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APPLICATIONS OF SECTIONS AND HALF VOLUMES IN STABILITY

LUJUN GUO ∗ AND XINJIE ZHANG

(Communicated by M. A. Hernández Cifre)

Abstract. It is well known that one of the applications of spherical harmonics to convexity is to
the so called uniqueness results, and also to stability results. In this paper, we consider sections
and half volumes V (K∩u+) of star body K , where u+ = {x : x∈R

d ,x ·u � 0} . Using spherical
harmonics, we show that the star bodies K,L are identical if they have the same volumes of their
central sections and half volumes and we also prove a stability version of this result.

1. Introduction

Denote by Vi(·) the i-dimensional Lebesgue measure. The following classical
question was posed by Busemann and Petty [8] (motivated by the theory of area in
Minkowski spaces) and has become known as the Busemann-Petty problem.

If K and L are origin-symmetric convex bodies in R
d , and for each (d − 1)-

dimensional subspace H satisfy

Vd−1(K ∩H) < Vd−1(L∩H),

does it follow that
Vd(K) < Vd(L)?

The problem is obviously correct in R
2 . In fact, let K,L be origin-symmetric convex

bodies in R
2 and H any 1-dimensional subspace of R

2 , there is v ∈ S1∩H such that

V1(K ∩H) = 2ρK(v) and V1(L∩H) = 2ρL(v),

where V1(·) is 1-dimension measure. Since V1(K∩H) <V1(L∩H) , we have ρK(v) <
ρL(v) . From the arbitrary of the 1-dimensional subspace H , we have K ⊂ L , thus
V2(K) < V2(L) .

In 1975, a negative answer was given by Larman and Rogers [22] for n � 12.
Subsequently, a series of contributions were made to reduce the dimensions to n � 5
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by a number of authors (Ball [3] for n � 10, Giannopoulos [13] and Bourgain [7] for
n � 7, Papadimitrakis [26], Gardner [9] and Zhang [30] for n � 5).

In 1994, it was proved by Gardner [9] that the problem has a positive answer for
n = 3. In 1999, Zhang [31] proved that every origin-symmetric convex body in R

4 is an
intersection body and the Busemann-Petty problem has a positive solution in R

4 . The
proof of Zhang is based on a geometric argument, similar to that of Gardner [9]. In the
same year, Gardner, Koldobsky and Schlumprecht [12] derived a formula connecting
the derivatives of parallel section functions of an origin-symmetric star body in R

d with
the Fourier transform of powers of radial function of the body and applied it to confirm
that the answer to the Busemann-Petty problem is affirmative for n = 4.

In 2018, G. Giannopoulos and A. Koldobsky [14] proved some interesting in-
equalities estimating the distance between volumes of two convex bodies in terms of
difference between areas of their sections as follows.

Vd(K)
k
d −Vd(L)

k
d � rd−k max

H∈G(d,k)

(
Vk(K ∩H)−Vk(L∩H)

)
,

where K,L are origin-symmetric convex bodies in R
d such that L ⊂ K and G(d,k) is

the Grassmanian of k -dimensional subspace of R
d . Let rd,k be the smallest constant

r in the above equation. The question that whether there exist an absolute constant C
such that rd,k � C was discussed in detail by G. Giannopoulos and A. Koldobsky [14]
and this question in fact is stronger than the slicing problem, a major open problem in
convex geometry (see e.g., [2], [5], [6], [24] for details).

Instead of comparing the volumes between convex bodies, we are more interested
in considering the Hausdorff distance between convex bodies. In this paper, we are
interested in studying the stability and determination of convex bodies as follows.

If K and L are convex bodies containing the origin in R
d , and for each (d−1)-

dimensional subspace H and some 0 < ε < 1 satisfy

|Vd−1(K∩H)−Vd−1(L∩H)| < ε,

does there exist a constant C such that the Hausdorff distance between K and L satis-
fies

δ (K,L) < Cε?

For centrally symmetric star bodies, the above problem is affirmative (see [18] and
[23]). However, without the symmetry assumption, the answer is negative.

Using half-sections, Groemer [18] proved a corresponding stability result for ar-
bitrary star bodies in R

3 and his proof can immediately be extended to arbitrary di-
mensions. Furthermore, Goodey and Weil considered in [15] directed section func-
tions sk(K; ·) , and they showed that sk(K; ·) determines the convex body K uniquely.
Böröczky and Schneider [4] proved that a star body is uniquely determined by the vol-
umes and centroids of its hyperplane sections through origin o and they obtained a
stability result for convex bodies. Some more results on stability and determination of
convex bodies can be found in [16], [19], [20], [21], [28]. In this paper, without the sym-
metry assumption, we show that a star body K is uniquely determined by the volumes of
sections and its half volumes V (K∩u+) , for u∈ Sd−1 and u+ = {x : x ∈ R

d ,x ·u � 0} ,
i.e.,
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THEOREM 1. (Main) Let K and L be two star bodies with respect to the origin
in R

d . If they have the same volumes of their central sections and half volumes, then
K = L.

We also prove a stability version of this result for convex bodies, i.e.,

THEOREM 2. (Main) Let K,L ∈ K d(r,R) , d � 3 . If, for any u ∈ Sd−1 and some
0 � ε � 1 ,

‖V(K ∩u+)−V(L∩u+)‖ � ε and ‖V (K∩u⊥)−V(L∩u⊥)‖ � ε,

then

δ (K,L) � c(d,r,R)ε
4

(d+1)(d+4)

with an explicit constant c(d,r,R) depending only on d,r,R.

2. Notations and preliminaries

For quick later reference we introduce some notations and basic facts about convex
bodies. Good general references for the theory of convex bodies are provided by the
books of Gardner [11] and Schneider [28].

Let R
d denote the Euclidean d -dimensional space with corresponding Euclidean

norm | · | . Let Bd denote the Euclidean ball of radius one in R
d . The set Sd−1 is the

unit sphere of R
d and σ is its spherical Lebesgue measure. For u ∈ Sd−1 , u+ := {x :

x ∈ R
d ,x ·u � 0} and u⊥ := {x : x ∈ R

d ,x ·u = 0} , where x ·u is the scalar product.
A star body K in Euclidean space R

d is a nonempty compact set which is star
shaped with respect to the origin o and has a continuous positive radial function, de-
fined by

ρK(v) := max{λ � 0 : λv ∈ K} (1)

for v ∈ R
d \ {o}.

Let Vd(K) denote the volume of K and S d denote the set of star bodies with re-
spect to the origin in R

d . Write κd for Vd(Bd) the volume of Bd , thus dκd = σ(Sd−1) .
Let S d

c be the set of star bodies which are origin central symmetric.
A convex body K is a compact, convex set with non-empty interiors. Let K d(r,R)

be the set of convex bodies K satisfying rBd ⊂ K ⊂ RBd . Associated with a convex
body K is its support function hK defined, for x ∈ R

d , by

hK(x) := max{x · y : y ∈ K}. (2)

The function hK is positively homogeneous of degree 1. We will usually be concerned
with the restriction of the support function to the unit sphere Sd−1 .

Let K be a convex body with origin o ∈ intK . We define the polar body of K by

Ko := {x ∈ R
d : 〈x,y〉 � 1 f or all y ∈ K}.
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From the definitions (1) and (2), we have

ρK(u) =
1

hKo(u)
(3)

The Hausdorff distance between convex bodies K,L is defined by

δ (K,L) := max{max
x∈K

min
y∈L

|x− y|,max
x∈L

min
y∈K

|x− y|}

or, equivalently, by

δ (K,L) := min{λ � 0|K ⊂ L+ λBd,L ⊂ K + λBd}.
In terms of the support function, the Hausdorff distance between convex bodies K,L
can also be expressed as follows (see e.g., [11] or [28]),

δ (K,L) = max
u∈Sd−1

|hK(u)−hL(u)|. (4)

Let L2(Sd−1) denote the class of all real valued Lebesgue integrable functions f
on Sd−1 with the property that

∫
Sd−1 f 2(u)dσ(u) < ∞. If f ,g ∈ L2(Sd−1) , the inner

product 〈 f ,g〉 is defined by 〈 f ,g〉 =
∫
Sd−1 f (u)g(u)dσ(u). Let ‖ · ‖ denote the norm

derived from this inner product. Let f + and f− denote the functions

f +(u) =
1
2
( f (u)+ f (−u)), f−(u) =

1
2
( f (u)− f (−u)),

respectively. So, f = f + + f− , and f + is an even function and f− is an odd function
on Sd−1 .

3. Determination and stability of convex bodies

In this section we first introduce the following two useful spherical integral trans-
formations used to obtain our results. The study of spherical harmonics has a long
history. Groemer’s book [17] and Müller’s [25] are our standard reference for basics
regarding spherical harmonics. More information about spherical harmonics can also
be found in references [1], [27] and [29].

One is the Radon transformation on Sd−1 denoted by R , e.g., for each bounded
integrable function f on Sd−1 , let R f be the function defined by

R( f )(u) =
∫

Sd−1∩u⊥
f (v)dσ(v), for u ∈ Sd−1.

The other is the following linear integral transformation T of functions on Sd−1 ,

T ( f )(u) =
∫

Sd−1
τ(u · v) f (v)dσ(v), for u ∈ Sd−1, (5)

where f ∈ L2(Sd−1) , τ(x) = 1 for x � 0 and τ(x) = 0 for x < 0. The transformation
(5) is called the hemispherical integral transformation.

Now we introduce the injectivity of the Radon transformation and the hemispher-
ical integral transformation as follows (see, e.g., [17], p. 102 or [25]).
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LEMMA 1. Let f1, f2 be two bounded integrable functions on Sd−1 . Then the
equality R( f1) = R( f2) holds if and only if f+

1 = f +
2 almost everywhere.

LEMMA 2. Let f1, f2 be two continuous functions on Sd−1 . Then the equality
T ( f1) = T ( f2) holds if and only if f−1 = f−2 and 〈 f1,1〉 = 〈 f2,1〉 , where 〈 fi,1〉 =∫
Sd−1 fi(u)dσ(u) , i = 1,2 .

Groemer [17] showed that spherical harmonics enable one not only to prove unique-
ness results, but also to establish stability results. In other words, it is possible to esti-
mate under suitable assumptions the L2 -distance between two functions if the distance
between their spherical integral transforms is known. The following lemma (see, e.g.,
[17], p. 110) shows such estimates and we will use the stability results to prove the
Theorem 2.

In the following lemma, the constant βd is defined by β3 = 2−
3
4 and, for d � 4,

by

βd = (d−1)−
d−2
4 1 ·3 · · · · · (d−3), when d is even

and

βd =
1√
2
(d−1)−

d−2
4 2 ·4 · · · · · (d−3), when d is odd.

Let ∇ denote the gradient. If f is a function whose domain is a subset of R
d that

contains Sd−1 , we write f∧ for the restriction of f to Sd−1 . On the other hand, if f is
defined on Sd−1 , we let f∨ denote the radial extension of f to R

d \ {0} . This means
that f∨(x) = f ( x

|x| ) . Using the above extension procedure one can transfer the gradient

to the operator acting on functions on Sd−1 . We define ∇0 by ∇0 f = (∇ f∨)∧.

LEMMA 3. If f1 and f2 are twice continuously differentiable functions on Sd−1

(d � 3) , then

‖ f +
1 − f +

2 ‖ � gd( f1, f2)‖R( f1)−R( f2)‖ 2
d (6)

with

gd( f1, f2) =
1

(d−1)κd−1

(
2(d−1)2κ2

d−1β
− 4

d−2
d (‖∇0 f1‖2 +‖∇0 f2‖2)

+‖R( f1)−R( f2)‖2
) d−2

2d
. (7)

LEMMA 4. If f1 and f2 are twice continuously differentiable functions on Sd−1

(d � 3) , then

‖ f−1 − f−2 ‖ � qd( f1, f2)‖T ( f1)−T ( f2)‖
2

d+2 (8)

with

qd( f1, f2) =
√

2(
√

2κd−1βd+2)−
2

d+2 (‖∇0 f1‖2 +‖∇0 f2‖2)
d

2(d+2) . (9)
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We are now in the position to prove our main results.

THEOREM 1. Let K and L be two star bodies with respect to the origin in R
d . If

they have the same volumes of their central sections and half volumes, then K = L.

Proof. For u ∈ Sd−1 , V (K ∩u+) can be expressed as follows,

V (K∩u+) =
∫

K
τ(u · x)dx

=
1
d

∫
Sd−1

τ(u · v)ρd
K(v)dσ(v)

=
1
d

T (ρd
K)(u). (10)

In the similar way, we have

V (L∩u+) =
1
d
T (ρd

L )(u). (11)

Since V (K∩u+) =V (L∩u+) , for all u ∈ Sd−1 , from (10), (11) and Lemma 2, we
get

ρd
K(u)−ρd

L(u) = ρd
K(−u)−ρd

L(−u), ∀u ∈ Sd−1. (12)

Since K and L have the same volumes of their central sections, from the polar
coordinate formula of volume, we have

ρd−1
K (u)−ρd−1

L (u) = −(ρd−1
K (−u)−ρd−1

L (−u)), ∀u ∈ Sd−1. (13)

From (12) and (13), we have ρK = ρL . �

REMARK 1. The ideas and techniques of Greomer [18] play a critical role in the
proof of Theorem 1. However, the uniqueness proof of this theorem is not exactly the
same as the uniqueness Theorem given by Greomer in [18]. To prove the uniqueness,
we use the volumes of sections Vd−1(K ∩ u⊥) ((d − 1)-dimensional measure) of the
star body K and its half volumes Vd(K ∩u+) (d -dimensional measure), and Groemer
used the volumes of half-sections Vd−1(K ∩H(u,w)) ((d− 1)-dimensional measure),
where H(u,w) = {x : u⊥, x ·w � 0} , u ∈ Sd−1 and w ∈ Sd−1∩u⊥ .

To prove the stability version of this new uniqueness, we will have to restrict our-
selves to the case of convex bodies. Let K d(r,R) denote the space of convex bodies K
satisfying rBd ⊂ K ⊂ RBd , where 0 < r < R are given numbers. We shall require the
following crude estimate for the gradient of radial function. For the sake of complete-
ness, we include a proof.

LEMMA 5. Let K ∈ K d(r,R) have twice continuously differentiable radial func-
tion and support function. Then, for m > 0 ,

‖∇oρm
K ‖ � mRm+1

√
(d−1)dκd

r
. (14)
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Proof. Using Euler’s relation

d

∑
i=1

xi
∂ f (x)

∂xi
= mf (x),

we have after a straightforward calculation that

Δ f

(
x
|x|

)
= Δ( f (x)|x|−m) = |x|−mΔ f (x)−m(m+d−2) f (x)|x|−m−2, (15)

where f is positively homogeneous of degree m on R
d \ {o} .

Since hK is twice continuously differentiable, for u∈ Sd−1 and m = 1 in (15), we
have

ΔohK(u) = ΔhK(u)− (d−1)hK(u). (16)

From Green’s formula, (16) and the fact in the theory of convex bodies (see, e.g.,
[28]) for twice continuously differentiable hK

Wd−2(K) =
1

d(d−1)

∫
Sd−1

hK(u)ΔhK(u)dσ(u), (17)

it follows that

Wd−2(K) =
1

d(d−1)

∫
Sd−1

hK(u)((d−1)hK(u)+ ΔohK(u))dσ(u)

=
1

d(d−1)

∫
Sd−1

((d−1)hK(u)2−|∇ohK(u)|2)dσ(u)

=
1
d
‖hK‖2− 1

d(d−1)
‖∇ohK‖2 � 0. (18)

From (3), (18) and the facr K ∈ K d(r,R) , we have

‖∇oρm
K ‖ = m‖h−m−1

Ko ∇ohKo‖
= m‖ρm+1

K ∇ohKo‖
� mRm+1‖∇ohKo‖
� mRm+1

√
d−1‖hKo‖

= mRm+1
√

d−1‖ρ−1
K ‖

� mRm+1
√

(d−1)dκd

r
. �

For convenience, we write

V (K,u) := V (K∩u+), for u ∈ Sd−1.

Now we can formulate our stability version of Theorem 1 as follows.



732 L. GUO AND X. ZHANG

THEOREM 2. Let K,L ∈ K d(r,R) , d � 3 . If, for any u ∈ Sd−1 and some 0 �
ε � 1 ,

‖V (K, ·)−V(L, ·)‖ � ε and ‖V (K ∩u⊥)−V(L∩u⊥)‖ � ε,

then
δ (K,L) � c(d,r,R)ε

4
(d+1)(d+4)

with an explicit constant c(d,r,R) depending only on d,r,R.

Proof. We assume that the assumptions are satisfied and that K and L have twice
continuously differentiable radial functions. If the theorem is proved under this as-
sumption, then the general case follows by approximation.

Since

V (K,u) =
1
d

T (ρd
K)(u), V (L,u) =

1
d
T (ρd

L )(u),

we have

‖T (ρd
K)−T (ρd

L )‖ � d‖V(K, ·)−V(L, ·)‖ � dε. (19)

Hence Lamma 4 together with (19) gives

‖(ρd
K)−− (ρd

L )−‖2 � qd(ρd
K ,ρd

L )2‖T (ρd
K)−T (ρd

L )‖ 4
d+2

� qd(ρd
K ,ρd

L )2(dε)
4

d+2 =: c1. (20)

Since K,L ∈ K d(r,R) , we have ρK(v),ρL(v) � r > 0 for v ∈ Sd−1 , hence

γm :=
m−1

∑
i=0

ρ i
Kρm−1−i

L � mrm on Sd−1.

Putting α(v) := ρd
K(−v)−ρd

L (−v)
γd(v) , from (20), we have

∫
Sd−1

|ρK(v)−ρL(v)−α(v)|2dσ(v)

=
∫

Sd−1
|ρ

d
K(v)−ρd

L(v)− (
ρd

K(−v)−ρd
L(−v)

)
γd(v)

|2dσ(v)

� 4
(drd)2 ‖

(
ρd

K(·))−− (
ρd

L (·))−‖2 � 4c1

(drd)2 (21)

In the similar way, we have

‖R(ρd−1
K )−R(ρd−1

L )‖2 = (d−1)2‖V(K ∩u⊥)−V(L∩u⊥)‖2 � (d−1)2ε2, (22)

and Lamma 3 together with (22) gives

‖(ρd−1
K )+ − (ρd−1

L )+‖2 � gd(ρd−1
K ,ρd−1

L )2‖R(ρd−1
K )−R(ρd−1

L )‖ 2
d−1

= gd(ρd−1
K ,ρd−1

L )2((d−1)ε)
4

d−1 =: c2. (23)
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Putting β (v) := ρd−1
K (−v)−ρd−1

L (−v)
γd−1(v)

, from (23), we have

∫
Sd−1

|ρK(v)−ρL(v)+ β (v)|2dσ(v)

=
∫

Sd−1
|ρ

d−1
K (v)−ρd−1

L (v)+
(
ρd−1

K (−v)−ρd−1
L (−v)

)
γd−1(v)

|2dσ(v)

� 4
((d−1)rd−1)2 ‖

(
ρd−1

K (·))+− (
ρd−1

L (·))+‖2 � 4c2

((d−1)rd−1)2 (24)

Let
S− := {v ∈ Sd−1|(ρK(v)−ρL(v)

)
α(v) � 0},

and
S+ := {v ∈ Sd−1|(ρK(v)−ρL(v)

)
β (v) � 0}.

Then we get ∫
S−

|ρK(v)−ρL(v)|2dσ(v)

�
∫

S−
|ρK(v)−ρL(v)−α(v)|2dσ(v)

� 4c1

(drd)2 � 4c1

((d−1)rd−1)2 (25)

and ∫
S+

|ρK(v)−ρL(v)|2dσ(v)

�
∫

S+
|ρK(v)−ρL(v)+ β (v)|2dσ(v)

� 4c2

((d−1)rd−1)2 . (26)

Since S+∪S− = Sd−1 , it follows that∫
Sd−1

|ρK(v)−ρL(v)|2dσ(v)

�
∫

S−
|ρK(v)−ρL(v)|2dσ(v)+

∫
S+

|ρK(v)−ρL(v)|2dσ(v)

� 4
((d−1)rd−1)2 (c1 + c2). (27)

From (20), (9) and Lemma 5, we have

c1 = qd(ρd
K ,ρd

L )2(dε)
4

d+2

= 2(
√

2κd−1βd+2)−
4

d+2 (‖∇0ρd
K‖2 +‖∇0ρd

L‖2)
d

(d+2) (dε)
4

d+2

� 2(
√

2κd−1βd+2)−
4

d+2 2(d
√

(d−1)dκd
Rd+1

r
)

2d
(d+2) (dε)

4
d+2 . (28)
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Similarly, from (23), (7) and Lemma 5, we have

c2 = pd(ρd+1
K ,ρd+1

L )2
(
(d +1)Rdκd

√
dκd

) 4
d+4 ε

4
d+4

=
1

(2κd−1)2

(
8κ2

d−1

(
(d−1)βd

)− 4
d+2 (‖∇0ρd+1

K ‖2 +‖∇0ρd+1
L ‖2)

+‖C (ρd+1
K )−C (ρd+1

L )‖2
) d+2

d+4
(
(d +1)Rdκd

√
dκd

) 4
d+4 ε

4
d+4

� 1
(2κd−1)2

(
16κ2

d−1

(
(d−1)βd

)− 4
d+2 ((d +1)

√
(d−1)dκd

Rd+2

r
)2 +1

) d+2
d+4

·
(
(d +1)Rdκd

√
dκd

) 4
d+4 ε

4
d+4 . (29)

Since 0 � ε � 1, then an explicit constant c1(d,r,R) depending only on d,r,R in
the theorem can be read off from (27), (28) and (29), i.e.,

‖ρK −ρL‖2 =
∫

Sd−1
|ρK(v)−ρL(v)|2dσ(v) � c1(d,r,R)ε

4
d+4 . (30)

For convex bodies K,L ∈ K d(r,R) , the Hausdorff distance δ (K,L) can be estimated
in terms of the radial L2 -metric by

δ (K,L) � cdR
2r−

d+3
d+1 ‖ρK −ρL‖ 2

d+1 (31)

with an explicit constant cd depending only on the dimension d (see Groemer [17],
Lemma 2.3.2).

The conclusion can be obtained from (30) and (31).
In general case, the result follows by approximation (see, e.g., [28], p. 157). �

REMARK 2. The convexity in Theorem 2 is necessary. When K is a convex body
containing the origin, we have

ρK(u) = hKo(u)−1, for all u ∈ Sd−1. (32)

The estimate in Lemma 5, inside the proof of Theorem 2, depends on the differentia-
bility of the support function hKo and the relation (32) (see [17], p. 234, for reference).
However, the equation (32) does not hold in the case that K is not convex.

REMARK 3. In [18], the stability and determination of convex bodies were ob-
tained from the uniqueness results and estimates of the new spherical integral transfor-
mation B defined as follows.

B f (u,w) =
∫

Sd−1∩H(u,w)
f (v)dσ(v)
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where f is a continuous function on Sd−1 , H(u,w) = {x : x ∈ u⊥, x ·w � 0} , u ∈ Sd−1

and w ∈ Sd−1 ∩ u⊥ . The transformation B can be express in terms of hemispherical
transformation Td−2 (on (d−2)-dimensional unit sphere Sd−1∩u⊥ ),i.e.

B f (u,w) =
∫

Sd−1∩u⊥
τ(v ·w) f (v)dσ(v) =: (Td−2 f )(w)

where w ∈ Sd−1 ∩ u⊥ . In our paper, Theorem 1 and Theorem 2 are proved by us-
ing spherical Radon transformation R (on (d−1)-dimensional unit sphere Sd−1 ) and
hemispherical transformation T (on (d−1)-dimensional unit sphere Sd−1 and differ-
ent from Td−2 in [18]) together. Hence, our results do not follow from the results of
Greomer.

REMARK 4. In Theorem 2, we estimate the distance between convex bodies by
Hausdorff distance different from that of [14] in which G. Giannopoulos and A. Koldob-
sky proved some inequalities estimating the distance between volumes of two convex
bodies.
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