CONTINUITY OF GENERALIZED RIESZ POTENTIALS FOR DOUBLE PHASE FUNCTIONALS

Takao Ohno and Tetsu Shimomura

（Communicated by I．Perić）

Abstract

In this note，we are concerned with the continuity of generalized Riesz potentials $I_{\rho, \mu, \tau} f$ of functions in Morrey spaces $L^{\Phi, v, \kappa}(X)$ of double phase functionals over bounded non－ doubling metric measure spaces．

1．Introduction

The double phase functional introduced by Zhikov（［27］）is studied intensively by many mathematichans．Regarding regularity theory of differential equations，Baroni， Colombo and Mingione［1，4，5］studied a double phase functional

$$
\tilde{\Phi}(x, t)=t^{p}+a(x) t^{q}, x \in \mathbf{R}^{N}, t \geqslant 0
$$

where $1 \leqslant p<q, a(\cdot)$ is non－negative，bounded and Hölder continuous of order $\theta \in$ $(0,1]$ ．We refer to［10，26］for Calderón－Zygmund estimates，［12，15］for the Sobolev＇s inequality and e．g．［3，7，8，9］for other double phase problems．

In the present note，relaxing the continuity of $a(\cdot)$ ，we consider the case $\Phi(x, t)$ is a double phase functional given by

$$
\Phi(x, t)=t^{p}+(b(x) t)^{q}
$$

where $1<p<q$ and $b(\cdot)$ is non－negative，bounded and Hölder continuous of order $\theta \in(0,1]$（cf．［4］）．

For $0<\alpha<N$ and a locally integrable function f on \mathbf{R}^{N} the Riesz potential $I_{\alpha} f$ of order α is defined by

$$
I_{\alpha} f(x)=\int_{\mathbf{R}^{N}}|x-y|^{\alpha-N} f(y) d y .
$$

In［13］we discussed the continuity of Riesz potentials $I_{\alpha} f$ of functions in Morrey spaces $L^{\Phi, v}\left(\mathbf{R}^{N}\right)$ of the double phase functionals $\Phi(x, t)$ in the case $\alpha p<v<(\alpha+$

[^0]$\theta) p$ and $(\alpha-1) q<v<\alpha q$. We refer to [15, Section 5] for the L^{Φ} case and [14] for the $L^{p, v}$ case.

In the present note we shall extend [13, Theorem 4.1] from the Euclidean case to a non-doubling metric measure setting. We denote by (X, d, μ) a metric measure space, where X is a bounded set, d is a metric on X and μ is a nonnegative complete Borel regular outer measure on X which is finite in every bounded set. We often write X instead of (X, d, μ). For $x \in X$ and $r>0$, we denote by $B(x, r)$ the open ball in X centered at x with radius r and $d_{X}=\sup \{d(x, y): x, y \in X\}$. We assume that

$$
\mu(\{x\})=0
$$

for $x \in X$ and $0<\mu(B(x, r))<\infty$ for $x \in X$ and $r>0$ for simplicity. We do not assume that μ has a so-called doubling condition. So our results are for non-doubling metric measure spaces. Recall that a Radon measure μ is said to be doubling if there exists a constant $c_{0}>0$ such that $\mu(B(x, 2 r)) \leqslant c_{0} \mu(B(x, r))$ for all $x \in \operatorname{supp}(\mu)(=X)$ and $r>0$ (see [2]). Otherwise μ is said to be non-doubling. For examples of non-doubling metric measure spaces we refer to [19, 22].

To obtain general results, we consider the family (ρ) of all functions ρ satisfying the following conditions: $\rho:(0, \infty) \rightarrow(0, \infty)$ is a measurable function such that

$$
\int_{0}^{r} \rho(s) \frac{d s}{s}<+\infty
$$

for all sufficiently small $r>0$ and there exists constants $0<k<1,0<k_{1}<k_{2}$ and $C_{\rho}>0$ such that

$$
\begin{equation*}
\sup _{k r \leqslant s \leqslant r} \rho(s) \leqslant C_{\rho} \int_{k_{1} r}^{k_{2} r} \rho(s) \frac{d s}{s} \tag{1}
\end{equation*}
$$

for all $r>0$ (e.g. [6,23]). We do not postulate the doubling condition on ρ.
EXAMPLE 1. If ρ satisfies the doubling condition, that is, there exists a constant $C>0$ such that $C^{-1} \leqslant \rho(r) / \rho(s) \leqslant C$ for $1 / 2 \leqslant r / s \leqslant 2$, then ρ satisfies (1) whenever $k=1 / 2$ and $2 k_{1}=k_{2}$. If ρ is increasing, then ρ satisfies (1) with $k=1 / 2, k_{1}=1$ and $k_{2}=2$. If $\alpha>0$ such that

$$
\rho(r)=\left\{\begin{array}{l}
r^{\alpha}(0<r<1) \\
e^{-(r-1)} \quad(r \geqslant 1)
\end{array}\right.
$$

then ρ satisfies (1) with $k=1 / 2, k_{1}=1 / 4$ and $k_{2}=1 / 2$. See also [18, Lemma 2.5], [20, 23] and [25, Remark 2.2].

For a function $\rho \in(\rho)$ and $\tau \geqslant 1$, we define the generalized Riesz potential $I_{\rho, \mu, \tau} f$ of f by

$$
I_{\rho, \mu, \tau} f(x)=\int_{X} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y)))} d \mu(y)
$$

where $f \in L^{1}(X)$. We write $I_{\rho, \mu, \tau} f=I_{\alpha, \mu, \tau} f$ when $\rho(r)=r^{\alpha}$ for $\alpha>0$. If $\rho(r)=r^{\alpha}$, $0<\alpha<N$ and $X=\mathbf{R}^{N}$ with the usual distance and the Lebesgue measure, then $I_{\rho, \mu, \tau} f$ is equal to $I_{\alpha} f$. We refer to [21, 24] etc. for the study of $I_{\rho, \mu, \tau} f$.

Our aim in this note is to discuss the continuity of generalized Riesz potential $I_{\rho, \mu, \tau} f$ of functions f in Morrey spaces $L^{\Phi, v, \kappa}(X)$ of the double phase functionals over bounded non-doubling metric measure spaces X (Theorem 1), as an extension of [13, Theorem 4.1].

2. Statement of the main Theorem

Throughout this paper, let C denote various constants independent of the variables in question.

For $v>0, \kappa \geqslant 1$ and $1 \leqslant p<\infty$, Morrey space $L^{p, v, \kappa}(X)$ is the family of measurable functions f on X satisfying

$$
\|f\|_{L^{p, v, \kappa}(X)}=\left(\sup _{x \in X, 0<r<d_{X}} \frac{r^{v}}{\mu(B(x, \kappa r))} \int_{B(x, r)}|f(y)|^{p} d \mu(y)\right)^{1 / p}<\infty
$$

(cf. see [16]).
We consider a function

$$
\Phi(x, t): X \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions ($\Phi 1$) and ($\Phi 2$):
($\Phi 1$) $\Phi(\cdot, t)$ is measurable on X for each $t \geqslant 0$ and $\Phi(x, \cdot)$ is convex on $[0, \infty)$ for each $x \in X$;
($\Phi 2$) there exists a constant $A_{1} \geqslant 1$ such that

$$
A_{1}^{-1} \leqslant \Phi(x, 1) \leqslant A_{1} \quad \text { for all } x \in X
$$

For $v>0$ and $\kappa \geqslant 1$, the Musielak-Orlicz-Morrey space $L^{\Phi, v, \kappa}(X)$ is defined by

$$
\begin{aligned}
& L^{\Phi, v, \kappa}(X) \\
& =\left\{f \in L_{\mathrm{loc}}^{1}(X): \sup _{x \in X, 0<r<d_{X}} \frac{r^{v}}{\mu(B(x, \kappa r))} \int_{B(x, r)} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d \mu(y)<\infty \text { for some } \lambda>0\right\}
\end{aligned}
$$

It is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi, v, \kappa}(X)}=\inf \left\{\lambda>0: \sup _{x \in X, 0<r<d_{X}} \frac{r^{v}}{\mu(B(x, \kappa r))} \int_{B(x, r)} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d \mu(y) \leqslant 1\right\}
$$

(see [11, 17]).
In what follows, set

$$
\Phi(x, t)=t^{p}+(b(x) t)^{q}
$$

where $1 \leqslant p<q$ and $b(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in(0,1]$ (cf. [4]).

Our result is the following.

Theorem 1. Let $\rho \in(\rho)$. Assume that there are constants $\eta>0, \imath \geqslant 1$ and $C_{0}>0$ such that

$$
\begin{equation*}
\left|\frac{\rho(d(x, y))}{\mu(B(x, \tau d(x, y)))}-\frac{\rho(d(z, y))}{\mu(B(z, \tau d(z, y)))}\right| \leqslant C_{0}\left(\frac{d(x, z)}{d(x, y)}\right)^{\eta} \frac{\rho(d(x, y))}{\mu(B(x, \imath d(x, y)))} \tag{2}
\end{equation*}
$$

whenever $d(x, z) \leqslant d(x, y) / 2$. Abbreviate

$$
\begin{aligned}
\psi(r) \equiv & \int_{0}^{6 k_{2} r} s^{-v / p+\theta} \rho(s) \frac{d s}{s}+\int_{0}^{6 k_{2} r} s^{-v / q} \rho(s) \frac{d s}{s}+r^{\theta} \int_{2 k_{1} r}^{4 k_{2} d_{X}} s^{-v / p} \rho(s) \frac{d s}{s} \\
& +r^{\eta} \int_{2 k_{1} r}^{4 k_{2} d_{X}} s^{-v / p-\eta+\theta} \rho(s) \frac{d s}{s}+r^{\eta} \int_{2 k_{1} r}^{4 k_{2} d_{X}} s^{-v / q-\eta} \rho(s) \frac{d s}{s}
\end{aligned}
$$

for $x \in X$ and $0<r \leqslant d_{X}$, where k_{1} and k_{2} are constants in (ρ). If $1 \leqslant \kappa<\min \{\tau, \tau\}$, then there exists a constant $C>0$ such that

$$
\left|b(x) I_{\rho, \mu, \tau} f(x)-b(z) I_{\rho, \mu, \tau} f(z)\right| \leqslant C \psi(d(x, z))
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{\Phi, v, \kappa_{(X)}}} \leqslant 1$.
When $\rho(r)=r^{\alpha}$, we obtain the following corollary.
Corollary 1. Assume that there are constants $\eta>0, \imath \geqslant 1$ and $C_{0}>0$ such that

$$
\begin{equation*}
\left|\frac{d(x, y)^{\alpha}}{\mu(B(x, \tau d(x, y)))}-\frac{d(z, y)^{\alpha}}{\mu(B(z, \tau d(z, y)))}\right| \leqslant C_{0}\left(\frac{d(x, z)}{d(x, y)}\right)^{\eta} \frac{d(x, y)^{\alpha}}{\mu(B(x, \imath d(x, y)))} \tag{3}
\end{equation*}
$$

whenever $d(x, z) \leqslant d(x, y) / 2$. Suppose

$$
\max \{\alpha p,(\alpha-\eta+\theta) p\}<v<(\alpha+\theta) p
$$

and

$$
(\alpha-\eta) q<v<\alpha q
$$

If $1 \leqslant \kappa<\min \{\tau, \imath\}$, then there exists a constant $C>0$ such that

$$
\left|b(x) I_{\alpha, \mu, \tau} f(x)-b(z) I_{\alpha, \mu, \tau} f(z)\right| \leqslant C\left\{d(x, z)^{\alpha+\theta-v / p}+d(x, z)^{\alpha-v / q}\right\}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{\Phi, v, K_{(X)}}} \leqslant 1$.
Compare this with [13, Theorem 4.1] and [15, Theorem 5].
REmARK 1. Assume that there are constants $\eta>0, \imath \geqslant 1$ and $C_{0}>0$ such that (3) hollds. Suppose

$$
(\alpha-\eta) p<v<\alpha p
$$

If $1 \leqslant \kappa<\min \{\tau, \tau\}$, then there exists a constant $C>0$ such that

$$
\left|I_{\alpha, \mu, \tau} f(x)-I_{\alpha, \mu, \tau} f(z)\right| \leqslant C d(x, z)^{\alpha-v / p}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{p, v, \kappa}(X)} \leqslant 1$. Compare this with [13, Remark 4.2].

REMARK 2. The referee kindly suggested that the case of $\rho: X \times(0, \infty) \rightarrow(0, \infty)$ can be treated to discuss the continuity of more general Riesz potentials. But we do not go into details any more.

3. Proof of Theorem

Before giving a proof of Theorem 1, we prepare the following lemma.
Lemma 1. Let $\beta \in \mathbf{R}$ and $\rho \in(\rho)$. Let f be a nonnegative function on X such that $\|f\|_{L^{p, v, \kappa}(X)} \leqslant 1$. If $1 \leqslant \kappa<\tau$, then there exist constants $C>0$ such that

$$
\begin{equation*}
\int_{B(x, r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \leqslant C \int_{0}^{2 k_{2} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{X \backslash B(x, r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \leqslant C \int_{k_{1} r}^{4 k_{2} d_{X}} s^{-v / p-\beta} \rho(s) \frac{d s}{s} \tag{5}
\end{equation*}
$$

for all $x \in X$ and $0<r \leqslant d_{X}$, where k_{1} and k_{2} are constants in (ρ).
Proof. Let f be a nonnegative function on X such that $\|f\|_{L^{p, v, k}(X)} \leqslant 1$. Take $\gamma \in \mathbf{R}$ such that $1<\gamma \leqslant \min \{\tau / \kappa, 1 / k, 2\}$. If $y \in B\left(x, \gamma^{j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)$ and $j \in \mathbf{Z}$, then a geometric observation and (1) show

$$
\begin{aligned}
\frac{\rho(d(x, y))}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} & \leqslant \frac{\max \left\{1, \gamma^{-\beta}\right\}}{\mu\left(B\left(x, \gamma^{j-1} \tau r\right)\right)\left(\gamma^{j-1} r\right)^{\beta}} \sup _{\gamma^{j-1}}^{r \leqslant s \leqslant \gamma^{j} r} \\
& \leqslant \frac{\max \left\{1, \gamma^{-\beta}\right\}}{\mu\left(B\left(x, \gamma^{j-1} \tau r\right)\right)\left(\gamma^{j-1} r\right)^{\beta}} \sup _{k \gamma^{j} r \leqslant s \leqslant \gamma^{j} r} \rho(s) \\
& \leqslant \frac{C_{\rho} \max \left\{1, \gamma^{-\beta}\right\}}{\mu\left(B\left(x, \gamma^{j-1} \tau r\right)\right)\left(\gamma^{j-1} r\right)^{\beta}} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} \rho(s) \frac{d s}{s}
\end{aligned}
$$

by $\gamma \leqslant 1 / k$. Using $\gamma \leqslant \tau / \kappa$, we obtain

$$
\begin{aligned}
& \int_{B\left(x, \gamma^{j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \\
& \leqslant \frac{C_{\rho} \max \left\{1, \gamma^{-\beta}\right\}}{\left(\gamma^{j-1} r\right)^{\beta}} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} \rho(s) \frac{d s}{s} \cdot \frac{1}{\mu\left(B\left(x, \gamma^{j-1} \tau r\right)\right)} \int_{B\left(x, \gamma^{j} r\right)} f(y) d \mu(y) \\
& \leqslant \frac{C_{\rho} \max \left\{1, \gamma^{-\beta}\right\}}{\left(\gamma^{j-1} r\right)^{\beta}} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} \rho(s) \frac{d s}{s} \cdot \frac{1}{\mu\left(B\left(x, \kappa \gamma^{j} r\right)\right)} \int_{B\left(x, \gamma^{j} r\right)} f(y) d \mu(y)
\end{aligned}
$$

By Hölder's inequality, we have

$$
\begin{aligned}
& \int_{B\left(x, \gamma^{j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \\
& \leqslant \frac{C_{\rho} \max \left\{1, \gamma^{-\beta}\right\}}{\left(\gamma^{j-1} r\right)^{\beta}} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} \rho(s) \frac{d s}{s}\left(\frac{1}{\mu\left(B\left(x, \kappa \gamma^{j} r\right)\right)} \int_{B\left(x, \gamma^{j} r\right)} f(y)^{p} d \mu(y)\right)^{1 / p}
\end{aligned}
$$

$$
\begin{align*}
& \leqslant \frac{C_{\rho} \max \left\{1, \gamma^{-\beta}\right\}}{\left(\gamma^{j-1} r\right)^{\beta}} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} \rho(s) \frac{d s}{s} \cdot\left(\gamma^{j} r\right)^{-v / p} \\
& =C_{\rho} \max \left\{1, \gamma^{\beta}\right\}\left(\gamma^{j} r\right)^{-v / p-\beta} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} \rho(s) \frac{d s}{s} \\
& \leqslant C_{\rho} \max \left\{1, \gamma^{\beta}\right\} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s} . \tag{6}
\end{align*}
$$

Let j_{0} be the smallest integer such that $k_{2} / k_{1} \leqslant \gamma^{j_{0}}$. Using (6), we obtain

$$
\begin{aligned}
& \int_{B(x, r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \\
& =\sum_{j=0}^{\infty} \int_{B\left(x, \gamma^{-j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \\
& \leqslant C_{\rho} \max \left\{1, \gamma^{\beta}\right\} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \sum_{j=0}^{\infty} \int_{\gamma^{-j} k_{1} r}^{\gamma^{-j} k_{2} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s} \\
& \leqslant C_{\rho} \max \left\{1, \gamma^{\beta}\right\} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \sum_{j=0}^{\infty} \int_{\gamma^{-j} k_{1} r}^{\gamma^{-j+j_{0} k_{1} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s}} \\
& \leqslant \max \left\{1,2^{\beta}\right\} C_{\rho} j_{0} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \int_{0}^{2 k_{2} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s}
\end{aligned}
$$

which proves (4).
Let j_{1} be the smallest integer such that $d_{X} \leqslant \gamma^{j_{1}} r$. If we use (6),

$$
\begin{aligned}
& \int_{X \backslash B(x, r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \\
& \leqslant \sum_{j=1}^{j_{1}} \int_{B\left(x, \gamma^{j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{\beta}} d \mu(y) \\
& \leqslant C_{\rho} \max \left\{1, \gamma^{\beta}\right\} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \sum_{j=1}^{j_{1}} \int_{\gamma^{j} k_{1} r}^{\gamma^{j} k_{2} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s} \\
& \leqslant C_{\rho} \max \left\{1, \gamma^{\beta}\right\} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \sum_{j=1}^{j_{1}} \int_{\gamma^{j} k_{1} r}^{\gamma^{j+j_{0}} k_{1} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s} \\
& \leqslant C_{\rho} \max \left\{1, \gamma^{\beta}\right\} j_{0} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \int_{\gamma^{\prime} r}^{2 \gamma^{j} k_{1} r} s^{-v / p-\beta} \rho(s) \frac{d s}{s} \\
& \leqslant \max \left\{1,2^{\beta}\right\} C_{\rho} j_{0} \max \left\{k_{1}^{v / p+\beta}, k_{2}^{v / p+\beta}\right\} \int_{k_{1} r}^{4 k_{2} d_{X}} s^{-v / p-\beta} \rho(s) \frac{d s}{s} .
\end{aligned}
$$

Thus, (5) follows.

Proof of Theorem 1. Let f be a nonnegative function on X such that $\|f\|_{L^{\Phi, v, \kappa(X)}} \leqslant$ 1. First note from (2) that for $x, y \in X$ and $r=d(x, z)$

$$
\begin{aligned}
&\left|b(x) I_{\rho, \mu, \tau} f(x)-b(z) I_{\rho, \mu, \tau} f(z)\right| \\
& \leqslant b(x) \int_{B(x, 2 r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y)))} d \mu(y) \\
&+b(z) \int_{B(x, 2 r)} \frac{\rho(d(z, y)) f(y)}{\mu(B(z, \tau d(z, y)))} d \mu(y) \\
&+|b(x)-b(z)| \int_{X \backslash B(x, 2 r)} \frac{\rho(d(z, y)) f(y)}{\mu(B(z, \tau d(z, y)))} d \mu(y) \\
&+b(x) \int_{X \backslash B(x, 2 r)}\left|\frac{\rho(d(x, y))}{\mu(B(x, \tau d(x, y)))}-\frac{\rho(d(z, y))}{\mu(B(z, \tau d(z, y)))}\right| f(y) d \mu(y) \\
& \leqslant C\left\{b(x) \int_{B(x, 3 r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y)))} d \mu(y)\right. \\
&+b(z) \int_{B(z, 3 r)} \frac{\rho(d(z, y)) f(y)}{\mu(B(z, \tau d(z, y)))} d \mu(y) \\
&+r^{\theta} \int_{X \backslash B(z, 2 r)} \frac{\rho(d(z, y)) f(y)}{\mu(B(z, \tau d(z, y)))} d \mu(y) \\
&\left.+r^{\eta} b(x) \int_{X \backslash B(x, 2 r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, l d(x, y))) d(x, y)^{\eta}} d \mu(y)\right\} \\
&= C\left\{I_{1}(x)+I_{1}(z)+I_{2}(z)+I_{3}(x)\right\} .
\end{aligned}
$$

For $I_{1}(x)$, we have

$$
\begin{aligned}
I_{1}(x) \leqslant & \int_{B(x, 3 r)} \frac{\rho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|b(x)-b(y)| f(y) d \mu(y) \\
& +\int_{B(x, 3 r)} \frac{\rho(d(x, y))}{\mu(B(x, \tau d(x, y)))} b(y) f(y) d \mu(y) \\
\leqslant & C \int_{B(x, 3 r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y))) d(x, y)^{-\theta}} d \mu(y)+\int_{B(x, 3 r)} \frac{\rho(d(x, y))\{b(y) f(y)\}}{\mu(B(x, \tau d(x, y)))} d \mu(y) \\
= & C I_{11}(x)+I_{12}(x) .
\end{aligned}
$$

By (4), we obtain

$$
I_{11}(x) \leqslant C \int_{0}^{6 k_{2} r} s^{-v / p+\theta} \rho(s) \frac{d s}{s}
$$

and

$$
I_{12}(x) \leqslant C \int_{0}^{6 k_{2} r} s^{-v / q} \rho(s) \frac{d s}{s}
$$

For $I_{2}(z)$, we have by (5)

$$
I_{2}(z) \leqslant C r^{\theta} \int_{2 k_{1} r}^{4 k_{2} d_{X}} s^{-v / p} \rho(s) \frac{d s}{s}
$$

Finally, for $I_{3}(x)$ we have

$$
\begin{aligned}
I_{3}(x) \leqslant & r^{\eta} \int_{X \backslash B(x, 2 r)} \frac{\rho(d(x, y))}{\mu(B(x, \imath d(x, y))) d(x, y)^{\eta}}|b(x)-b(y)| f(y) d \mu(y) \\
& +r^{\eta} \int_{X \backslash B(x, 2 r)} \frac{\rho(d(x, y))}{\mu(B(x, \imath d(x, y))) d(x, y)^{\eta}} b(y) f(y) d \mu(y) \\
\leqslant & C r^{\eta} \int_{X \backslash B(x, 2 r)} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \imath d(x, y))) d(x, y)^{-\theta+\eta}} d \mu(y) \\
& +r^{\eta} \int_{X \backslash B(x, 2 r)} \frac{\rho(d(x, y))\{b(y) f(y)\}}{\mu(B(x, \imath d(x, y))) d(x, y)^{\eta}} d \mu(y) \\
= & C I_{31}(x)+I_{32}(x) .
\end{aligned}
$$

Note from (5) that

$$
I_{31}(x) \leqslant C r^{\eta} \int_{2 k_{1} r}^{4 k_{2} d_{X}} s^{-v / p-\eta+\theta} \rho(s) \frac{d s}{s}
$$

and

$$
I_{32}(x) \leqslant C r^{\eta} \int_{2 k_{1} r}^{4 k_{2} d_{X}} s^{-v / q-\eta} \rho(s) \frac{d s}{s}
$$

Collecting these facts, we obtain

$$
\left|b(x) I_{\rho, \mu, \tau} f(x)-b(z) I_{\rho, \mu, \tau} f(z)\right| \leqslant C \psi(r)
$$

Thus this theorem is proved.

Acknowledgements. We would like to express our thanks to the referee for his/her kind comments and suggestions.

REFERENCES

[1] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, paper no. 62, 48 pp.
[2] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zurich, 2011.
[3] S. S. Byun, S. Liang and S. Zheng, Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles, Proc. Amer. Math. Soc. 147 (2019), 3839-3854.
[4] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal. 215 (2015), 443-496.
[5] M. Colombo and G. Mingione, Bounded minimizers of double phase variational integrals, Arch. Rat. Mech. Anal. 218 (2015), 219-273.
[6] Eridani, H. Gunawan, E. Nakai and Y. Sawano, Characterizations for the generalized fractional integral operators on Morrey spaces, Math. Ineq. Appl. 17 (2014), no. 2, 761-777.
[7] C. De Filippis and G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal. 30 (2020), no. 2, 1661-1723.
[8] C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differential Equations 267 (2019), no. 1, 547-586.
[9] P. Harjulehto and P. HÄstö, Boundary regularity under generalized growth conditions, Z. Anal. Anwend. 38 (2019), no. 1, 73-96.
[10] P. HÄstö And J. Ok, Calderón-Zygmund estimates in generalized Orlicz spaces, J. Differential Equations 267 (2019), no. 5, 2792-2823.
[11] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), 76-96.
[12] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequality inequality for double phase functionals with variable exponents, Forum Math. 31 (2019), 517-527.
[13] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Campanato-Morrey spaces for the double phase functionals, Rev. Mat. Complut. 33 (2020), 817-834.
[14] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56, no. 7-9, (2011), 671-695.
[15] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's theorem for double phase functionals, Math. Ineq. Appl. 23 (2020), 17-33.
[16] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[17] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
[18] S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal. 258 (2010), no. 11, 3725-3757.
[19] T. Ohno and T. Shimomura, Sobolev inequalities for Riesz potentials of functions in $L^{p(\cdot)}$ over nondoubling measure spaces, Bull. Aust. Math. Soc. 93 (2016), 128-136.
[20] C. PerÉz, Sharp L^{p}-weighted Sobolev inequalities, Ann. Inst. Fourier (Grenoble) 45 (1995), 809824.
[21] E. Pustylnik, Generalized potential type operators on rearrangement invariant spaces, Israel Math. Conf. Proc. 13 (1999), no. 3, 161-171.
[22] Y. Sawano and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in nondoubling Morrey spaces of variable exponents, Collect. Math. 64 (2013), 313-350.
[23] Y. Sawano and T. Shimomura, Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces, Zeit. Anal. Anwend. 36 (2017), 159-190.
[24] Y. Sawano and T. Shimomura, Generalized fractional integral operators over non-doubling metric measure spaces, Integral Transforms and Special Functions, 28 (2017), 534-546.
[25] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (2012), no. 4, 517-556.
[26] P. Shin, Calderón-Zygmund estimates for general elliptic operators with double phase, Nonlinear Anal. 194 (2020), 111409, 16 pp.
[27] V. V. ZHIKOV, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675-710.
(Received June 2, 2020)

> Takao Ohno
> Faculty of Education
> Oita University
> Dannoharu Oita-city 870-1192, Japan
> e-mail: $\mathrm{t}-\mathrm{ohno@oita-u.ac.jp}$
> Tetsu Shimomura
> Department of Mathematics Graduate School of Humanities and Social Sciences Hiroshima University
> Higashi-Hiroshima $739-8524$, Japan
> e-mail: tshimo@hiroshima-u.ac.jp

[^1]
[^0]: Mathematics subject classification（2020）：31B15，46E35．
 Keywords and phrases：Riesz potentials，Morrey spaces，double phase functionals，continuity，non－ doubling measure．

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

