

Lutwak et al. [40] prove the following real Lp Busemann-Petty centroid inequality
(it should be mentioned that the coefficient in the definition of the Lp centroid body in
this paper is different from that in [40]):

THEOREM 1.1. [40, Theorem 1] Let K ⊂ Rm be a star body about the origin.
Then, for p � 1,

|K|−1
∣∣ΓpK

∣∣ � |Bm|−1
∣∣ΓpBm

∣∣ , (5)

with equality if and only if K is an origin-symmetric ellipsoid.

For the Lp Busemann-Petty centroid inequality and its applications, we refer to
[11, 19, 22, 37, 40, 41, 43, 45, 46].

Complex convex geometry has been studied in [1, 2, 3, 4, 5, 6, 7, 8, 18, 23, 30, 31,
32, 33, 53, 54]. Inspired by Haberl [18], we first introduce the definition of the complex
Lp centroid body.

Let K (Cn) , Ko (Cn) and So(Cn) denote the set of complex convex bodies,
the set of complex convex bodies containing the origin in their interiors, and the set
of complex star bodies about the origin, respectively. Here, a set K ⊂ Cn is called a
complex star body (about the origin) if ιK is a star body (about the origin) in R2n.

The volume of a complex measurable set M ⊂ Cn , |M| , is defined as the 2n -
dimensional Lebesgue measure of ιM , i.e., |M| := |ιM| . The complex convex body
K ∈ K (Cn) is uniquely determined by its support function hK : Cn → R , where

hK(x) = max{ℜ[x · y] : y ∈ K}.
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The uniqueness can be deduced from the fact that a real convex body in R2n is uniquely
determined by its real support function and the relation

hK = hιK ◦ ι, (6)

which follows from (1) and (2).
For p � 1 and C ∈ K (C) , the complex support function of the complex Lp cen-

troid body ΓC,pK of K ∈ S o (Cn) is defined as

hΓC,pK(u) =
(

1
|K|

∫
K

hp
Cu(x)dx

) 1
p

∀u ∈ S
n, (7)

where the integration is with respect to the push forward of the Lebesgue measure
under the canonical isomorphism between R2n and Cn (see Section 2 for the definition
of Cu ).

When p = 1, the complex L1 centroid body is just the complex centroid body
introduced by Haberl [18]. When K ∈ S o(Cn) and C = [−1,1] , i.e., the line segment
between the points −1 and 1 in the complex plane, Γ[−1,1],pK is denoted by ΓpK for
short. It follows from (6), (4) and (7) that

ΓpK = ι−1(ΓpιK). (8)

We will prove the following complex Lp Busemann-Petty centroid inequality (see
Section 2 for the definition of complex Lp zonoid).

THEOREM 1.2. Let p � 1 , K ∈So (Cn) , and C∈K (C) be a complex Lp zonoid.
Then,

|K|−1
∣∣ΓC,pK

∣∣ � |Bn|−1
∣∣ΓC,pBn

∣∣ . (9)

If dimC = 1 , equality holds if and only if K is an origin-symmetric ellipsoid. If dimC =
2 and p ∈ [1,∞) is not an even integer, equality holds if and only if K is an origin-
symmetric Hermitian ellipsoid.

Here, dimC denotes the dimension of ιC in R2 .
When C = [−1,1] , by (8), Theorem 1.2 generalizes the real Lp Busemann-Petty

centroid inequality (5) in R2n .
By Theorem 7.3 of [18], if K ∈ Ko (Cn) is origin-symmetric, then ΓCK = ΓΔCK,

where ΔC , the central symmetral of C , is an origin-symmetric convex body in the
complex plane (see Section 2 of [18] for details). In that section, Haberl also points
out that every origin-symmetric planar complex convex body is a complex L1 zonoid.
Therefore, the complex Lp Busemann-Petty centroid inequality (9) for p = 1 implies
the following complex Busemann-Petty centroid inequality.

THEOREM 1.3. [18, Theorem 1.2] Let C ∈ K (C) and K ∈ Ko (Cn) . If K is
origin-symmetric, then

|K|−1 |ΓCK| � |Bn|−1 |ΓCBn| .
If dimC = 1, equality holds if and only if K is an origin symmetric ellipsoid. If dimC =
2 , equality holds if and only if K is an origin symmetric Hermitian ellipsoid.
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A further class of relevant convex bodies in this context is Lp projection bodies
introduced in [40] for p � 1. Given K ∈ Ko(Rm) and p � 1, the Lp projection body
of K is the origin-symmetric convex body ΠpK with support function

hΠpK(u) =
(∫

Sm−1
|u · v|pdSp (K,v)

) 1
p

∀u ∈ Sm−1, (10)

where Sp (K, ·) is Lp surface area measure of K .
There have been many relevant papers about Lp projection bodies over the past

few decades (see [9, 10, 13, 19, 20, 30, 36, 37, 40, 44, 47, 50, 51, 56]). In particular,
L1 projection bodies, i.e., projection bodies, were introduced at the turn of the previous
century by Minkowski. It is worth pointing out that projection bodies are the only
Minkowski valuations that are contravariant with respect to the real affine group (see
[17, 34, 35]).

Lutwak et al. [40] prove the following real Lp Petty projection inequality (here,
Π∗

pK denotes the polar set of ΠpK as in [40]).

THEOREM 1.4. [40, Theorem 2] Let K ∈ Ko(Rm) . Then, for p � 1,

|K| n−p
p

∣∣Π∗
pK

∣∣ � |Bm|
n−p

p
∣∣Π∗

pBm
∣∣ , (11)

with equality if and only if K is an origin-symmetric ellipsoid.

For p � 1, C ∈ K (C) and K ∈ Ko (Cn) , we define the complex Lp projection
body ΠC,pK as the convex body with support function

hΠC,pK(u) =
(∫

Sn
hCu(v)pdSp (K,v)

) 1
p

∀u ∈ S
n. (12)

Here, Sp(K, ·) is the complex Lp surface area measure of K (see Section 2 for the
precise definition). The set Π[−1,1],pK is denoted by ΠpK for short. The equalities (6),
(10) and (12) give that

ΠpK = ι−1(ΠpιK). (13)

When p = 1, Abardia and Bernig [3] proved that ΠC,1 are the only Minkowski
valuations that are contravariant with respect to the complex affine group. Complex L1

projection bodies, i.e., complex projection bodies, have also been studied in [33, 52,
18].

We will prove the following complex Lp projection inequality.

THEOREM 1.5. Let p � 1 , K ∈ Ko (Cn) , and C ∈ K (C) be a complex Lp

zonoid. Then,

|K| 2n−p
p

∣∣Π∗
C,pK

∣∣ � |Bn|
2n−p

p
∣∣Π∗

C,pBn
∣∣ . (14)

If dimC = 1 , equality holds if and only if K is an origin-symmetric ellipsoid. If dimC =
2 and p ∈ [1,∞) is not an even integer, equality holds if and only if K is an origin-
symmetric Hermitian ellipsoid.



ON COMPLEX Lp AFFINE ISOPERIMETRIC INEQUALITIES 659

Here, Π∗
C,pK denotes the polar set of the complex Lp projection body of K (see Section

2 for the precise definition).
When C = [−1,1] , by (13), Theorem 1.5 generalizes the real Lp Petty projection

inequality (11) in R2n .
When p = 1, the complex Lp Projection body inequality is the following complex

Petty Projection inequality.

THEOREM 1.6. [18, Theorem 5.6] Let C ∈ K (C) be origin-symmetric and K ∈
Ko (Cn) . Then,

|K|2n−1 |Π∗
CK| � |Bn|2n−1 |Π∗

CBn| .
If dimC = 1, equality holds if and only if K is an ellipsoid. If dimC = 2 , equality
holds if and only if K is an Hermitian ellipsoid.

Haberl [18] also proves that this complex L1 Petty projection inequality strength-
ens and directly implies the isoperimetric inequality, and it is invariant with respect to
the unitary group. Consequently, the affine inequalities are stronger than their unitary
counterparts. Similar phenomenon was observed in [12, 20, 21].

This paper is organized as follows. In Section 2, some basic facts regarding com-
plex convex bodies for quick reference are provided. In Section 3, some properties
of complex Lp projection bodies and complex Lp centroid bodies are presented. In
Section 4, we prove that the complex Lp Busemann-Petty centroid inequality (9) is
equivalent to the complex Lp Petty projection inequality (14). Theorem 1.5 is proved
in Section 5. In Section 6, we prove Theorem 1.2 by using Theorem 1.5.

2. Preliminaries

For a complex number c ∈ C , we write c for its complex conjugate and |c| for its
norm. If φ ∈ Cn×n for an integer n � 1, then φ∗ denotes the conjugate transpose of φ .
If φ is invertible, the inverse of φ is denoted by φ−1 . The standard Hermitian inner
product on Cn is conjugate linear in the first argument, i.e., x ·y = x∗y ∀x,y∈ Cn. For
a set N in S1 , let Nc denotes the complement of N .

The general linear group of Cn and the special unitary group of degree n of Cn

are denoted by GL(n,C) and SU(n,C) , respectively. A linear transformation φ ∈
GL(n,C) is called an Hermitian matrix if and only if φ∗ = φ . Let φ ∈ GL(n,C) be
decomposed in its real part and imaginary part, i.e., φ = ℜ[φ ]+ iℑ[φ ]. The real matrix
representation R[φ ] ∈ GL(2n,R) of φ is the block matrix

R[φ ] =
(

ℜ[φ ] −ℑ[φ ]
ℑ[φ ] ℜ[φ ]

)
.

It is not hard to show that
|detφ |2 = |detR[φ ]| (15)

as well as
ι(φx) = R[φ ]ιx ∀x ∈ C

n. (16)



660 Y. WU

We present some properties of the volume of a complex set K ⊂ Cn. For φ ∈
GL(n,C) , by (16),

|φK| = |ι(φK)| = |R[φ ]ιK|.
Thus, relation (15) implies

|φK| = |detφ |2|K|. (17)

In particular, we have
|cK| = |c|2n|K| (18)

for all c ∈ C , where cK = {cx : x ∈ K} .
For K,L∈K (Cn) , K and L are real dilates if there exists t > 0 such that K = tL .
Next, we provide some properties of ellipsoids. A convex body K ∈ K (Cn) is

called an ellipsoid if ιK is a real ellipsoid, or equivalently, there exists a positive definite
symmetric matrix ϕ ∈ GL(2n,R) and a t ∈ Cn such that

K = {x ∈ C
n : ιx ·ϕιx � 1}+ t.

A set K ⊂ Cn is called a Hermitian ellipsoid if

K = {x ∈ C
n : x ·φx � 1}+ t

for some positive definite Hermitian matrix φ ∈ GL(n,C) and some t ∈ Cn . The fol-
lowing fact is pointed out in Section 2 of [18]. For readers’ convenience, we offer a
short proof here.

LEMMA 2.1. Let K ∈ K (Cn) . Then, K is an origin-symmetric Hermitian ellip-
soid if and only if there exists a positive definite Hermitian matrix ψ ∈ GL(n,C) such
that

K = ψBn.

Proof. Let

K = ψBn = {ψx ∈ C
n : x · x � 1} =

{
y ∈ C

n : y · (ψ−1)∗ψ−1y � 1
}

,

where ψ ∈ GL(n,C) is a positive definite Hermitian matrix. Since (ψ−1)∗ψ−1 is a
positive definite Hermitian matrix (see [55, Theorem 8.1]), K is an origin-symmetric
Hermitian ellipsoid.

Now, assume that K is an origin-symmetric Hermitian ellipsoid, i.e.,

K = {x ∈ C
n : x ·φx � 1}

for some positive definite Hermitian matrix φ ∈ GL(n,C) . An application of [55, The-
orem 8.1] shows that there exists a positive definite Hermitian matrix ψ ∈ GL(n,C)
such that

φ = (ψ−1)∗ψ−1.

Now, by the sesquilinearity of the Hermitian inner product,

ψ−1K =
{

ψ−1x ∈ C
n : x · (ψ−1)∗ψ−1x � 1

}
= {y ∈ C

n : y · y � 1} = Bn. �
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The following lemma follows from [18, Lemma 3.1]. For readers’ convenience,
we offer a short proof here.

LEMMA 2.2. If K ∈ K (Cn) is an origin-symmetric Hermitian ellipsoid, then
cK = K for all c ∈ S1.

Proof. Let K be an origin-symmetric Hermitian ellipsoid. Then, there exists a
positive definite Hermitian matrix φ ∈ GL(n,C) such that

K = {x ∈ C
n : x ·φx � 1} .

This gives that
cK =

{
x ∈ C

n : (c−1x) ·φ(c−1x) � 1
}

.

The sesquilinearity of the Hermitian inner product implies that(
c−1x

) ·φ (
c−1x

)
=

(
c−1c−1

)
x ·φx =

∣∣c−1
∣∣2 x ·φx.

Note that |c−1| = 1. This implies that cK = K. �
We also need the following lemma to deal with the equality cases of Theorem 1.2

and Theorem 1.5. The following lemma is an easy application of [18, Theorem 3.4],
since, for any origin-symmetric convex body K in Cn, ΔK = 1

2K + 1
2 (−K) = K (see

Section 2 of [18] for details).

LEMMA 2.3. Let K ∈K (Cn) be an origin-symmetric ellipsoid. Then, K is Her-
mitian if and only if cK = K for some c ∈ S1 with ℑ[c] �= 0 .

In the sequel, we collect complex reformulations of well known results from con-
vex geometry. These complex versions can be directly deduced from their real counter-
parts by an appropriate application of ι . The standard references for these real results
are the books of Gardner [13], Gruber [16] and Schneider [49].

Elements of complex support functions and complex radial functions

For K ∈ K (Cn) , it is easy to see that

hφK = hK ◦φ∗ ∀φ ∈ GL(n,C) (19)

and
hλK = λhK ∀λ > 0.

Let C ∈ K (C) and u,v ∈ Sn. The convex body Cu ∈ K (Cn) is defined as
Cu = {cu : c ∈ C} . By the conjugate symmetry of the Hermitian inner product and
the definition of support functions,

hCu(v) = max
c∈C

{ℜ[v · (cu)]}= max
c∈C

{ℜ[(v ·u)c]} = max
c∈C

{ℜ[u · vc]}
= max

c∈C
{ℜ[(u · v) · c]}= hC(u · v). (20)
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Using a similar method, we obtain

hcK(v) = hK(cv) ∀c ∈ S
1 (21)

and
hCu(v) = hCv(u), (22)

where C := {c : c ∈C} .
The complex radial function, ρK = ρ(K, ·) : Cn\{0} → [0,∞) , of a complex star

body (about the origin) K ⊂ Cn , is defined, for x �= 0, by

ρ(K,x) = max{λ � 0 : λx ∈ K}.

It is easy to see that
ρφK = ρK ◦φ−1 ∀φ ∈ GL(n,C). (23)

It follows from (3) that
ρK = ριK ◦ ι (24)

and
ρλK = λ ρK ∀λ > 0. (25)

Given M ⊂ Cn , its polar set M∗ is defined by

M∗ = {x ∈ C
n : ℜ[x · y] � 1 for all y ∈ M} .

It is easy to see that
(φM)∗ = φ−∗M∗ (26)

and
(λM)∗ = λ−1M∗ ∀λ > 0. (27)

If K ∈ Ko(Cn) , it is easy to verify that

ρK∗ = h−1
K . (28)

An application of polar coordinates to the volume of a complex star body K ∈ So(Cn)
gives that

|K| = 1
2n

∫
Sn

ρ2n
K dσ , (29)

where σ stands for the push forward with respect to ι−1 of H 2n−1 on the (2n− 1)-
dimensional Euclidean unit sphere. Here, H 2n−1 denotes the (2n− 1)-dimensional
Hausdorff measure in R2n .

A change to polar coordinates in (7) shows

hp
ΓC,pK

(u) =
1

(2n+ p)|K|
∫

Sn
hp
Cuρ2n+p

K dσ . (30)
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Elements of complex Lp mixed volume

For two real numbers c,d � 0 and K,L ∈ Ko(Rm) , the real Lp Minkowski com-
bination c ·K +p d ·L for p � 1 is defined as

hp
c·K+pd·L = chp

K +dhp
L.

The real Lp mixed volume Vp(K,L) is defined by

Vp(K,L) =
p
m

lim
ε→0+

|K +p ε ·L|− |K|
ε

. (31)

See [38] for details.
We turn to the complex case. Given two real numbers c,d � 0 and K,L∈Ko(Cn) ,

the complex Lp Minkowski combination c ·K +p d ·L for p � 1 is defined as

hp
c·K+pd·L = chp

K +dhp
L.

By (19), we have φK +p ε ·φL = φ(K +p ε ·L) ∀φ ∈ GL(n,C) , ε > 0. We define the
complex Lp mixed volume Vp(K,L) by

Vp(K,L) =
p
2n

lim
ε→0+

|K +p ε ·L|− |K|
ε

. (32)

By (31), this definition gives that

Vp(K,L) = Vp(ιK, ιL). (33)

Obviously,
Vp(K,K) = |K|, (34)

and for φ ∈ GL(n,C) , the relation φK +p ε ·φL = φ(K +p ε ·L) , (32) and (17) imply

Vp(φK,φL) = |detφ |2Vp(K,L). (35)

The complex surface area measure S(K, ·) of K ∈ Ko(Cn) is the Borel measure
on Sn defined in[18] for every Borel set ω ⊂ Sn by

S(K,ω) = H 2n−1 (ι {x ∈ K : ∃u ∈ ω with ℜ[x ·u] = hK(u)}) . (36)

By (21) and the sesquilinearity of the Hermitian inner product, we obtain

S(cK,ω) = S(K, cω) (37)

for all c ∈ S1 and each Borel set ω ⊂ Sn. For p � 1, we define the complex Lp surface
area measure Sp(K, ·) of K ∈ Ko(Cn) as

Sp(K,ω) =
∫

ω
h1−p

K (v)dS(K,v). (38)
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Therefore, Sp(K, ·) can be viewed as the push-forward of the real Lp surface area
measure (introduced in [38]) Sp(ιK, ·) with respect to ι−1 .

By (21) and (37), we get

Sp(cK,ω) = Sp(K, cω) (39)

for all c ∈ S1 and each Borel set ω ⊂ Sn.
For K,L ∈Ko(Cn), as it was shown in [38], the real Lp mixed volume Vp(ιK, ιL)

has the following representation

Vp(ιK, ιL) =
1
2n

∫
S2n−1

h(ιL,u)pdSp(ιK,u),

where Sp(ιK, ·) is the Lp surface area measure of ιK. Thus, by (6) and (33), we get
the representation

Vp(K,L) =
1
2n

∫
Sn

h(L,u)pdSp(K,u). (40)

The complex Lp Minkowski inequality states that, for K,L ∈ Ko(Cn) ,

Vp(K,L) � |K| 2n−p
2n |L| p

2n , (41)

with equality if and only if K and L are real dilates. The inequality (41) follows from
(33) and the real Lp Minkowski inequality in R2n proved in [38].

Elements of complex Lp dual mixed volume

For K,L∈K (Cn) , p � 1 and ε > 0, the Lp -harmonic radial combination K+̃−pε ·
L is the star body defined by

ρ(K+̃−pε ·L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p.

By (23), we have φ(K+̃−pε · L) = φK+̃−pε · φL ∀φ ∈ GL(n,C). The complex Lp

dual mixed volume Ṽ−p(K,L) is defined by

Ṽ−p(K,L) =
−p
2n

lim
ε→0+

V (K+̃−pε ·L)−V(K)
ε

. (42)

By (29), we obtain

Ṽ−p(K,L) =
1
2n

∫
Sn

ρ2n+p
K ρ−p

L dσ (43)

and
Ṽ−p(K,K) = |K|. (44)

For φ ∈ GL(n,C) , the relation φ(K+̃−pε ·L) = φK+̃−pε ·φL , (42) and (17) imply

Ṽ−p(φK,φL) = |detφ |2Ṽ−p(K,L). (45)
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An application of Hölder’s inequality to (43) and (29) gives that

Ṽ−p(K,L) � |K| 2n+p
2n |L| −p

2n , (46)

with equality if and only if K and L are real dilates.
For the real Lp -harmonic radial combination, the real Lp dual mixed volume and

related inequalities, we refer to [39].

Elements of complex Lp zonoids

For p � 1, a real origin-symmetric convex body K ∈ K (Rm) is called a real
Lp zonoid if its support function equals the Lp -cosine transform (see [40, 42] for this
subject) of some finite even Borel measure on the real unit sphere. Namely, there exists
a finite even Borel measure μ on the sphere Sm−1 such that

hK(x) =
(∫

Sm−1
|x · v|pdμ(v)

) 1
p

∀x ∈ R
m.

Note that the right-hand side of this equality is positively homogeneous and subaddi-
tive by Minkowski’s inequality with respect to x , and thus is a support function of a
convex body by [49, Theorem 1.7.1]. If p ∈ [1,∞) is not an even integer, μ is uniquely
determined by K. Indeed, when p ∈ [1,∞) is not an even integer, Lutwak et al. (see
page 178 of Section 5 of [42]) point out that the Lp -cosine transform is injective, i.e.,
Lemma 2.4. See also Goodey and Weil [14, 15], Koldobsky [24, 25, 26, 27, 28, 29],
and Rubin [48].

LEMMA 2.4. Suppose that p∈ [1,∞) is not an even integer. If μ is a finite signed
even Borel measure on the unit sphere Sm−1 satisfying∫

Sm−1
|u · v|pdμ(v) = 0

for all u ∈ Sm−1, then μ = 0.

Using (1), Lemma 2.4, the uniqueness of the Lp surface measure for p > 1 (see
[38, Corollary 2.3 and Corollary 2.6]) and the fact that a convex body is uniquely de-
termined by its surface area measure (i.e., the case of p = 1) up to translations (see
Section 2 of [18]), one can obtain the following lemma.

LEMMA 2.5. Suppose that p∈ [1,∞) is not an even integer. If two origin-symmetric
complex convex bodies K,L ∈ Ko(Cn) satisfy

∫
Sn
|ℜ[u · v]|pdSp(K,v) =

∫
Sn
|ℜ[u · v]|pdSp(L,v)

for all u ∈ S
n, then K = L.
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Note that K and L are origin-symmetric in this lemma. Thus, when p = 1, there
is no translation between K and L .

For p � 1, a convex body K ∈ K (Cn) is called a complex Lp zonoid if ιK is a
real Lp zonoid in R2n . That is, there exists a finite even Borel measure μιK on the unit
sphere S2n−1 such that

hιK(x) =
(∫

S2n−1
|x · v|pdμιK(v)

) 1
p

for every x ∈ R
2n. Define the measure μK on S

n as the push-forward of μιK with
respect to ι−1 . By (6), we get

hK(x) =
(∫

Sn
|ℜ(x · v)|pdμK(v)

) 1
p

∀x ∈ C
n. (47)

LEMMA 2.6. Let p � 1 and C ∈ K (C) be a complex Lp zonoid. Then, there
exists a finite even Borel measure μC on the complex unit circle S1 such that for all
u,v ∈ Sn ,

hCu(v) =
(∫

S1
|ℜ[cu · v]|pdμC(c)

) 1
p

.

Moreover, when p ∈ [1,∞) is not an even integer, μC is uniquely determined by C.

Proof. Let p � 1, u,v ∈ S
n and C be a complex Lp zonoid. Then, there exists a

finite even Borel measure μC on the complex unit circle S1 such that

hp
C(u · v) =

∫
S1
|ℜ[c · (u · v)]|pdμC(c) ∀u,v ∈ S

1.

It follows from the fact c · (u · v) = c(u · v) = (cu) · v and (20) that

hp
Cu(v) = hp

C(u · v) =
∫

S1
|ℜ[cu · v]|pdμC(c),

which is the desired equality.
When p ∈ [1,∞) is not an even integer, by Lemma 2.4, the measure μιC on the

unit sphere S1 is uniquely determined by ιC. Therefore, μC is uniquely determined by
C. �

3. Some properties of the complex Lp projection body and
the complex Lp centroid body

LEMMA 3.1. Let p � 1 , φ ∈ GL(n,C) and C ∈ K (C) . Then,

ΓC,p(φK) = φΓC,pK ∀K ∈ So(Cn).
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Proof. Let K ∈ So(Cn), p � 1, φ ∈ GL(n,C) and C ∈ K (C) . The definition
of ΓC,p , (17) together with the transformation formula, (19) and the equality φ∗Cu =
C (φ∗u) yield

hp
ΓC,p(φK)(u) =

1
|φK|

∫
φK

hp
Cu(x)dx =

1
|K|

∫
K

hp
Cu(φx)dx

=
1
|K|

∫
K

hp
φ∗Cu(x)dx =

1
|K|

∫
K

hp
C(φ∗u)(x)dx

= hp
ΓCK (φ∗u) = hp

φΓCK (u)

for all u ∈ S
n. Thus, we have ΓC,p(φK) = φΓC,pK. �

LEMMA 3.2. Let p � 1 and C∈K (C) with dimC > 0 . Then, ΓC,p maps origin-
symmetric balls to origin-symmetric balls. That is, for r > 0 , ΓC,p(rBn) is an origin-
symmetric ball.

Proof. Let p � 1, r > 0 and C ∈ K (C) with dimC > 0. By (30) and (18), we
get

hp
ΓC,p(rBn)

(u) =
1

(2n+ p)|rBn|
∫

Sn
hp
Cur

2n+pdσ =
rp

(2n+ p)|Bn|
∫

Sn
hp
Cudσ . (48)

Now, fix some u0 ∈ Sn. Then, for each u ∈ Sn, there exists a ϑu ∈ SU(n) with
ϑuu0 = u . Note that Cu = ϑuCu0 ,

hp
ΓC,p(rBn)

(u) =
rp

(2n+ p)|Bn|
∫

Sn
hp
Cu0

◦ϑ ∗
u dσ

Noting that σ is SU(n)-invariant, the right-hand side is independent of u . Mean-
while, it is greater than zero since dimC > 0. Therefore, ΓC,p(rBn) is an origin-
symmetric ball. �

REMARK 3.1. If K is an origin-symmetric Hermitian ellipsoid, by Lemma 2.1,
Lemma 3.1 and Lemma 3.2, ΓC,pK is also an origin-symmetric Hermitian ellipsoid.

LEMMA 3.3. Let p � 1. If C ⊂C is origin-symmetric with dimC = 1, then there
exists some c ∈ C such that

ΓC,pK = cΓpK ∀K ∈ So(Cn).

Proof. Let K ∈ So(Cn) and p � 1. By our assumption, C is an origin-symmetric
line segment. Therefore, there exists a d ∈ C\{0} with C = [−d,d] and thus

hp
ΓCK(u) =

1
|K|

∫
K

h[−1,1](du)(x)dx = hp
ΓK(du).

So, (21) implies hΓCK = hdΓK . If we set c := d, the assertion is proved. �
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LEMMA 3.4. Let p � 1 and C ∈ K (C) with dimC > 0 . Then, ΠC,p maps
origin-symmetric balls to origin-symmetric balls. That is, for r > 0 , ΠC,p(rBn) is
an origin-symmetric ball.

Proof. Let p � 1, r > 0 and C ∈ K (C) with dimC > 0. By the definition of the
surface area measure (36), we get S(rBn, ·) = r2n−1σ . Thus, by (38), the Lp surface
area measure Sp(rBn, ·) = r2n−pσ . By (12),

hp
ΠC,p(rBn)(u) = r2n−p

∫
Sn

hp
Cudσ . (49)

A similar method to Lemma 3.2 shows that the right hand side is independent of
u and greater than zero. Therefore, ΠC,p(rBn) is an origin-symmetric ball. �

The following lemma connects the complex Lp Petty projection inequality (14)
and the complex Lp Busemann-Petty centroid inequality (9). For details, see Section 4.

LEMMA 3.5. Let p � 1 and C ∈ K (C) with dimC > 0 . Then,

Vp

(
K,ΓC,pL

)
=

1
(2n+ p)|L|Ṽ−p

(
L,Π∗

C,pK
)

for all K ∈ Ko (Cn) and all L ∈ So(Cn) .

Proof. Let p � 1 and C ∈ K (C) with dimC > 0. By (40), (30), (22), Fubini’s
theorem, (28), (12) and (43), we get

Vp

(
K,ΓC,pL

)
=

1
2n

∫
Sn

hp
ΓC,pL

(u)dSp(K,u)

=
1

2n(2n+ p)|L|
∫

Sn

∫
Sn

hp

Cu
(v)ρL(v)2n+pdσ(v)dSp(K,u).

=
1

2n(2n+ p)|L|
∫

Sn
ρL(v)2n+p

∫
Sn

hp
Cv(u)dSp(K,u)dσ(v)

=
1

2n(2n+ p)|L|
∫

Sn
ρL(v)2n+php

ΠC,pK
(v)dσ(v)

=
1

2n(2n+ p)|L|
∫

Sn
ρL(v)2n+pρΠ∗

C,pK
(v)−pdσ(v)

=
1

(2n+ p)|L|Ṽ−p
(
L,Π∗

C,pK
)

for all K ∈ Ko (Cn) and all L ∈ So(Cn) . �

LEMMA 3.6. Let p � 1 , φ ∈ GL(n,C) and K ∈ Ko(Cn) . Then, ΠC,p(φK) =

|detφ | 2
p φ−∗ΠC,pK .
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Proof. Let p � 1, φ ∈ GL(n,C) and K ∈ Ko(Cn) . By Lemma 3.5, Lemma 3.1,
(35), (45) and (17), we get

Ṽ−p
(
L,Π∗

C,pφK
)

= (2n+ p)|L|Vp

(
φK,ΓC,pL

)
= (2n+ p)|L||detφ |2Vp

(
K,ΓC,pφ−1L

)
= |L| |detφ |2

|detφ−1L|Ṽ−p
(
φ−1L,Π∗

C,pK
)

= |detφ |2Ṽ−p
(
L,φΠ∗

C,pK
)

for each L ∈ So(Cn). Therefore, by (43) and (25),

Ṽ−p
(
L,Π∗

C,pφK
)

= Ṽ−p

(
L, |detφ |− 2

p φΠ∗
C,pK

)
for each L ∈ So(Cn). Now, an application of (46) and its equality case imply that

Π∗
C,pφK = |detφ |− 2

p φΠ∗
C,pK.

Thus, (26) and (27) give the desired conclusion. �

REMARK 3.2. If K is an origin-symmetric Hermitian ellipsoid, by Lemma 2.1,
Lemma 3.4 and Lemma 3.6, ΠC,pK is also an origin-symmetric Hermitian ellipsoid.

4. The complex Lp Busemann-Petty inequality is equivalent
to the complex Lp Petty projection inequality

Let

pp(C,K) =
(
|K| 2n−p

p
∣∣Π∗

C,pK
∣∣)−1 (

|Bn|
2n−p

p
∣∣Π∗

C,pBn
∣∣)

for K ∈ K o(Cn) and

bp(C,K) =
(|K|−1

∣∣ΓC,pK
∣∣)(|Bn|−1

∣∣ΓC,pBn
∣∣)−1

for K ∈ S o(Cn) .
Note that the complex Lp Petty projection inequality (14) is equivalent to pp(C,K)

� 1, whereas the complex Lp Busemann-Petty centroid inequality (9) is equivalent to
bp(C,K) � 1.

LEMMA 4.1. Let p � 1 , K ∈ Ko(Cn) and C ∈ K (C) with dimC > 0 . Then,

pp(C,K) � bp

(
C,Π∗

C,pK
)

,

with equality if and only if K and ΓC,pΠ∗
C,pK are real dilates.
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Proof. Let p � 1, K ∈ Ko(Cn) and C ∈ K (C) with dimC > 0. By Lemma 3.2
and Lemma 3.4, ΓC,pBn and ΠC,pBn are origin-symmetric balls. Thus, Π∗

C,pBn is also
an origin-symmetric ball. Furthermore, by (48) and (49), the ratio between the radius

of ΠC,pBn and the radius of ΓC,pBn is (2n+ p)
1
p |Bn|

1
p . Thus,∣∣ΠC,pBn

∣∣∣∣ΓC,pBn
∣∣ = (2n+ p)

2n
p |Bn|

2n
p ,

which implies ∣∣ΓC,pBn
∣∣−1∣∣∣Π∗

C,pBn

∣∣∣ = (2n+ p)
2n
p |Bn|

2n
p .

Therefore, it suffices to prove that(
|K| 2n

p −1 ∣∣Π∗
C,pK

∣∣)−1
� (2n+ p)

2n
p

(∣∣Π∗
C,pK

∣∣−1
∣∣∣ΓC,pΠ∗

C,pK
∣∣∣) , (50)

with equality if and only if K and ΓC,pΠ∗
C,pK are real dilates.

Since dimC > 0 and K ∈ Ko(Cn) , ΠC,pK contains the origin in its interior and
thus Π∗

C,pK ∈ Ko(Cn) . By (44) and Lemma 3.5,

|Π∗
C,pK| = Ṽ−p

(
Π∗

C,pK,Π∗
C,pK

)
= (2n+ p)

∣∣Π∗
C,pK

∣∣Vp

(
K,ΓC,pΠ∗

C,pK
)

.

Applying (41), we get that

1 � (2n+ p)|K| 2n−p
2n |ΓC,pΠ∗

C,pK| p
2n ,

with equality if and only if K and ΓC,pΠ∗
C,pK are real dilates. This is equivalent to

(50). �

LEMMA 4.2. Let p � 1 . For C ∈ K (C) with dimC > 0 and K ∈ S o (Cn) ,

bp(C,K) � pp

(
C,ΓC,pK

)
,

with equality if and only if K and Π∗
C,p

ΓC,pK are real dilates.

Proof. Let p � 1, K ∈ S o (Cn) and C ∈ K (C) with dimC > 0. Similar to the
proof of Lemma 4.1, we need to prove that

|K|−1
∣∣ΓC,pK

∣∣ �
(

1
2n+ p

) 2n
p

(∣∣ΓC,pK
∣∣ 2n−p

p

∣∣∣Π∗
C,p

ΓC,pK
∣∣∣)−1

. (51)

Since dimC > 0 and K ∈ S o(Cn) , ΓC,pK contains the origin in its interior. By
(34) and Lemma 3.5,

∣∣ΓC,pK
∣∣ = Vp (ΓC,pK,ΓC,pK) =

1
(2n+ p)|K|Ṽ−p

(
K,Π∗

C
ΓC,pK

)
.
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The inequality (46) applied to the right-hand side gives

∣∣ΓC,pK
∣∣ � 1

2n+ p
|K| p

2n

∣∣∣Π∗
C

ΓC,pK
∣∣∣−p

2n
,

with equality if and only if K and Π∗
C,p

ΓC,pK are real dilates. Rearranging terms yields

(51). �

5. Proof of the complex Lp Petty projection inequality

We need the following two lemmas to prove the Lp complex Petty projection
inequality (14).

LEMMA 5.1. Let p � 1 and C ∈ K (C) be a complex Lp zonoid. Then, for each
K ∈ K (Cn) , there is a finite even Borel measure μC on the unit circle S1 such that

hΠC,pK(u) =
(∫

S1
hp

cΠpK
(u)dμC(c)

) 1
p

∀u ∈ S
n. (52)

Moreover, the total mass |μC| := μC(S1) satisfies

|μC| =
⎛
⎝ ∣∣Π∗

pBn
∣∣∣∣∣Π∗

C,pBn

∣∣∣
⎞
⎠

p
2n

.

Proof. Let p � 1, K ∈ K (Cn) and C ∈ K (C) be a complex Lp zonoid. Then,
(12), Lemma 2.6, Fubini’s theorem and (21) yield that there is a finite even Borel mea-
sure μC on the unit circle S1 such that

hp
ΠC,pK

(u) =
∫

Sn

∫
S1
|ℜ[cu · v]|pdμC(c)dSp (K,v)

=
∫

S1

∫
Sn
|ℜ[(cu) · v]|pdSp (K,v)dμC(c)

=
∫

S1
hp

ΠpK
(cu)dμC(c)

=
∫

S1
hp

cΠpK
(u)dμC(c) ∀u ∈ S

n.

By Lemma 3.4, hΠpB is constant on Sn . Thus, by (21), hcΠpB is also constant
and hcΠpB = hΠpB for all c ∈ S1 . The equality (52) and the homogeneity property of
support function give

hΠC,pB(u) =
(∫

S1
hp

cΠpB
(u)dμC(c)

) 1
p

= hcΠpB(u)
(∫

S1
dμC(c)

) 1
p

= |μC|
1
p hΠpB(u) = h

|μC|
1
p ΠpB

(u)
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for all u ∈ Sn . Thus, ΠC,pB = |μC|
1
p ΠpB . By (27) and polarizing, we have Π∗

C,pB =

|μC|−
1
p Π∗

pB . Therefore, taking the volume on both sides and using (18), we obtain the
desired result. �

LEMMA 5.2. Let p � 1 and C ∈K (C) be a complex Lp zonoid with dimC > 0 .
Then, for each K ∈ So(Cn) , there is a finite even Borel measure μC on the unit circle
S1 such that ∣∣Π∗

C,pK
∣∣ � |μC|−

2n
p

∣∣Π∗
pK

∣∣ , (53)

with equality if and only if there exists a point d ∈ S1 with cΠpK = dΠpK for μC -
almost every c ∈ S1 .

Proof. Let p � 1, K ∈ So(Cn) and C ∈ K (C) be a complex Lp zonoid with
dimC > 0. By (29), (28), Lemma 5.1, Jensen’s inequality and Fubini’s theorem, we
obtain ∣∣Π∗

C,pK
∣∣ =

1
2n

∫
Sn

hΠC,pK(u)−2ndσ(u)

=
|μC|−

2n
p

2n

∫
Sn

[
1

|μC|
∫

S1
hp

cΠpK
(u)dμC(c)

]− 2n
p

dσ(u)

� |μc|−
2n
p −1

2n

∫
Sn

∫
S1

hcΠpK(u)−2ndμC(c)dσ(u)

=
|μC|−

2n
p −1

2n

∫
S1

∫
Sn

hcΠpK(u)−2ndσ(u)dμC(c)

= |μC|−
2n
p −1

∫
S1

∣∣cΠ∗
pK

∣∣dμC(c)

= |μC|−
2n
p −1

∫
S1

∣∣Π∗
pK

∣∣dμC(c)

= |μC|−
2n
p |Π∗

pK|
for some finite even Borel measure μC on the unit circle S1 .

It remains to establish the equality condition. To do so, let us first prove the fol-
lowing equivalence for K ∈ So(Cn) .

For each u ∈ S
n : c 
→ hcΠpK(u) is constant μC − almost everywhere (54)

⇐⇒
∃c0 ∈ S

1 : hcΠpK(u) = hc0ΠpK(u) holds for all u ∈ S
n and μC-almost all c ∈ S

1. (55)

Note that (55) implies (54). Next, we prove that (54) implies (55).
Assume that (54) holds. Then, for each u ∈ Sn , there exist cu ∈ S1 and a Borel set

Nu ⊂ S1 with

μC (Nu) = 0 and hcΠpK(u) = hcuΠpK(u) for all c ∈ Nc
u . (56)
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Let u ∈ Sn and b ∈ supp(μC) , i.e., b belongs to the support set of μC . By defini-
tion, each open neighborhood of b has positive μC measure and therefore non-empty
intersection with Nc

u . So, we can find a sequence {bk}k∈N with bk ∈ Nc
u and bk → b .

By the continuity of c → hcΠpK(u) and (56), we get

hbΠpK
(u) = lim

k→∞
hbkΠpK

(u) = hcuΠpK(u) = hcΠpK(u)

for all c ∈ Nc
u . Since dimC > 0, we have supp(μC) �= /0 and Nc

u �= /0 . Thus, there is a
c0 ∈ supp(μC) such that, for all u ∈ Sn and c ∈ supp(μC) ,

hcΠpK(u) = hc0ΠpK(u).

This concludes the proof of the equivalence of (54) and (55), since μC(supp(μC)c) = 0.
Now, we turn to deal with the equality case. Assume that the equality in (53) holds.

Inspecting the above derivation of (53), we know that this happens if and only if, for all
u ∈ Sn , equality holds when Jensen’s inequality is applied. Therefore, the equality in
(53) holds if and only if, for all u ∈ S

n, the map c → hcΠpK(u) is constant μC -almost
everywhere. From the equivalence of (54) and (55), we get that this happens if and only
if there exists a c0 ∈ S1 with hcΠpK(u) = hc0ΠpK(u) for μC -almost every c ∈ S1 . That
is, cΠpK = c0ΠpK for μC -almost every c ∈ S1 . Set d := c0, we conclude the proof
of equality condition. �

Next, we turn to prove Theorem 1.5.

Proof of Theorem 1.5. Let p � 1, K ∈ Ko (Cn) and C ∈ K (C) be a complex Lp

zonoid.
Assume that dimC = 0. Since C is a complex Lp zonoid, by (47), C is origin-

symmetric and thus C = {o} . By (12), we have ΠC,pK = ΠC,pBn = {o} . Thus,
Π∗

C,pK = Π∗
C,pBn = C

n and |Π∗
C,pK| = |Π∗

C,pBn| = ∞ . Therefore, the inequality (14) is
trivial.

Now, assume that dimC > 0. By Lemma 5.2, (13) and Theorem 1.4, we have

|K| 2n−p
p

∣∣Π∗
C,pK

∣∣ � |μC|−
2n
p |K| 2n−p

p
∣∣Π∗

pK
∣∣

= |μC|−
2n
p |K| 2n−p

p
∣∣ιΠ∗

pK
∣∣

= |μC|−
2n
p |ιK| 2n−p

p
∣∣Π∗

pιK
∣∣

� |μC|−
2n
p |ιBn|

2n−p
p

∣∣Π∗
pιBn

∣∣
= |μC|−

2n
p |Bn|

2n−p
p

∣∣Π∗
pBn

∣∣ .
Plugging in the value of the total mass of μC from Lemma 5.1 proves (14).

By Lemma 5.2 and the equality conditions of Theorem 1.4, the equality in (14)
holds if and only if the following two conditions hold simultaneously.

(I) there exists a point d ∈ S
1 with cΠpK = dΠpK for μC -almost every c ∈ S

1 .
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(II) ιK is an origin-symmetric ellipsoid in R2n , i.e, K is an origin-symmetric ellip-
soid in Cn .

We turn to deal with the two equality cases, since the range of c in condition (I)
depends on the dimension of C .

Case 1. When dimC = 1, we prove that the equality in (14) holds if and only if
K is an origin-symmetric ellipsoid in Cn .

First, suppose that the equality in (14) holds, which implies that condition (II)
holds. Thus, K is an origin-symmetric ellipsoid in Cn .

Now, suppose that K is an origin-symmetric ellipsoid in Cn . We need to prove
that the equality in (14) holds, which happens if and only if condition (I) and condition
(II) hold. Note that condition (II) holds obviously. It remains to prove that condition (I)
holds.

Since C is a complex Lp zonoid, C is an origin-symmetric convex body. Thus,
dimC = 1 implies that C is a line segment [−c0,c0] for some c0 ∈ C\{0}. Therefore,
by (47), we obtain

μC =
|c0|
2

(
δ−〈c0〉 + δ〈c0〉

)
,

where δ denotes the Dirac measure and 〈c0〉 := c0 |c0|−1 stands for the spherical pro-
jection of c0 to the unit circle. Therefore, condition (I) holds if and only if c0ΠpK =
−c0ΠpK . This is always true, since ΠpK is origin-symmetric.

Case 2. When dimC = 2 and p ∈ [1,∞) is not an even integer, we prove that the
equality in (14) holds if and only if K is an origin-symmetric Hermitian ellipsoid in
Cn .

First, suppose that K is an origin-symmetric Hermitian ellipsoid. By Remark
3.2 and Lemma 2.2, we obtain that condition (I) holds. Note that condition (II) holds
obviously. Thus, condition (I) and condition (II) hold, which implies that the equality
in (14) holds.

Now, suppose that the equality in (14) holds, which implies that condition (I) and
condition (II) hold. We need to show that K is an origin-symmetric Hermitian ellipsoid.

By (21), (12) and (39),

hp
cΠpK

(u) = hp
ΠpK

(cu) =
∫

Sn
|ℜ[cu · v]|pdSp(K,v)

=
∫

Sn
|ℜ[u · cv]|pdSp(K,v)

=
∫

Sn
|ℜ[u · v]|pdSp(cK,v).

Thus, condition (I) implies that there exists a point d ∈ S1 such that

∫
Sn
|ℜ[u · v]|pdSp(cK,v) =

∫
Sn
|ℜ[u · v]|pdSp(dK,v)
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holds for μC -almost every c ∈ S1 . By Lemma 2.5 and the fact that K is origin-
symmetric, we have

cK = dK

for μC -almost every c ∈ S
1. This implies the existence of a Borel set N ⊂ S

1 with
μC(N) = 0 such that cK = dK for all c ∈ Nc .

Since dim C = 2,Nc contains two non-antipodal points, i.e., there exist c0,c1 ∈Nc

such that c0 �= −c1 and c0K = c1K. Clearly, c0 and c1 are also non-antipodal. So,
for c := c0c−1

1 we have

cK = K, where c ∈ S
1 with ℑ[c] �= 0.

Note that K is an origin-symmetric ellipsoid (by condition (II)). Thus, Lemma 2.3
gives that K is an origin-symmetric Hermitian ellipsoid. �

6. Proof of the complex Lp Busemann-Petty centroid inequality

In this section, we will prove the complex Lp Busemann-Petty centroid inequality
(9) by the complex Lp Petty projection inequality (14) and Theorem 1.1.

Proof of Theorem 1.2. Let p � 1, K ∈S o (Cn) and C ∈ K (C) be a complex Lp

zonoid.
Assume that dimC = 0. Since C is a complex Lp zonoid, by (47), C is origin-

symmetric and thus C = {o} . Consequently, by (7), we have ΓC,pK = ΓC,pBn = {o}
and thus inequality (9) holds trivially true.

Assume that dimC = 1. Since C is a complex Lp zonoid, C is an origin-symmetric
convex body. Thus, by dimC = 1, C is an origin-symmetric line segment in the com-
plex plane. By Lemma 3.3 and (18), the inequality (9) is equivalent to

|K|−1
∣∣ΓpK

∣∣ � |Bn|−1
∣∣ΓpBn

∣∣ .
By (8), this inequality is equivalent to the classical Lp Busemann-Petty centroid in-
equality. Thus, Theorem 1.1 for m = 2n settles the case where dimC = 1.

Assume that dimC = 2. The inequality (9) follows from the complex Lp Petty
projection inequality (14) and Lemma 4.2. That is,

bb(C,K) � pp

(
C,ΓC,pK

)
� 1. (57)

We turn to deal the equality case for dimC = 2. We first prove the ‘if’ part. If
p ∈ [1,∞) is not an even integer and these equalities in (57) hold, then by Lemma
4.2 and Theorem 1.5, K is a real dilate of Π∗

C,p
ΓC,pK and ΓC,pK must be an origin-

symmetric Hermitian ellipsoid. Thus, by Remark 3.2, ΠC,pΓC,pK is also an origin-
symmetric Hermitian ellipsoid. Thus, by Lemma 2.1 and (26), Π∗

C,p
ΓC,pK is also an

origin-symmetric Hermitian ellipsoid. Therefore, K , being a real dilate of Π∗
C,p

ΓC,pK ,

is an origin-symmetric Hermitian ellipsoid as well.
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It remains to show that the equality condition is also sufficient. So, assume that
K is an origin-symmetric Hermitian ellipsoid. By Lemma 2.1, K = φBn for some
φ ∈ GL(n,C) . Thus, by Lemma 3.1 and (17),

|K|−1
∣∣ΓC,pK

∣∣ = |φBn|−1
∣∣ΓC,pφBn

∣∣ = |Bn|−1
∣∣ΓC,pBn

∣∣ . �
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affine Sobolev inequality, Adv. Math. 302, (2016), 1080–1110.
[46] C. M. PETTY, Centroid surfaces, Pacific J. Math. 11, (1961), 1535–1547.
[47] C. M. PETTY, Isoperimetric problems, Univ. Oklahoma, Proceedings of the Conference on Convexity

and Combinatorial Geometry Norman, Okla.
[48] B. RUBIN, Inversion of fractional integrals related to the spherical Radon transform, J. Funct. Anal.

157, 2 (1998), 470–487.
[49] R. SCHNEIDER, Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Math-

ematics and its Applications Cambridge University Press, expanded edition Cambridge.
[50] C. STEINEDER, Subword complexity and projection bodies, Adv. Math. 217, 5 (2008), 2377–2400.
[51] T. WANG, The affine Sobolev-Zhang inequality on BV(Rn) , Adv. Math. 230, 4–6 (2012), 2457–2473.
[52] W. WANG AND R. HE, Inequalities for mixed complex projection bodies, Taiwanese J. Math. 17, 6

(2013), 1887–1899.
[53] T. WANNERER, Integral geometry of unitary area measures, Adv. Math. 263, (2014), 1–44.



678 Y. WU

[54] T. WANNERER, The module of unitarily invariant area measures, J. Differential Geom. 96, 1 (2014),
141–182.

[55] F. ZHANG, Matrix theory, Springer, Universitext, second edition, New York.
[56] G. ZHANG, The affine Sobolev inequality, J. Differential Geom. 53, 1 (1999), 183–202.

(Received December 5, 2019) Yuchi Wu
School of Mathematics science
East China Normal University

Shanghai 200241, China
and

Shanghai Key Laboratory of
Pure Mathematics and Mathematical Practice

Shanghai 200241, China
e-mail: wuyuchi1990@126.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


