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AN EXTENSION OF A HARDY’S INEQUALITY

AND ITS APPLICATIONS

ŁUKASZ KAMIŃSKI AND ADAM OSȨKOWSKI ∗

(Communicated by L. E. Persson)

Abstract. Let p > 0 and let s � q be fixed parameters. The paper contains the proof of the sharp
Hardy-type inequality
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for any sequences (an)∞
n=1 , (λn)∞

n=1 of positive numbers. The approach exploits dynamic
programming-type techniques and rests on the identification of the explicit Bellman function
associated with the estimate. As applications, related estimates for Hardy operators in R

d and
harmonic maximal operators on probability spaces are obtained.

1. Introduction

A celebrated Hardy’s inequality [7] asserts that for any 1 < p < ∞ and any non-
negative numbers a1 , a2 , . . . we have the estimate
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Furthermore, the constant (p/(p−1))p is the best possible. There are many different
proofs of this fundamental inequality, this result has been extended in numerous direc-
tions and applied in various contexts. See e.g. the monograph [8] by Hardy, Littlewood
and Pólya or consult the more recent books [10] by Kufner and Opic or [11] by Kufner
and Persson. For example, one can study the following weighted version of (1): for any
a1 , a2 , . . . as before and any positive λ1 , λ2 , . . . we have
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Again, the constant (p/(p−1))p cannot be improved, since the choice λ1 = λ2 = . . . =
1 reduces the estimate to (1), which is sharp (see [8]).

We will be interested in a version of (2) for negative exponents. As proved by
Nikolidakis in [16], for any p � q > 0 and any sequences (an)∞

n=1 , (λn)∞
n=1 of positive

numbers, we have the sharp bound
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This estimate was applied in [16] to obtain some new properties of Muckenhoupt
weights on the positive halfline. We will generalize the inequality to the following.

THEOREM 1. Let p > 0 and let s < q. Then for any sequences (an)∞
n=1 , (λn)∞

n=1
of positive numbers, we have
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The constant
(
1+ 1

p

)q−s
is the best possible.

If s > 0, then (4) follows from (3) (by a simple use of the Hölder inequality), but
for negative s this does not seem to be the case. A standard approximation leads to the
following integral weighted bound.

THEOREM 2. Let p > 0 and let s < q. In addition, suppose that f is a positive
function on [0,∞) and let μ be a measure on [0,∞) . Then we have the sharp estimate

∫ ∞

0

(
−
∫

[0,t]
f dμ

)−p+s

f (t)−sdμ �
(

1+
1
p

)q−s ∫ ∞

0
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)−p+q

f (t)−qdμ , (5)

where −
∫

[0,t]
f dμ =

1
μ([0,t])

∫ t

0
f dμ denotes the weighted average of f on [0, t] .

The above inequalities can be applied in several directions. First, note that by a
limiting argument, the estimate (5) leads to a classical result of Knopp [9]. Namely,
take s = 0, q = p , substitute g = | f |−p and let p → 0 to obtain∫ ∞

0
exp

(
−
∫

[0,t]
lngdμ

)
dμ � e

∫ ∞

0
gdμ .

The constant e is the best possible already in the special case when μ is the Lebesgue
measure [8]. To describe two further applications of (4) and (5), we need more defini-
tions and notation, the details will be presented in later sections of this paper.
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A few words about the proof are in order. Our approach rests on dynamic program-
ming arguments [1] and can be easily modified to yield other inequalities of the above
type. More specifically, we will link the validity of the estimate (4) to a certain special
function which enjoys an appropriate monotonicity-type condition. From this point of
view, the method seems to be related to the so-called Bellman function technique, a
powerful tool used widely in probability and harmonic analysis (see e.g. [2, 15, 17] and
consult the references therein).

The estimate (4) is established in the next section. In Section 3, using (5), we
obtain sharp estimates for d -dimensional Hardy operators. The final part of the paper
is devoted to another application: we obtain estimates for harmonic maximal operators
in the context of probability spaces with tree-like structures.

2. Proof of Theorem 1

For the sake of brevity, we will use the notation Λn = ∑n
k=1 λk and An = ∑n

k=1 λkak

for n = 1, 2, . . . . Given p > 0 and s < q , we are interested in the optimal constant Cp,q,s

in the estimate

∞
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to be valid for any positive numbers a1, a2, . . . and λ1, λ2, . . . . Our starting point is
the introduction of a certain abstract special Bellman function on (0,∞)2 related to the
above estimate. Namely, for a given C > 0, put

BC(a,λ ) = sup

{
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n −C

∞
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}
∈ (−∞,∞].

Here the supremum is taken over all sequences (an)∞
n=1 of positive numbers such that

a1 = a , and all sequences (λn)∞
n=1 of nonnegative numbers, possessing only a finite

number of nonzero terms, such that λ1 = λ . Here the assumption on the vanishing of
almost all terms of (λn)∞

n=1 guarantees that there is no problem with the convergence
of the series under the supremum.

Actually, it will be more convenient to work with a slightly different function

B
0
C(a,λ ) = sup

{
∞

∑
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}
,

where the supremum is taken over the same parameters as previously. The difference in
comparison to BC is that both sums under the supremum start with n = 2, not n = 1.
It is easy to see that the functions BC and B

0
C are linked by the identity

BC(a,λ ) = B
0
C(a,λ )+ λa−p(1−C). (7)

Now the general (and a little informal) philosophy behind the forthcoming argu-
ments is the following. The key fact is a certain ‘self-similarity’ of the inequality (6),
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which translates into an appropriate monotonicity condition for BC . The optimal con-
stant Cp,q,s , by the very definition, is the least C for which the function BC takes values
in the nonpositive halfline (in particular, then BC , and hence also B

0
C , are finite). It is

natural to expect that among all functions BC , corresponding to differrent choices of
C � Cp,q,s , the function BCp,q,s will play a distinguished role; for example, the afore-
mentioned monotonicity condition should degenerate appropriately. This observation,
combined with a homogeneity-type property of BC , will allow us to guess the explicit
formula for the Bellman function. Then we will prove rigorously that the obtained
candidates BC and B0

C coincide with B and B
0 .

For the sake of clarity, we have decided to split the reasoning into six separate
parts.

Step 1. Homogeneity. Fix C > 0. We start with the identities

BC(a,λ ) = λa−p
BC(1,1) and B

0
C(a,λ ) = λa−p

B
0
C(1,1). (8)

In the light of (7), it is enough to prove the first equality. Pick arbitrary sequences
(an)∞

n=1 , (λn)∞
n=1 as in the definition of BC(1,1) . Then (a · an)∞

n=1 and (λ · λn)∞
n=1

have all the properties listed at the definition of BC(a,λ ) , so
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so taking the supremum over all (an)∞
n=1 and (λn)∞

n=1 as above gives

BC(a,λ ) � λa−p
BC(1,1).

The proof of the reverse inequality is similar: one starts with arbitrary sequences
(an)∞

n=1 , (λn)∞
n=1 as in the definition of BC(a,λ ) and considers their scaled versions

(an/a)∞
n=1 and (λn/λ )∞

n=1 .

Step 2. Self-similarity and monotonicity. Pick arbitrary positive numbers a, λ
and two auxiliary parameters a′ , λ ′ satisfying λ ′ > λ and a′ > aλ/λ ′ . Take any
sequences (an)∞

n=1 and (λn)∞
n=1 with a1 = a , a2 = (a′λ ′ −aλ )/(λ ′ −λ ) and λ1 = λ ,

λ2 = λ ′ −λ . Then by the very definition of B
0
C ,

B
0
C(a,λ ) �

∞

∑
n=2

λn

(
An

Λn

)−p+s

a−s
n −C

∞

∑
n=2

λn

(
An

Λn

)−p+q

a−q
n . (9)

Now rewrite the right-hand side as I + II , where
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)−s
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(
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)−q
]
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Set a′1 = a′ , λ ′
1 = λ ′ and a′n = an+1 , λ ′

n = λn+1 for n � 2. Furthermore, let (A′
n)

∞
n=1 ,

(Λ′
n)

∞
n=1 be the sequences of partial sums, built on (a′n)∞

n=1 and (λ ′
n)

∞
n=1 . Then
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∞
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n

(
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n
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n
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(a′n)
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∞
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n

(
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n

Λ′
n

)−p+q

(a′n)
−q,

so taking the supremumover the sequences (a′2,a
′
3, . . .)= (a3,a4, . . .) and (λ ′

2,λ
′
3, . . .)=

(λ3,λ4, . . .) , one gets B
0
C(a′,λ ′) . Note that the expression II does not depend on these

sequences, so (9) yields

B
0
C(a,λ )

� B
0
C

(
a′,λ ′)+(λ ′ −λ )(a′)−p

[(
a′λ ′ −aλ
a′λ ′ −a′λ

)−s

−C

(
a′λ ′ −aλ
a′λ ′ −a′λ

)−q
]

.
(10)

Let us invoke (8), divide both sides by λa−p and substitute u = λ ′/λ > 1, v = a′/a >
λ/λ ′ . As the result, the above inequality becomes

B
0
C(1,1) � B

0
C(1,1)uv−p +(u−1)v−p

[(
uv−1
uv− v

)−s

−C

(
uv−1
uv− v

)−q
]

.

Summarizing, for any C > 0, any u > 1 and any v > u−1 the function B
0
C satisfies

B
0
C(1,1)vp � B

0
C(1,1)u+(u−1)

[(
uv−1
uv− v

)−s

−C

(
uv−1
uv− v

)−q
]

. (11)

Step 3. The guess for the best constant Cp,q,s . Now suppose that the inequality (6)
holds true with some constant C . Then, as we have observed above, the function B

0
C is

finite. Therefore, if we fix u > 1 and let v = u1/p in (11), the terms involving B
0
C(1,1)

cancel out and we obtain

C �
(

uv−1
uv− v

)q−s

=

(
u1+1/p−1

(u−1)u1/p

)q−s

. (12)

Now a direct differentiation shows that the function u �→ (u1+1/p−1)/((u−1)u1/p) is
decreasing on u ∈ (1,∞) . Indeed, the derivative is equal to

u �→ (u−1)−2u−1/p
(
1− (u−1)−1/p− (−1/p)(1−u−1)

)
� 0,

where the latter bound is due to the mean-value property of the convex function t �→
t−1/p , t > 0. Consequently, the estimate (12) is optimized by letting u → 1: as the
result of this passage, we obtain

C �
(

1+
1
p

)q−s

.
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Thus, we have formally proved that the best constant in (6) is at least the right-hand
side above. We conjecture that this expression is actually the optimal constant in (6):

Cp,q,s =
(

1+
1
p

)q−s

. (13)

From now on, we will assume that the constant C is given by the right-hand side above.

Step 4. On the guess for B
0
C(1,1) . Let us exploit (11) with u = 1 + ε and v =

1+κε , where ε is a small positive number and κ >−1 is an arbitrary parameter (note
that v � u−1 , as required in (11)). If the inequality (6) holds true with the constant C ,
then B

0
C(1,1) is finite; hence putting B

0
C(1,1)u on the left, dividing both sides by ε

and letting ε → 0 gives

B
0
C(1,1)(pκ −1) � (1+ κ)−s− (1+ p−1)q−s(1+ κ)−q.

Suppose that pκ > 1, divide throughout by pκ − 1 and let κ → 1/p . After some
simple manipulations, we obtain

B
0
C(1,1) �

(
q− s

p

)(
1+

1
p

)−s−1

.

Again, let us assume that we have equality here. This leads us to the following candi-
dates for the Bellman functions B

0
C and BC :

B0(a,λ ) =
(

q− s
p

)(
1+

1
p

)−s−1

λa−p

and

B(a,λ ) =

[(
q− s

p

)(
1+

1
p

)−s−1

+1−
(

1+
1
p

)q−s
]

λa−p.

Let us make an important comment here. Steps 3 and 4 are informal and their only
purpose was to obtain the lower bound for the best constant and the explicit formulas
for special functions B and B0 , basing on some more or less natural assumptions and
guesses. Formally, these two functions need not coincide with BC and B

0
C , so we

denote them using different letters. We would like to emphasize here that the rigorous
proof of (4) is contained solely in Steps 5 and 6 below, and the reader could just skip
the Steps 1-4 above. However, we believe that these steps are meaningful, since they
indicate how to discover the special functions (which are key to the whole proof, as we
will see).

Step 5. A key inequality. We will prove that the function B0 satisfies the estimate
(11). It reads

(
q− s

p

)(
1+

1
p

)−s−1 vp−u
u−1

�
(

uv−1
uv− v

)−s

−
(

1+
1
p

)q−s(uv−1
uv− v

)−q

. (14)
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By continuity, we may and do assume that v �= 1. Introduce a new variable β = (uv−
v)/(uv−1) ; then β �= 1 and a simple transformation shows that

u =
β − v

(β −1)v
, u−1 =

β (1− v)
(β −1)v

. (15)

This enables us to rewrite the desired bound (14) in the form(
q− s

p

)(
1+

1
p

)−s−1( vp−1
v−1−1

(1−β−1)−1

)
� β s−

(
1+

1
p

)q−s

β q. (16)

Now we will optimize the left-hand side with respect to v . We consider two cases. If
β < 1, then by the second equality in (15) we get v− 1 = v(u− 1)(β−1− 1) > 0, so
v > 1. On the other hand, the function

v �→ vp−1
v−1−1

=
(v−1)−p−1

v−1−1

is negative and decreasing on (0,1)∪ (1,∞) , by the convexity of the function t �→
t−p . Consequently, the left-hand side of (16) is minimized by letting v ↓ 1. A similar,
‘symmetric’ argument shows that if β > 1, then v < 1 and the left-hand side of (16) is
minimized in the limit case v ↑ 1. This limiting estimate is equivalent to(

p+1
p

β
)q+1

−
(

p+1
p

β
)s+1

� (q− s)
(

p+1
p

β −1

)
,

which follows from the mean-value property for the function t �→ ((p+ 1)β/p)t and
the elementary inequality lnx � (x−1)/x . Indeed, there is η ∈ (s,q) such that(

p+1
p

β
)q+1

−
(

p+1
p

β
)s+1

= (q− s)
(

p+1
p

β
)η+1

ln

(
p+1

p
β
)

� (q− s)
(

p+1
p

β
)η+1

·
p+1
p β −1
p+1
p β

� (q− s)
(

p+1
p

β −1

)
,

(for the last passage, consider separately the cases p+1
p β > 1 and p+1

p β < 1).

Step 6. Proof of (4). Fix an arbitrary sequence (an)∞
n=1 of positive numbers and

a sequence (λn)∞
n=1 of nonnegative numbers with λ1 > 0. It is enough to establish (4)

under the following additional assumption on (λn)∞
n=1 : there is a positive integer N

such that λ1, λ2, . . . , λN are strictly positive and λN+1 = λN+2 = . . . = 0.
The inequality (14) implies that B0 satisfies (10), i.e.,

B0(a,λ )−B0(a′,λ ′)
� (λ ′ −λ )(a′)−p

[(
a′λ ′ −aλ
a′λ ′ −a′λ

)−s

−
(

1+
1
p

)q−s( a′λ ′ −aλ
a′λ ′ −a′λ

)−q
]

,
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provided λ ′ > λ and a′λ ′ > aλ . Fix a positive integer k and apply this estimate to
λ = Λk , λ ′ = Λk+1 , a = Ak/Λk and a′ = Ak+1/Λk+1 . We obtain

B0
(

Ak

Λk
,Λk

)
−B0

(
Ak+1

Λk+1
,Λk+1

)

� λk+1

(
Ak+1

Λk+1

)−p
[(

Ak+1

Λk+1

)s

a−s
k+1−

(
1+

1
p

)q−s(Ak+1

Λk+1

)q

a−q
k+1

]
.

Summing over k = 1, 2, . . . , N−1, we get

B0
(

A1

Λ1
,Λ1

)
−B0

(
AN

ΛN
,ΛN

)

�
N−1

∑
k=1

λk+1

(
Ak+1

Λk+1

)−p
[(

Ak+1

Λk+1

)s

a−s
k+1−

(
1+

1
p

)q−s(Ak+1

Λk+1

)q

a−q
k+1

]
.

However, we have B0(AN/ΛN ,ΛN) � 0 and

B0
(

A1

Λ1
,Λ1

)
=
(

q− s
p

)(
1+

1
p

)−s−1

λ1a
−p
1

� −λ1

(
A1

Λ1

)−p+s

a−s
1 +

(
1+

1
p

)q−s

λ1

(
A1

Λ1

)−p+q

a−q
1 .

Indeed, the latter bound is equivalent to

(
q− s

p

)(
1+

1
p

)−s−1

� −1+
(

1+
1
p

)q−s

and follows from (16) which we have already established above (let β → 1 there).
Putting all the facts together, we get

N

∑
k=1

λk

(
Ak

Λk

)−p+s

a−s
k �

(
1+

1
p

)q−s N

∑
k=1

λk

(
Ak

Λk

)−p+q

a−q
k ,

which is the desired claim.

3. Estimates for Hardy operators in R
d

This section contains an application of the estimate (4) in the study of Hardy op-
erator in an arbitrary dimension. We start with the necessary definitions and notation.
For any positive integer d , we define Hardy operator H on R

d , which acts on locally
integrable functions f on R

d by

H f (x) =
1

|B(0, |x|)|
∫

B(0,|x|)
| f (y)|dy, x ∈ R

d \ {0}.
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Here and in what follows, B(x,r) denotes the ball in R
d , of center x and radius r . The

above operator is closely related to Hardy-Littlewood maximal operator M , given by

M f (x) = sup
r>0

1
|B(0,r)|

∫
B(0,r)

| f (x+ y)|dy, x ∈ R
d .

Namely, we have the obvious estimate H f � M f . It is of interest to study the action of
H on Lp spaces. The precise value of the norm ‖H‖Lp→Lp , 1 < p < ∞ , was identified
by Christ and Grafakos [3]: we have ‖H‖Lp→Lp = p/(p− 1) . See also [12, 20] for
related results. We will study the analogues of this statement for negative exponents.

THEOREM 3. Suppose that p > 0 is a fixed exponent.
(i) If s ∈ (−1,0] , then∫

Rd
(H f (x))−p+s f (x)−sdx �

(
1+

1
p

)−s ∫
Rd

(H f (x))−pdx. (17)

(ii) If q � 0 , then∫
Rd

(H f (x))−pdx �
(

1+
1
p

)q ∫
Rd

(H f (x))−p+q f (x)−qdx. (18)

Both estimates are sharp.

In the proof of the above theorem, we will need a simple lemma. Here and in what
follows, wd−1 = 2πd/2/Γ(d/2) is the measure of the unit sphere S

d−1 in R
d .

LEMMA 1. For a locally integrable function f on R
d , let

g f (x) =
1

ωd−1

∫
Sd−1

| f (|x|ξ )|dξ , x ∈ R
d .

Then Hg f = H(| f |) and for any p ∈ R , α ∈ (0,1] ,∫
Rd

(
H f (x)

)p∣∣ f (x)∣∣αdx �
∫

Rd

(
Hg f (x)

)p(
g f (x)

)α
dx.

If α < 0 , then the inequality is reversed.

Proof. The equation Hg f = H(| f |) is the consequence of Fubini’s theorem and
the identity ∫

rSd−1
g f (ξ )dξ =

∫
rSd−1

f (ξ )dξ , r > 0

(which follows at once from the definition of g f ). The second part is due to Jensen’s
inequality and the fact that the function H f is radial: indeed, if q ∈ (0,1) , we have

1
ωd−1rd−1

∫
rSd−1

(
H f (x)

)p∣∣ f (x)∣∣αdx =
(
H f
)p|rSd−1 · 1

ωd−1rd−1

∫
rSd−1

| f |αdx

�
(
Hg f

)p|rSd−1

(
g f
)α |rSd−1

=
1

ωd−1rd−1

∫
rSd−1

(
Hg f (x)

)p(g f (x)
)α

dx.
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For α < 0, the function s �→ sα is convex on (0,∞) and hence the inequality in the
second line is reversed.

Proof of Theorem 3. By the above lemma, we see that we may restrict ourselves to
functions f which are radial and nonnegative. For such a function, we easily compute

H f (x) =
1

|B(0,1)||x|d
∫ |x|

0

∫
Sd−1

f (rξ )rd−1dξdr =
ωd−1

d|B(0,1)||x|d
∫ |x|d

0
f (r1/de1)dr

=
1
|x|d

∫ |x|d

0
f (r1/de1)dr,

where e1 is a fixed vector in S
d−1 . Therefore, passing to polar coordinates again, we

get

∫
Rd

(H f (x))−p+s f (x)−sdx = ωd−1

∫ ∞

0

(
1
ud

∫ ud

0
f (r1/de1)dr

)−p+s

f (ue1)−sud−1du

= |B(0,1)|
∫ ∞

0

(
1
u

∫ u

0
f (r1/de1)dr

)−p+s

f (u1/de1)−sdu.

The same calculation holds for s = 0. Combining these identities with (5) (applied to
the function r �→ f (r1/de1) and to μ equal to Lebesgue’s measure) yields (17). The
estimate (18) is proved analogously, just by replacing s with q .

It remains to show that both (17) and (18) are sharp. Consider the auxiliary pa-
rameter ε > 0, α > d/p and consider the function

f (x) = χB(0,ε)(x)+ |x|α χ
Rd\B(0,ε)(x).

Then H f (x) = 1 for |x| � ε , while for remaining x ∈ R
d we compute, using polar

coordinates, that

H f (x) = |B(0, |x|)|−1
(
|B(0,ε)|+ ωd−1

∫ |x|

ε
rα · rd−1dr

)

=
εd

|x|d +
d

d + α

(
|x|α − εd+α

|x|d
)

.

Consequently, for any s ∈ R we have∫
Rd

(H f )−p+s f (x)−sdx

= |B(0,ε)|+ ωd−1

∫ ∞

ε

(
εd

rd +
d

d + α

(
rα − εd+α

rd

))−p+s

rαs · rd−1dr.

We are ready to show the sharpness of (17). By the above identity, we may write∫
Rd (H f )−p+s f (x)−sdx∫

Rd (H f )−pdx
�

ωd−1
∫ ∞

ε
(

d
d+α rα)−p+s

rαs · rd−1dr

ωd−1
d εd + ωd−1

∫ ∞
ε

(
εd

rd
+ d

d+α rα
)−p · rd−1dr

ε→0−−→
(

d
d + α

)−s
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(the assumption α > d/p makes the integrals in the first line convergent). Taking α
sufficiently close to d/p , we may make the constant

(
d

d+α
)−s

as close to (1+1/p)−s

as we wish. This yields the desired sharpness. The argument for (18) is essentially the
same; we omit the details.

4. Inequalities for harmonic maximal operator

In this part of the paper we will derive some sharp estimates for the maximal
harmonic operator in the general context of probability spaces equipped with tree-like
structures. There is a huge literature devoted to various types of estimates in this setting;
see e.g. [13, 14, 18, 19] and consult the references therein. Let us start with definitions.

DEFINITION 1. Suppose that (X ,μ) is a nonatomic probability space. A set T
of measurable subsets of X will be called a tree if the following conditions are satisfied:

(i) X ∈ T and for every Q ∈ T we have μ(Q) > 0.

(ii) For every Q ∈ T there is a finite subset C(Q) ⊂ T such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q ,

(b) Q =
⋃

C(Q) .

(iii) T =
⋃

n�0 Tn , where T0 = {X} and Tn+1 =
⋃

Q∈Tn
C(Q) .

(iv) We have limn→∞ supQ∈Tn
μ(Q) = 0.

The crucial example the reader should have in mind is the unit cube [0,1)d with
Lebesgue’s measure and the dyadic tree: for any n � 0, the class Tn consists of all
dyadic cubes contained in [0,1)d and having measure 2−nd . We would also like to
mention that instead of trees, one can think about special atomic filtrations of (X ,μ) .
Indeed, setting Fn = σ(Tn) for n = 0, 1, 2, . . . , one obtains an increasing family F0 ⊂
F1 ⊂ F2 ⊂ . . . of σ -algebras of subsets of X , satisfying F0 = { /0,X} and such that
Fn contains only a finite number of elements.

Given (X ,T ,μ) , the associated maximal operator MT is defined an operator
acting on integrable functions (random variables) ϕ : X → R by the formula

MT ϕ(x) = sup

{
−
∫

Q
|ϕ |dμ : x ∈ Q, Q ∈ T

}
.

In the particular dyadic setting described above this is just the classical dyadic maximal
operator. We will be interested in the related object, the so-called harmonic maximal
operator MT on (X ,T ,μ) . This operator is defined by the identity

MT ϕ(x) = sup

{(
−
∫

Q
|ϕ |−1dμ

)−1

: x ∈ Q, Q ∈ T

}
,
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with the convention 1/0 = ∞ and 1/∞ = 0. The joint behavior of M and M is similar
to that of the arithmetic and the harmonic averages

|x1|+ |x2|+ . . .+ |xn|
n

,

( |x1|−1 + |x2|−1 + . . .+ |xn|−1

n

)−1

,

where x1 , x2 , . . . , xn are arbitrary real numbers. In particular, one easily verifies the
pointwise estimate MT ϕ � MT ϕ on X . In a sense, the harmonic maximal operator
controls ϕ on the set where the function is small (while MT controls ϕ where the
function is large). The harmonic maximal operators appeared for the first time in the
works [4, 5, 6] in a slightly different form. They were used to study the fine structure of
Ap weights in [4], further applications to weighted norm inequalities and differentiation
theory can be found in [6].

Our contribution is the following sharp bound.

THEOREM 4. Let (X ,μ) be a probability space with a tree T . For any p, α > 0
and any p-integrable random variable ϕ we have

∫
X
(MT ϕ)α |ϕ |p−αdμ �

(
1+

1
p

)α ∫
X
|ϕ |pdμ . (19)

The inequality is sharp for each individual tree T . In particular, setting α = p, we
obtain ‖MT ‖Lp(μ)→Lp(μ) = (1+1/p)p.

Proof of (19) We split the reasoning into a few steps.

Step 1. Truncation. Pick an arbitrary probability space (X ,μ) equipped with a
tree-like structure T and let N be a fixed nonnegative integer. Let ϕ be a random
variable belonging to Lp . Consider the truncated harmonic maximal function M N

T ϕ ,
given by

M N
T ϕ(x) = max

{(
−
∫

Q
|ϕ |−1dμ

)−1

: x ∈ Q, Q ∈ Tn, n � N

}
.

In other words, when computing M N
T ϕ one proceeds as in the case of the (full) har-

monic maximal operator, but the supremum is taken over sets Q belonging to the first
N +1 generations of T . Obviously, we have M N

T ϕ ↑ MT ϕ almost surely as N → ∞
and therefore, by Lebesgue’s monotone convergence theorem, it is enough to show that

∫
X
(M N

T ϕ)α |ϕ |p−αdμ �
(

1+
1
p

)α ∫
X
|ϕ |pdμ . (20)

By straightforward approximation (and enlarging N if necessary), we may assume that
ϕ is constant on each element of T N .

Step 2. Some special elements of TN . We will show that there exists Q0 ∈ TN

on which M N
T ϕ =

(∫
X |ϕ |−1dμ

)−1
(i.e., on Q0 , the maximum defining the maximal
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operator is attained at the full space X ). Otherwise, the space X could be covered
by a finite number of elements U1 , U2 , . . . , Uk of T such that

(∫
X |ϕ |−1dμ

)−1
<(∫

Uj
|ϕ |−1dμ

)−1
for each j . By the tree structure, we could assume that these sets

are pairwise disjoint: indeed, if Ui∩Uj �= /0 for some i, j , then one of the sets must be
contained in the other and hence can be discarded. This would give

∫
X
|ϕ |−1dμ =

k

∑
j=1

∫
Uj

|ϕ |−1 <
k

∑
j=1

μ(Uj)
∫

X
|ϕ |−1dμ =

∫
X
|ϕ |−1dμ ,

a contradiction. So, the aforementioned extremal set Q0 ∈TN exists; let us record here
the inequality (

−
∫

Q0
|ϕ |−1dμ

)−1

�
∫

X
|ϕ |−1dμ , (21)

which follows from the very definition of the maximal operator.
We will use the above observation inductively: put X0 = X , μ0 = μ , T (0) =

T . Suppose we have successfully constructed X j , μ j , T ( j) and Qj . Consider the
modified space X j+1 = X j \Qj with the probability measure μ j+1 = μ/μ(X j+1) and

the tree structure T ( j+1) such that T
( j+1)

n consists of all elements of the form A\Qj ,

A ∈ T
( j)

n , n � 0. Applying the above reasoning to this new space, we obtain the

existence of Qj+1 ∈ T
( j+1)

N ⊂ TN on which M N
T ( j+1) ϕ =

(∫
X j+1 |ϕ |−1dμ j+1

)−1
. We

continue the procedure until we use all the elements Q0 , Q1 , . . . , QK of TN .

Step 3. Completion of the proof. Directly from the construction in the above step,

(
−
∫

Qj
|ϕ |−1dμ

)−1

�
(∫

X j
|ϕ |−1dμ j

)−1

(22)

(which is due to (21)) and hence in particular

(∫
X j
|ϕ |−1dμ j

)−1

�
(∫

X j+1
|ϕ |−1dμ j+1

)−1

. (23)

Consequently, we see that for x ∈ Qj we have

M N
T ϕ(x) �

(∫
X j

|ϕ |−1dμ j
)−1

. (24)

Indeed, by the very definition of the truncated operator, there is R ∈ T0 ∪T1 ∪ . . .TN

containing x such that M N
T ϕ(x) =

(
−
∫

R
|ϕ |−1dμ

)−1

. Set R+ = R\X j and R− = R∩
X j . Then R+ is a union of some Qk with k < j , so by (22) and (23),

(
−
∫

R+
|ϕ |−1dμ

)−1

�
(∫

X j
|ϕ |−1dμ j

)−1

.
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On the other hand, R− belongs to T 0
( j) ∪T 1

( j) ∪ . . .T N
( j) and contains x , so by the

definition of Qj , (
−
∫

R−
|ϕ |−1dμ j

)−1

�
(∫

X j
|ϕ |−1dμ j

)−1

.

The last two estimates yield (24). Now we apply (4) with q = p and s = p−α , setting
λ j = μ(QK+1− j) and a j = |ϕ |−1

∣∣
QK+1− j (recall that we assumed that ϕ is constant on

each Qk ) for j = 1, 2, . . . , K + 1; for remaining j , we put λ j = 0, a j = 1. Since for
each n � K +1 we have

λ1a1 + λ2a2 + . . .+ λnan

λ1 + λ2 + . . .+ λn
=
∫
−XK+1−n |ϕ |−1dμ ,

the inequality (4) implies

K

∑
j=1

∫
Qj

(
−
∫

X j
|ϕ |−1dμ

)−α
|ϕ |p−αdμ �

(
1+

1
p

)α ∫
X
|ϕ |pdμ .

It remains to apply (24) to get the claim.

Note that in the above reasoning, the property (iv) of the trees was not necessary.
It will, however, be needed in the proof of sharpness of (19).

We will use the following statement which can be found in [13].

LEMMA 2. For every Q∈T and every β ∈ (0,1) there is a subfamily F(Q)⊂T
consisting of pairwise disjoint subsets of Q such that

μ

⎛
⎝ ⋃

R∈F(Q)

R

⎞
⎠= ∑

R∈F(Q)
μ(R) = β μ(Q).

Equipped with the above fact, we are ready to show that the constant (1+1/p)α

is optimal in (19).

Sharpness of (19). Fix an arbitrary probability space (X ,μ) with a tree structure
T . Let ε > 0 be an auxiliary parameter. We split the argumentation into two separate
parts.

Step 1. A special sets. We begin with an inductive use of Lemma 2 to obtain an
increasing family A0 ⊃ A1 ⊃ A2 ⊃ . . . of subsets of X . We start with putting A0 = X .
Suppose that we have constructed the set An and assume additionally that this set can be
expressed as a union of pairwise disjoint elements of T : these elements will be called
the atoms of An . Obviously, such a decomposition holds for n = 0: we have A0 = X ∈
T . For each atom Q of An , we use Lemma 2 with β = ε , obtaining the appropriate
subfamily F(Q) of subsets of Q . Then we set An+1 =

⋃
Q
⋃

Q′∈F(Q) Q
′ , where the first

union is taken over all atoms Q of An . This set has the desired decomposition property:
obviously, it is a union of the family {F(Q) : Q an atom of An} , which consists of
pairwise disjoint elements of T . These elements are the required atoms of An+1 . This
completes the description of the induction step.
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It follows directly from the above construction that if Q is an atom of Am , then
for any n � m we have μ(Q∩An) = μ(Q)εn−m and hence in particular,

μ(Q∩ (An \An+1)) = μ(Q)εn−m(1− ε). (25)

Step 2. The calculation. We take ϕ = ∑∞
n=0 εκnχAn\An+1

, where κ > −1/p is an
auxiliary parameter. Note that ϕ belongs to Lp : indeed, by (25) applied to m = 0 and
Q = X ,

∫
X
|ϕ |pdμ =

∞

∑
n=0

ε pκnμ(An \An+1) = (1− ε)
∞

∑
n=0

ε(1+pκ)n < ∞.

Next, for any m � 0 and any atom Q of Am we have, by (25),

−
∫

Q
|ϕ |−1dμ = ∑

n�m
ε−κn+n−m(1− ε) = ε−κm · 1− ε

1− ε1−κ .

In particular, this implies the estimate MT ϕ � εκm · 1− ε1−κ

1− ε
on Am and hence also

MT ϕ � 1− ε1−κ

1− ε
ϕ on X . Consequently, we see that

∫
X
(MT ϕ)α |ϕ |p−αdμ �

(
1− ε1−κ

1− ε

)α ∫
X
|ϕ |pdμ .

Consequently, the optimal constant in (19) must be at least
(
(1− ε1−κ)/(1− ε)

)α
.

Taking ε sufficiently close to 1 and κ sufficiently close to −1/p , we may make this
constant arbitrarily close to (1+1/p)α . The proof of the sharpness is complete.
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