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ON GENERALIZED LEAST POWER APPROXIMATION

NGUYEN QUANG DIEU AND PHUNG VAN MANH ∗

(Communicated by T. Erdélyi)

Abstract. We study generalized least power approximation corresponding to certain sets of semi-
norms on Banach spaces. As applications, we construct sets of seminorms for trivariate harmonic
polynomials and for Müntz polynomials such that the sequences of the generalized least power
approximations converge uniformly.

1. Introduction

Let K be the real or complex field. Let P(Kd) be the vector space of all poly-
nomials in Kd and Pn(Kd) its subspace consisting of all polynomials of total degree
at most n . Given a compact subset K ⊂ Kd and a bounded function f : K → K we
denote by ‖ f‖K = supx∈K | f (x)| the usual supremum norm on K .

A set A ⊂Kd is said to be determining for the space of functions F , or, for short,
F -determining, if p ∈ F and p|A = 0 force p ≡ 0. Here p|A is restriction of p to A .

Let A be determining for Pn(Kd) and f : A → K . Then according to Calvi and
Levenberg in [12, Theorem 1] there exists a unique polynomial p ∈ Pn(Kd) which
minimizes the quantity

Φ f ,A(q) := ∑
a∈A

|q(a)− f (a)|2, q ∈ Pn(Kd). (1)

The polynomial p is called the discrete least square approximation polynomial. More-
over, in [12] the authors also gave a Lebesgue type inequality which leads to the the-
ory of admissible meshes. They are defined as follows. A sequence of discrete sets
A = {An ⊂ K : n ∈ N∗} is called an admissible mesh for a compact set K ⊂ Kd if there
exist two positive constants c1 and c2 not depending on n such that, for every n � 1
and p ∈ Pn(Kd) ,

‖p‖K � c1‖p‖An and #An � c2n
m,

where #An is the cardinality of An and m ∈ N∗ not depending on n .
For a compact set K , if A = {An ⊂ K : n ∈ N∗} is an admissible mesh, then no

non-zero polynomial in Pn(Kd) vanishes on An . Since dimPn(Rd) =
(n+d

d

) ∼ nd
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as n → ∞ , we must have m � d . When the lower bound is reached, then we get an
optimal meshes. In other words, an admissible mesh A is optimal if #An � c3nd for
some c3 > 0 not depending on n .

In [12] the authors pointed out that admissible meshes are preserved by the opera-
tions of taking unions, product and transformation of sets under affine automorphisms.
These meshes are also stable under small pertubation and analytic transformations, see
[19, 22]. From computational point of views, admissible meshes are very useful. Calvi
and Levenberg showed in [12] that the sequence of discrete least square approximation
polynomials based on admissible meshes approximate sufficiently smooth functions
(resp. holomorphic functions) uniformly, where the compact set admits a Markov in-
equality (resp. the compact set is regular and polynomially convex). Furthermore, in
[8, 9, 11], the authors showed that discrete extremal sets of Fekete and Leja types can be
extracted from admissible meshes. General construction of admissible meshes and op-
timal admissible meshes in compact sets in R

d are recently given by Kroo [14, 15, 16].
In a recent work [23], Piazzon built optimal admissible meshes on two classes of com-
pact set in Rd . Some relative results can be found in [21, 20, 27].

In (1) one can identify p(a) with δa(p) , where δa is the Dirac evaluation func-
tional. This fact suggested Phung, Phan and Mai [24] to generalize the discrete least
square approximation. More precisely, they replaced the δa ’s by continuous linear
functionals on the space of continuous functions C (K) and Pn(Kd) by a finite di-
mensional subspace Q of P(Kd) . Let {ν1, . . . ,νN} be a subset of the dual space Q

′

such that ∩N
j=1 kerν j = {0} and f be a function such that ν j( f ) is well-defined for

j = 1, . . . ,N . The authors showed in [24] that there exist a unique polynomial Q ∈ Q
which minimizes the quantity

Φ̃ f ,A(q) :=
N

∑
j=1

|ν j(q)−ν j( f )|2, q ∈ Q. (2)

The polynomial Q is called the generalized least square approximation polynomial.
Suppose F be a subset of C (K) that contains Q . Let C1 and C2 be two positive
constants such that

‖q‖K � C1 max
1� j�N

|ν j(q)|, ∀q ∈ Q

and
max

1� j�N
|ν j( f )| � C2‖ f‖K , ∀ f ∈ F .

Then Q admits the following Lebesgue type inequality

‖ f −Q‖K �
(
1+2C1C2

√
N

)
distK( f ,Q), (3)

where distK( f ,Q) = inf{‖ f − g‖K : g ∈ Q} . In [24] the authors constructed contin-
uous linear functionals for the spaces of bivariate harmonic polynomials in R2 and
univariate holomorphic polynomials such that the sequence of generalized least square
approximation polynomials of bivariate harmonic functions and univariate holomorphic
functions on the disks converges uniformly. They consist of sets of points and families
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of Radon projections. They also constructed admissible meshes on smooth curves Γ in
Rd with cardinality O(Nn) , Nn = dimPn(Rd)|Γ .

In this note, we further generalize the theory of discrete least square approxima-
tion. The space Pn(Kd) and the Dirac evaluation functionals are replaced by a finite
dimensional Banach space F and seminorms on F . The power 2 is extended to ar-
bitrary powers λ greater than 1. We prove in Theorem 1 that there exists a unique
element which minimizes the some quantity defined by the collection of seminorms
and the powers λ when the seminorms satisfy certain conditions. In Theorem 2 we
give a Lebesgue type inequality which generalizes (3). It establishes a bound for the
error between a continuous function and its generalized least power approximation. We
give two applications of the above-mentioned results. Firstly, we construct functionals
represented in integral forms corresponding to the space of trivariate harmonic polyno-
mials. We prove that the generalized least power approximation by harmonic polyno-
mials of any function f which is harmonic in a neighborhood of the closed unit ball in
R3 converges geometrically to f . Secondly, we consider the Müntz spaces and con-
struct generalized admissible meshes for these spaces. We show in Proposition 9 that
the generalized least power approximations of sufficiently smooth functions converge
uniformly. Note that if the functions are only Lipschitz, then we still have approxima-
tion result when the power λ is large enough. On the other hand, to get similar result
in the least square approximation, the functions must be sufficiently smooth. This is an
advantage of the generalized least power approximation compared with the least square
approximation.

2. Generalized least power approximation

Our main theorem (Theorem 1) is a sharpening of a key result in [24]. The point
is to implement a collection of suitable seminorms and a closed subset H of a finite
dimension space F. We start with the following notion which is an extension of the
notion F -determining.

DEFINITION 1. Let F be a finite dimensional normed space and m be a positive
integer. We say that a collection of seminorms M := {μ1, . . . ,μm} on F is determining
if

f ∈ F, μ1( f ) = · · · = μm( f ) = 0 ⇒ f = 0.

Moreover, a determining set M is called special if, for any e0,e1, . . . ,em ∈ F , all the
functions t �→ μ j(te0 + e j),1 � j � m are constant on [0,1] forces e0 = 0.

In what follows we will present a substantial class of special determining set of
seminorms on a finite dimension vector space F .

PROPOSITION 1. Let M := {μ1, . . . ,μm} be a determining set of seminorms on
F such that μ j := |ν j| , where ν j is a continuous linear functional on F . Then M is
special. We will call such collection M very special.
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Proof. Let {e0,e1, . . . ,em} be vectors in F such that all the functions φ j(t) =
μ j(te0 + e j) , 1 � j � m , are constant on [0,1] . By linearity of ν j , we have

|ν j(te0 + e j)| = |ν j(e0)t + ν j(e j)|, t ∈ [0,1].

It follows that ν j(e0) = 0 for every j = 1, . . . ,m . Since M is a determining set, we
have e0 = 0. �

The next result is somewhat less trivial to show. It gives us examples of special
determining families without being very special.

PROPOSITION 2. Let K be a fat compact subset of Kd , i.e. K = int(K) , and F
be a finite dimensional subspace of C (K) . For a given subset { f1, . . . , fm} of C (K)
we define

μ j( f ) :=
(∫

K

| f (s) f j(s)|2dλ (s)
)1/2

, f ∈ F, 1 � j � m,

where λ is the Lebesgue measure on K . Suppose that f1, . . . , fm do not vanish simul-
taneously at any point of K. Then M := {μ1, . . . ,μm} is a special determining set of
seminorms for F.

Proof. Assume that μ j( f ) = 0 for every j = 1, . . . ,m . Then f (s) f j(s) = 0 for
a.e. s ∈ K , j = 1, . . . ,m . Since the common zero set { f1 = · · · = fm = 0} is empty, it
follows that f (s) = 0 a.e. s ∈ K . The hypothesis that K is fat gives f ≡ 0.

Now we let g0,g1, · · · ,gm ∈ F be such that for 1 � j � m the function

ϕ j(t) :=
(∫

K

|(tg0 +g j) f j|2dλ
)1/2

is constant on [0,1] . It follows that the coefficient of t2 in ϕ2
j (t) vanishes, and hence

μ2
j (g0) =

∫
K
|g0 f j|2dλ = 0, ∀ j = 1, . . . ,m.

Since M is determining we get g0 = 0. The proof is complete. �

THEOREM 1. Let E be a normed space and H be a closed subset of a finite
dimensional subspace of F of E . Let M := {μ1, . . . ,μm} be a collection of contin-
uous seminorms on E which is determining for F. Then for any assigned elements
e1, . . . ,em ∈ F and any set of numbers λ1 > 0, . . . ,λm > 0 there exists an element (pos-
sibly not unique) f ∗ ∈ H such that

Φ( f ) � Φ( f ∗), ∀ f ∈ H,

where

Φ( f ) :=
m

∑
j=1

μ j( f − e j)λ j .



LEAST POWER APPROXIMATION 699

If M is special, λ j > 1 for all j and if H is convex then such an element f ∗ is unique.
Moreover, if M is very special, i.e., M = {|ν1|, . . . , |νm|} where the νi are continuous
linear functionals, then f ∗ depends continuously on (ν1, . . . ,νm,e1, . . . ,em).

Proof. Set μ := max
1� j�m

μ j. Then μ is a norm on F . Thus, since dimF < ∞ there

exists a constant C > 0 such that

μ( f ) � C‖ f‖, ∀ f ∈ F.

Now we choose a sequence { fn} ⊂ H such that

lim
n→∞

Φ( fn) = d := inf
g∈H

Φ(g).

Since λ > 0, it is easy to see that

sup
n�1

μ( fn) < ∞.

Hence { fn} is bounded in the original topology of F (induced by the norm on E ).
Using again the fact that F is finite dimensional we may extract a subsequence fnk →
f ∗. It is then clear that f ∗ ∈ H and so Φ( f ∗) = d, by continuity of μ j.

Now we deal with uniqueness of f ∗ (under some restrictions on μ j and H ). As-
sume for the sake of seeking a contradiction that there exists f̃ ∈H with Φ( f ∗) = Φ( f̃ ).
Define for t ∈ R the function

ϕ(t) :=
m

∑
j=1

μ j( f ∗ + t( f̃ − f ∗)− e j)λ j .

It is easy to see that the function ϕ j(t) := μ j
(
t( f̃ − f ∗)+ ( f ∗ − e j)

)
is convex on R .

Since λ j > 1 we infer that Fj := ϕλ j
j is convex on R as well. Hence ϕ = F1 + · · ·+Fm

is convex on R . Since H is convex we get t( f̃ − f ∗)+ f ∗ ∈ H . It follows that

ϕ(0) = ϕ(1) = d = min
0�t�1

ϕ(t).

Now convexity of ϕ implies that ϕ ≡ d on [0,1]. Therefore each convex function Fj

must be affine on [0,1] . So for t1,t2 ∈ [0,1] we have

ϕ j(t1)λ j + ϕ j(t2)λ j = Fj(t1)+Fj(t2) = 2Fj

( t1 + t2
2

)
= 2ϕ j

( t1 + t2
2

)λ j
� 2

(ϕ j(t1)+ ϕ j(t2)
2

)λ j
.

Here the last inequality follows from convexity of ϕ j. Since λ j > 1, it is elementary to
see that ϕ j(t1) = ϕ j(t2). Hence each ϕ j must be constant on [0,1]. Since the collection
M is special we conclude that f̃ = f ∗.



700 N. QUANG DIEU AND P. VAN MANH

Now, suppose that M is very special, we will prove the continuity of f ∗ with
respect to (ν1, . . . ,νm,e1, . . . ,em). For this, we consider a sequence {(ν1,k, . . . ,νm,k,e1,k,
. . . ,em,k)}k�1 with

ν j,k → ν j ∈ F ′,e j,k → e j ∈ F, ∀1 � j � m.

We can find f ∗ ∈ H, f ∗k ∈ H such that

m

∑
j=1

|ν j( f − e j)|λ j �
m

∑
j=1

|ν j( f ∗ − e j)|λ j , ∀ f ∈ H,

and
m

∑
j=1

|ν j,k( f − e j,k)|λ j �
m

∑
j=1

|ν j,k( f ∗k − e j,k)|λ j , ∀ f ∈ H.

By taking f = 0 and using the same reasoning as in the beginning of the proof, we can
check that { f ∗k } is bounded in F. Thus, it suffices to show that every cluster point of
{ f ∗k } coincides with f ∗ . Without loss of generality we may assume that f ∗k → f̃ ∈ H.
Then, by letting k → ∞ (while keeping f fixed) in the above estimates we obtain

m

∑
j=1

|ν j( f − e j)|λ j �
m

∑
j=1

|ν j( f̃ − e j)|λ j , ∀ f ∈ H.

Here we apply the following easy fact:

gk → g ∈ F ⇒ ν j,k(gk) → ν j(g).

Finally using the uniqueness property of f ∗ we get f̃ = f ∗. So f ∗k → f ∗ , and the proof
is complete. �

Given the datum λ1 = · · · = λm = λ > 1 and e1 = · · · = em = e , we obtain the
following corollary.

COROLLARY 1. Let E be a normed space and H be a closed convex subset of
a finite dimensional subspace of F of E . Let M := {μ1, . . . ,μm} be a collection of
special seminorms on E which is determining for F. Then for any element e ∈ F and
any λ > 1 there exists a unique element in H , denoted by PH(M ;e;λ ) , such that

Φ( f ) � Φ
(
PH(M ;e;λ )

)
, ∀ f ∈ H,

where

Φ( f ) :=
m

∑
j=1

μ j( f − e)λ .

Let K ⊂ Kd be a compact set. Let E,F are normed subspaces of C (K) with F ⊂
E, dimF < ∞. Assume that K is a F -determining. Equivalently, the set {|δa| : a ∈ K}
is determining for F . It is easily check that the map q �→ ‖q‖K := sup

K
|q| defines a
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norm on F . As in the proof of Theorem 1, we see that μ := max
1� j�m

μ j is a norm on F .

Now the hypothesis that F is finite dimensional enable us to find a positive constant C1

such that
‖q‖K � C1μ(q) = max

1� j�m
μ j(q), ∀q ∈ F. (4)

THEOREM 2. Let K ⊂ Kd be a compact set. Let E,F are normed subspaces
of C (K) with F ⊂ E, dimF < ∞. Assume that K is F -determining. Let H be a
closed convex subset of F and μ1, . . . ,μm be a set of special seminorms on E which is
determining for F . Assume that there exists a positive constant C2 such that

max
1� j�m

μ j( f ) � C2‖ f‖K , ∀ f ∈ E. (5)

Then for every λ > 1 and f ∈ E we have the following estimate

‖ f −PH(M ; f ;λ )‖K � (1+2C1C2m
1
λ )distK( f ,H),

where distK( f ,H) = inf{‖ f −g‖K : g ∈ H} and C1 is given in (4).

Proof. Since H is a closed subset of the finite dimensional normed space F , we
may choose h ∈ H such that

‖ f −h‖K = distK( f ,H).

For simplicity of notation we let g := PH(M ; f ;λ ). Then we have Φ(g̃) � Φ(g) for
all g̃ ∈ H, where

Φ(g̃) :=
m

∑
j=1

μ j(g̃− f )λ .

Observe the obvious estimate

‖ f −g‖K � ‖ f −h‖K +‖g−h‖K. (6)

Since g−h∈ F we have
‖g−h‖K � C1μ(g−h). (7)

Note that

μ(g−h) � Φ(g−h)
1
λ = [

m

∑
j=1

μ j(g−h)λ ]
1
λ �

[ m

∑
j=1

(
μ j(g− f )+ μ j( f −h)

)λ ] 1
λ

� [
m

∑
j=1

μ j(h− f )λ ]
1
λ +[

m

∑
j=1

μ j(g− f )λ ]
1
λ � 2[

m

∑
j=1

μ j(h− f )λ ]
1
λ

� 2m
1
λ μ(h− f ) � 2C2m

1
λ ‖ f −h‖K. (8)

Here we use the Minkowski inequality in the fourth relation and the property of g in
the fifth relation. Combining (6), (7) and (8) we get

‖ f −g‖K � (1+2C1C2m
1
λ )‖ f −h‖K.
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This proves our theorem. �
We consider the special case where μ j = |δa j | , a j ∈ K for j = 1, . . . ,m . In such a

case (5) holds for C2 = 1.

COROLLARY 2. Let K ⊂ Kd be a compact set. Let E,F are normed subspaces
of C (K) with F ⊂ E, dimF < ∞. Let {a1, . . . ,am} ⊂ K be F -determining. Then for
every λ > 1 and f ∈ E we have the following estimate

‖ f −PF(M ; f ;λ )‖K � (1+2C1m
1
λ )distK( f ,F),

where M = {|δa j | : j = 1, . . . ,m} and C1 is defined by

‖q‖K � C1 max
1� j�m

|q(a j)|, ∀q ∈ F. (9)

REMARK 1. The estimate in Corollary 2 is slightly different from the estimate in
[12, Theorem 2] in which the authors consider the case λ = 2. In this special case, the
map f �→ PF(M ; f ;2) is a linear projection onto F . This fact may not be true in the
general case. So we must modify the proof of [12, Theorem 2], and hence the extra
factor 2 appears.

3. Some applications

In this section we give two applications of the theory in Section 2. The first one
focuses on the generalized least power approximation corresponding to trivariate har-
monic functions. Here the seminorms are of integral forms over slides of the unit ball.
The second one deals with the Müntz polynomials. We build generalized admissible
meshes such that the generalized least power approximation functions converge uni-
formly. We hope that our results have other applications.

3.1. Special seminorms for trivariate harmonic polynomials

Let S2 be the unit sphere in R3 . For a ∈ S2 and 0 < r � 1, we denote by Δ(a;r)
the disk given by the intersection between the closed unit ball B3 and the hyperplane
{x∈ R3 : 〈a,x〉=

√
1− r2} . For each p ∈ Pn(R3) , the element p|

S2 is called a spher-
ical polynomial. Note that the unique solution of the Dirichlet problem⎧⎪⎨⎪⎩

u ∈ C 2(B3)∩C (B3)
Δu = 0 on B3

u|
S2 = p|

S2

(10)

is a harmonic polynomial of degree at most n in R3 , say u ∈ Hn(R3) (see [1, Theo-
rem 5.1]). Hence, any spherical polynomial can be identified with the restriction of a
harmonic polynomial on S2 . Moreover,

dimHn(R3) = dimPn(S2) = (n+1)2.
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DEFINITION 2. We say that A = {An ⊂ S2 : n ∈ N∗} is an optimal mesh on the
unit sphere S2 if there exist c1,c2 > 0 such that

‖p‖
S2 � c1‖p‖An, #An � c2n

2, ∀n � 1, p ∈ Pn(S2).

We also call A an optimal mesh corresponding to two constants c1,c2 .

Note that optimal meshes on S2 are constructed in [5, 7, 18]. We first investigate
the spacing of optimal meshes.

PROPOSITION 3. Let A = {An ⊂ S2 : n ∈ N∗} be an optimal mesh on the unit
sphere corresponding to two constants c1,c2 . Then, for any b∈ S2 , we can find a ∈ An

such that

‖a−b‖� 3π 3
√

c1

n
.

Proof. To get the precise constant, we repeat the arguments in the proof of [6,
Lemma 1]. Let φ ∈ [0,π ] be the angle between x ∈ S

2 and the point b such that
cosφ = 〈x,b〉 . Note that φ is the geodesic distance between x and b , and hence
φ � ‖x−b‖ . Set m := [n/3] , the integer part of n/3, and define

Q(x) =
2

2m+1

(1
2

+ cosφ + cos2φ + · · ·+ cosmφ
)

=
1

2m+1

sin
(2m+1

2
φ
)

sin
φ
2

.

We can also write

Q(x) =
1

2m+1
U2m

(√
〈x,b〉+1

2

)
,

where U2m is the Chebyshev polynomial of the second kind of degree 2m . It follows
that Q is a polynomial of degree at most m in R3 , and hence P(x) := Q3(x) belongs
to Pn(R3) . Evidently, P(b) = 1 since Q(b) = U2m(1)/(2m+ 1) = 1. Moreover, we
see that

2m+1 = 2
[n
3

]
+1 � n

3
and sin

φ
2

� 2
π
· φ
2

=
φ
π

.

It follows that

|P(x)| = 1
(2m+1)3

∣∣∣∣∣∣∣
sin

(2m+1
2

φ
)

sin
φ
2

∣∣∣∣∣∣∣
3

� 1
n3

27

· 1
φ3

π3

=
27π3

n3φ3 � 27π3

n3‖x−b‖3 .

By definition we can find a ∈ An such that

‖P(a)‖ � 1
c1
‖P‖S2 � 1

c1
|P(b)| = 1

c1
.
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Combining the above estimates we obtain

1
c1

� 27π3

n3‖a−b‖3 .

Hence

‖a−b‖� 3π 3
√

c1

n
.

The proof is complete. �

Note that 2
[n
3

]
+1 � 2n−1

3
. In the following result we add points to an optimal

mesh to get another optimal mesh with smaller distance. It is used in our next results
(e.g. Proposition 5).

PROPOSITION 4. Let A = {An ⊂ S2 : n ∈ N∗} be an optimal mesh on the unit
sphere. Then, for any c3 > 0 , there exists an optimal mesh Â = {Ân ⊂ S2 : n ∈ N∗}
containing A such that, for any b ∈ S , we can find c ∈ Ân satisfying

‖c−b‖� c3

n
.

Proof. Assume that A is an optimal mesh corresponding to c1,c2 . We fix a point
a ∈ An . We claim that there exists a set Ba ⊂ S2 consisting of N distinct points such
that a ∈ Ba and{

x ∈ S
2 : ‖x−a‖� 3π 3

√
c1

n

}
⊂

⋃
c∈Ba

{
x ∈ S

2 : ‖x− c‖� c3

n

}
, (11)

where N depending only on c1 and c3 . Note that the set at the left hand side of (11) is
a spherical cap in which the peak point is a and the circle of the base is

Γ
(
a;

3π 3
√

c1

n

)
:=

{
x ∈ S

2 : ‖x−a‖=
3π 3

√
c1

n

}
.

Obviously, the radius ρa of the circle is smaller than
3π 3

√
c1

n
, see Figure 1. We set

N1 =
[12 3

√
c1π2

c3

]
+1 and consider the set Xa of N1 equidistance points on the circle

Γ
(
a;

3π 3
√

c1

n

)
. Then, for two consecutive points c,d ∈ Xa , we have

‖c−d‖=
2πρa

N1
<

2π 3π 3√c1
n

12 3√c1π2

c3

=
c3

2n
.

Since ‖a− d‖ =
3π 3

√
c1

n
the geodesic curve joining a and any point d ∈ Xa has the

same length, that is

2sin−1 (3π 3
√

c1

2n

)
� 2 · π

2
· 3π 3

√
c1

2n
=

3π2 3
√

c1

2n
.
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a

O

c d

ρa

Figure 1: An illustration of objects in the proof

Hence, if we partition that geodesic curve into N2 equal parts by N2 +1 points forming

the set Za,d , where N2 =
[3 3

√
c1π2

c3

]
+ 1, then the geodesic length between two con-

secutive points in Za,d is less than
c3

2n
. The set Ba :=

⋃
d∈Xa

Za,d contains N = N1N2 +1

points. Geometrically, the set Ba consists of the point a and N1N2 equidistance points
on N2 parallel circles. These N2 circles and N1 geodesic curves (joining a and Xa )

partition the spherical cap
{

x ∈ S
2 : ‖x− a‖ � 3π 3

√
c1

n

}
into finite many spherical

zones. Each point b on the spherical cap must lies in one spherical zone. By the

construction, the length of each curve forming the spherical zone is smaller than
c3

2n
.

Hence the Euclidean distance from b to one vertex of the zone, say a point c ∈ Ba , is

less than
c3

n
. It follows that b ∈

{
x ∈ S2 : ‖x− c‖� c3

n

}
and the claim follows.

Now we set Ân =
⋃

a∈An

Ba . Then

An ⊂ Ân, #Ân � N(#An) � c1Nn2.

Since An ⊂ Ân , we have

‖p‖S2 � c1‖p‖An � c1‖p‖Ân
, ∀p ∈ Pn(S2).

By Proposition 3, for a given point b ∈ S2 , we can find a ∈ An satisfying

‖a−b‖� 3π 3
√

c1

n
. (12)
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Combining (11) and (12) we get

b ∈
⋃

c∈Ba

{
x ∈ S

2 : ‖x− c‖� c3

n

}
.

The last relation shows that there is a point c ∈ Ba ⊂ Ân such that ‖c−b‖ � c3

n
. The

proof is complete. �

PROPOSITION 5. Let A = {An ⊂ S2 : n ∈ N∗} be an optimal mesh on the unit
sphere such that, for any b ∈ S2 , we can find c ∈ An satisfying

‖c−b‖� c3

n
, c3 <

1
2
.

Let 0 < c4 <
1√
2

(1
2
−c3

)
. For each n � 1 and a∈ An , we take ra ∈

(
0,

c4

n

]
arbitrary.

Consider the following set of seminorms

Mn =
{

μa = |νa|,νa ∈ C
′(

B3
)

: νa( f ) =
1

πr2
a

∫
Δ(a;ra)

f (x)dλ2(x), a ∈ An

}
,

where λ2 is the two dimensional Lebesgue measure. Then
(a) #Mn = #An = O(n2);
(b) For any f ∈ C

(
B3

)
we have

‖ f‖
B3 � max

μa∈Mn
μa( f );

(c) There exists C1 > 0 such that

‖p‖
B3 � C1 max

μa∈Mn
μa(p), ∀p ∈ Hn(R3).

Proof. By definition, we can find c1 > 1 such that, for any spherical polynomial
p of degree at most n ,

‖p‖
S2 � c1‖p‖An .

Moreover #An = O(n2) . Hence the first assertion follows. The second one is trivial be-
cause of the mean-value theorem for integration. It remains to prove the third assertion.
We take p ∈ Hn(R3) arbitrarily. By the maximum principle, p attains its maximal

value at a∗ ∈ S2 , i.e., |p(a∗)| = ‖p‖
B3 . We choose a ∈ An such that ‖a∗ − a‖ � c3

n
.

From the mean-value theorem for integration there exists a point y ∈ Δ(a,ra) such that

νa(p) =
1

πr2
a

∫
Δ(a;ra)

p(x)dλ2(x) = p(y).
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Observe that ‖a− y‖ does not exceed the distance from a to the circle ∂Δ(a,ra) . In
other words,

‖a−y‖ �
√

r2
a +

(
1−

√
1− r2

a

)2
=

√
2
(
1−

√
1− r2

a

)
=

√
2ra√

1+
√

1− r2
a

�
√

2ra �
√

2c4

n
.

It follows that

‖a∗−y‖� ‖a∗−a‖+‖a−y‖� c3

n
+

√
2c4

n
=

c3 +
√

2c4

n
. (13)

Next we recall the Markov inequality for trivariate harmonic polynomials in [26]

‖∇p‖
B3 � nγn‖p‖

B3 , (14)

where

γn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(
1− 1

3
+

1
5

+ · · ·+ (−1)n−1

(2n−1)

)
if n is even, n � 4

2
(
1− 1

3
+

1
5

+ · · ·+ (−1)n−1

(2n−1)

)
−1 if n is odd, n � 5

√
2 if n = 2,3

1 if n = 1.

In any case, we see that γn < 2 for n � 1. It follows that

|p(a∗)− p(y)| � ‖∇p‖
B3‖a∗−y‖ � 2n‖p‖

B3‖a∗−y‖

� 2n · c3 +
√

2c4

n
‖p‖

B3 = 2(c3 +
√

2c4)‖p‖
B3 .

Consequently

|p(y)| � |p(a∗)|−2(c3 +
√

2c4)‖p‖
B3 = (1−2c3−2

√
2c4)‖p‖

B3 .

By hypothesis we have 1−2c3−2
√

2c4 > 0. Hence, the following relation

|νa(p)| = |p(y)| � (1−2c3−2
√

2c4)‖p‖
B3

deduces the third assertion. The proof is complete. �
In Proposition 5, we use the Markov inequality (14) for trivariate harmonic poly-

nomials to get a set of very special seminorms Mn such that

�Mn = O(n2) = O
(
dimHn(R3)

)
.

Note that the cardinality of Mn is optimal. The reason why we work with the three
dimensional space is that we do not known whether there is an analogous Markov in-
equality for Hn(Rd) , d � 4. Hence, we can not construct an optimal set of very special
seminorms. Modifying the functionals in the above result, we get three dimensional
Radon projections. Hence we obtain an analogous of [24, Proposition 3.2].
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COROLLARY 3. Under the assumptions of Proposition 5, if 0 < c5 < c4 and

M̃n =
{

μ̃a = |ν̃a| : ν̃a ∈ C
′(

B3
)

: ν̃a( f ) =
∫

Δ(a;ra)

f (x)dλ2(x), a ∈ An,
c5

n
� ra � c4

n

}
,

then
(a) #M̃n = #An = O(n2);
(b) For any f ∈ C

(
B3

)
we have

πc2
4

n2 ‖ f‖
B3 � max

μ̃a∈M̃n

μ̃a( f );

(c) There exists C1 > 0 such that

‖p‖
B3 � C1n2

πc2
5

max
μ̃a∈M̃n

μ̃a(p), ∀p ∈ Hn(R3).

Proof. By definition we see that μ̃a = πr2
aμa . Hence, from Proposition 5(b) we

get

‖ f‖
B3 � max

μa∈Mn
μa( f ) = max

μa∈M̃n

1
πr2

a
μ̃a( f ) � n2

πc2
4

max
μa∈M̃n

μ̃a( f ).

Moreover, for every p ∈ Hn(R3) , applying Proposition 5(c) we obtain

‖p‖
B3 � C1 max

μa∈Mn
μa(p) = C1 max

μ̃a∈M̃n

1
πr2

a
μ̃a(p) � C1n2

πc2
5

max
μ̃a∈M̃n

μ̃a(p).

The proof is complete. �

PROPOSITION 6. Let Mn be sets of functionals defined in Proposition 5. Let
λ > 1 and f be harmonic in a neighborhood of B3 . Then there exists 0 < ρ < 1
such that the generalized least power approximation element PHn(Mn; f ;λ )∈Hn with
Hn := Hn(R3) satisfies the following estimate

limsup
n→∞

(
‖ f −PHn(Mn; f ;λ )‖

B3

) 1
n � ρ .

Proof. Using Theorem 2 and Proposition 5 we get

‖ f −PHn(Mn; f ;λ )‖
B3 �

(
1+2C1O(n

2
λ )

)
dist

B3

(
f ,Hn(R3)

)
Applying the main theorem in [2], there exists ρ ∈ (0,1) such that

limsup
n→∞

(
dist

B3

(
f ,Hn(R3)

)) 1
n � ρ .

Combining the above two relations we obtain the desired estimate. �
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PROPOSITION 7. Let M̃n be sets of functionals defined in Corollary 3. Let λ > 1
and f be harmonic in a neighborhood of B3 . Then there exists 0 < ρ < 1 such that
the generalized least power approximation element PHn(M̃n; f ;λ ) ∈ Hn with Hn :=
Hn(R3) satisfies the following estimate

limsup
n→∞

(
‖ f −PHn(M̃n; f ;λ )‖

B3

) 1
n � ρ .

Proof. Using Theorem 2 and Corollary 3 we get

‖ f −PHn(M̃n; f ;λ )‖
B3 �

(
1+2 · πc2

4

n2 · C1n2

πc2
5

·O(n
2
λ )

)
dist

B3

(
f ,Hn(R3)

)
=

(
1+O(n

2
λ )

)
dist

B3

(
f ,Hn(R3)

)
.

Using the main theorem in [2] again get the desired estimate. �

3.2. Generalized meshes for Müntz polynomials

Let Λ = {λk}∞
k=0 be an increasing sequence of real numbers with λ0 = 0 and set

Πn(Λ) = span
{
xλi : 0 � i � n}.

The Müntz polynomials have many properties compared with the original polynomials.
In particular, they admit Markov type inequalities and the Jackson type properties. For
simplicity of reasoning, we work with the interval [0,1] . The general case is discussed
in Remark 3. The following result can be found in [4]:

THEOREM 3. Let Λ = {λk}∞
k=0 be an increasing sequence of real numbers with

λ0 = 0 and λk � k for every k . Then

‖p′‖[0,1] � 18
( n

∑
k=0

λk
)‖p‖[0,1], ∀p ∈ Πn(Λ).

PROPOSITION 8. Under the assumptions of Theorem 3, there exists a set An ⊂
[0,1] such that #An = O(∑n

k=0 λk) and

‖p‖[0,1] � 2‖p‖An, ∀p ∈ Πn(Λ).

Proof. We take Nn = 2[18(∑n
k=0 λk)]+2 and consider the set

An =
{

xk =
k
Nn

: k = 0,1, . . . ,Nn −1
}
.

For p ∈ Πn(Λ) , we choose a point x∗ such that |p(x∗)| = ‖p‖[0,1] . We see that x∗ ∈
[xk,xk+1] for some 0 � k � Nn−1, and hence |x∗−xk|� 1

Nn
. Using Theorem 3 we get

|p(xk)− p(x∗)| � ‖p′‖[0,1]|xk − x∗| � 18
Nn

(
n

∑
k=0

λk)‖p‖[0,1] �
1
2
‖p‖[0,1].
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It follows that

‖p‖An � |p(xk)| � |p(x∗)|−‖p‖[0,1] =
1
2
‖p‖[0,1].

The proof is complete. �
The Müntz theorem asserts that Π(Λ) :=

⋃∞
n=0 Πn(Λ) is dense in C[0,1] if and

only if
∞

∑
k=1

1
λk

= ∞.

When f is smooth, the Jackson-Müntz theorems gives the estimates for the quantity
dist[0,1]

(
f ,Πn(Λ)

)
. These estimates can be found in [13, 17]. Hence we can find condi-

tions on Λ such that dist[0,1]
(
f ,Πn(Λ)

)
tends to 0 fast enough such that the generalized

least square power approximation functions converge uniformly. Here we only consider
a simple case where λk = δk for k � 0. We recall a theorem of von Golitschek [13].

THEOREM 4. Let f ∈C[0,1] have a continuous derivative f (k) of order k � 0 in
[0,1] and f (k) ∈ Lipα , 0 < α � 1 . Let δ > 0 such that 1/δ /∈ N and let Λ = {λk}∞

k=0
with λk = kδ , k � 0 .
a) If δ � 2 then

dist[0,1]
(
f ,Πn(Λ)

)
= O

(
n−min{(k+α) 2

δ , 2
δ }

)
.

b) If 0 < δ < 2 then

dist[0,1]
(
f ,Πn(Λ)

)
= O

(
n−min{k+α , 2

δ }
)
.

PROPOSITION 9. Let f ∈C[0,1] have a continuous derivative f (k) of order k � 0
in [0,1] and f (k) ∈ Lipα , 0 < α � 1 . Let δ > 1 and let Λ = {λk}∞

k=0 with λk = kδ ,
k � 0 . Let A = {An} be the mesh of points in [0,1] constructed in Proposition 8. Let
λ > 1 and PΠn(An; f ;λ ) ∈ Πn be the generalized least square approximation function
with Πn := Πn(Λ) . Then

‖ f −PΠn(An; f ;λ )‖[0,1] =

{
O

(
n

2
λ −min{(k+α) 2

δ , 2
δ }

)
if δ � 2

O
(
n

2
λ −min{k+α , 2

δ }
)

if 1 < δ < 2.
(15)

Consequently, PΠn(An; f ;λ ) converges to f uniformly on [0,1] if{
2
λ −min{(k+ α) 2

δ , 2
δ }

)
< 0 when δ � 2

2
λ −min{k+ α, 2

δ }
)

< 0 when 1 < δ < 2.

Proof. By construction we have

#An = O
( n

∑
k=0

λk
)

= O
( n

∑
k=0

δk
)

= O(n2).
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Using Corollary 2 we get

‖ f −PΠn(An; f ;λ )‖K � (1+4(#An)
1
λ )dist[0,1]

(
f ,Πn(Λ)

)
= O(n

2
λ )dist[0,1]

(
f ,Πn(Λ)

)
.

Combining the last estimate with Theorem 4, we obtain the estimate in (15). �

REMARK 2. In view of the above proposition we conclude that PΠn(An; f ;λ )
converges to f uniformly on [0,1] when λ is large enough. In particular, if f be-
longs to the class Lipα , 0 < α � 1, then we only need the condition

λ >

{
δ
α when δ � 2
2
α when 1 < δ < 2.

REMARK 3. A referee pointed out to us a paper of Benko, Erdélyi and Szabados
[3], where one finds a sharper version of Theorem 3 without the gap condition. Using
it, we can generalize Proposition 8, where the gap condition on Λ is removed and [0,1]
is replaced by [a,b] . The new and generalized proposition along with an estimate for
the quantity dist[a,b]

(
f ,Πn(Λ)

)
would give a convergent result similar to Proposition 9.

It is known that [−1,1] possesses optimal meshes (see [10], [14, p. 1109]). Using
affine automorphism of R of the form t �→ a+b

2 + b−a
2 t we obtain optimal meshes in

[a,b] .

PROPOSITION 10. Let A = {An ⊂ [a,b] : n ∈ N∗} be an optimal mesh. Let f ∈
C[a,b] have a continuous derivative f (k) of order k � 0 in [a,b] and f (k) ∈ Lipα ,
0 < α � 1 . Let λ > 1 and PPn(An; f ;λ ) ∈ Pn be the least square approximation
polynomial with Pn := Pn(R) . Then

‖ f −PPn(An; f ;λ )‖[a,b] = O
(
n

1
λ −k−α)

.

Proof. By hypothesis we have #An = O(n) and

‖p‖[a,b] � C1‖p‖An, ∀p ∈ Pn(R).

From the Jackson theorem in [25, Theorem 1.5], we have

dist[a,b]
(
f ,Pn(R)

)
= O

( 1
nk+α

)
.

Using Corollary 2 we obtain

‖ f −PPn(An; f ;λ )‖K � (1+2C1(#An)
1
λ )dist[a,b]

(
f ,Pn(R)

)
= O(n

1
λ )O

( 1
nk+α

)
= O

(
n

1
λ −k−α)

.

The desired estimate is proved. �
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COROLLARY 4. Under the assumptions of Proposition 10, PPn(An; f ;λ ) con-

verges to f uniformly on [a,b] when k � 1 or k = 0 , λ >
1
α

.

Open questions.

1. Extend Proposition 5 to the case of arbitrary (finite) dimension.

2. Construct other sets of special seminorms such that the corresponding general-
ized least power approximations converge uniformly.

3. Find the asymptotic behavior f ∗ in Theorem 1 when all continuous linear func-
tionals νi converge to a unique element ν ∈ F ′ . It is analogous to a problem in
polynomial interpolation, where we find the limit of Lagrange interpolation poly-
nomials when the interpolation points coalesce. In general, the limit is a kind of
Hermite interpolation polynomial.
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[17] D. LEVIATAN, On Jackson-Müntz theorem, J. Approx. Theory, 10 (1974), 1–5.
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