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Abstract. In this paper, we show estimates of the upper boundary for the ratio between n -
variable operator power means Pt(ω ;A) due to Lawson-Lim-Pálfia by terms of a generalized
condition number in the sense of Turing, which are partial improvements of the known results:
Let A = (A1, . . . ,An) be a n -tuple of positive invertible operators such that mI � Aj � MI for
j = 1, . . . ,n and h = M/m , and ω a weight vector. Then

Pt(ω ;A) �
(

ht +h−t

2

)1/t

GK(ω ;A)

for all t ∈ (0,1] , where GK(ω ;A) is the Karcher mean.

1. Introduction

Let B(H ) be the space of all bounded linear operators on a Hilbert space H , and
I stands for the identity operator on H . An operator A in B(H ) is said to be positive
(in symbol: A � 0) if 〈Ax,x〉 � 0 for all x ∈ H . In particular, A > 0 means that A
is positive and invertible. Let P(H ) be the open convex cone of all positive invertible
operators. For selfadjoint operators A and B , the order relation A � B means that A−B
is positive. The condition number h = h(A) of an invertible operator A is defined by
h(A) = ||A|| ∣∣∣∣A−1

∣∣∣∣ in [7]. If a positive invertible operator A satisfies the condition
mI � A � MI for some scalars 0 < m < M , then it may be thought as M = ||A|| and

m =
∣∣∣∣A−1

∣∣∣∣−1
, so that h = h(A) = M/m and we call it a generalized condition number

of A .
In this paper, we study estimates of the upper boundary for the ratio between n -

variable operator power means by terms of a generalized condition number. For this,
we recall the notion of the Karcher mean and operator power means due to Lawson-
Lim-Pálfia [3, 4], which are n -variable extensions of the operator geometric mean and
2-variable operator power means, respectively: Let A = (A1, . . . ,An) be a n -tuple of
positive invertible operators on a Hilbert space and ω = (ω1, . . . ,ωn) a weight vector
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such that ω j � 0 for all j = 1, . . . ,n and ∑n
j=1 ω j = 1. The Karcher mean of A1, . . . ,An

is the unique positive invertible solution of the Karcher equation

n

∑
j=1

ω j log(X−1/2AjX
−1/2) = 0

and we denote it by GK(ω ;A) . For each t ∈ (0,1] , the operator power mean of
A1, . . . ,An is the unique positive invertible solution of a non-linear operator equation

X =
n

∑
j=1

ω j(X �t A j)

and we denote it by Pt(ω ;A) , where the operator geometric mean of positive invertible
operators A and B is defined by

A �t B = A1/2(A−1/2BA−1/2)tA1/2 for t ∈ [0,1] .

For t ∈ [−1,0) , we define Pt(ω ;A) = P−t(ω ;A−1)−1 , where A
−1 = (A−1

1 , . . . ,A−1
n ) .

Note that the Karcher mean coincides with the strong operator limit of operator power
means as t → 0, and in the case of t = 1 and t = −1, we have

P1(ω ;A) =
n

∑
j=1

ω jA j and P−1(ω ;A) =

(
n

∑
j=1

ω jA
−1
j

)−1

and the operator power means Pt(ω ;A) have a monotone increasing property for −1 <
t < 1;

−1 < t � s < 1 =⇒ Pt(ω ;A) � Ps(ω ;A).

In particular, we have the following inequalities:(
n

∑
j=1

ω jA
−1
j

)−1

� Ps(ω ;A) � GK(ω ;A) � Pt(ω ;A) �
n

∑
j=1

ω jA j

for all −1 � s < 0 < t � 1. Thus, the operator power means Pt(ω ;A) of order t ∈
[−1,1]\{0} is a path from the arithmetic mean ∑n

j=1 ω jA j to the harmonic mean(
∑n

j=1 ω jA−1
j

)−1
via the Karcher mean GK(ω ;A) .

If Aj mutually commute for j = 1, . . . ,n , then it follows that

Pt(ω ;A) =

(
n

∑
j=1

ω jA
t
j

)1/t

,

and in the case of n = 2, Pt((1−α,α);A,B) coincides with 2-variable operator power
means A mt,α B defined by

A mt,α B = A1/2
(
(1−α)I + α(A−1/2BA−1/2)t

)1/t
A1/2
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for all t ∈ [−1,1] and α ∈ [0,1] . For each α ∈ [0,1] , A mt,α B (t ∈ [−1,1]) is a
path from the arithmetic mean A ∇α B to the harmonic mean A !α B via the operator
geometric mean A �α B . Moreover, the upper boundary for the ratio between mt,α is
known in [2, Chapter 5]. Thus, it is natural to consider a reverse relation between the
n -variable operator power means. However, the reverse relationship has not been well
studied in the case of n -variable operator power means. In present, we know only the
following result: For positive invertible operators A1, . . . ,An such as mI � Aj � MI for
all j = 1, . . . ,n and h = M/m ,

n

∑
j=1

ω jA j � (h+1)2

4h

(
n

∑
j=1

ω jA
−1
j

)−1

. (1.1)

The constant (h+1)2
4h is called the Kantorovich constant. Then it follows from (1.1) that

Ps(ω ;A) � (h+1)2

4h
Pt(ω ;A) (1.2)

for all −1 < t < s < 1. In particular, if we put s = 1 and t → 0 in (1.2), then we have
the ratio type reverse inequality of the n -variable arithmetic-geometric mean one:

n

∑
j=1

ω jA j � (h+1)2

4h
GK(ω ;A), (1.3)

also see [1]. Though that’s a rough estimate, we do not know better estimates than (1.3).
In this paper, we show estimates of the upper boundary for the ratio between n -

variable operator power means by terms of a generalized condition number in the sense
of Turing, which are partial improvements of the result (1.2).

2. Results

We are in a position to show the main theorem:

THEOREM 1. Let A = (A1, . . . ,An) be a n-tuple of positive invertible operators
such that mI � Aj � MI for all j = 1, . . . ,n and some scalars 0 < m < M, and ω =
(ω1, . . . ,ωn) a weight vector. Put a generalized condition number h = M/m(> 1) .
Then for 0 < t < s < 1

Ps(ω ;A) �
(

hs−h−s +ht−s−hs−t

ht −h−t

)1/s

Pt(ω ;A). (2.1)

In particular, as t → 0 ,

Ps(ω ;A) �
(

hs +h−s

2

)1/s

GK(ω ;A) (2.2)
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for all 0 < s < 1 . Moreover, there exists s0 ∈ (0,1) such that

Ps(ω ;A) �
(

hs +h−s

2

)1/s

GK(ω ;A) � (h+1)2

4h
GK(ω ;A) (2.3)

for all 0 < s < s0 .

Proof. For s∈ (0,1] , let f : P(H )→P(H ) defined by f (X) = ∑n
j=1 ω j(X�s A j) .

Then by the Löwner-Heinz inequality, f is monotone: X � Y implies f (X) � f (Y ) .
Since f is a strict contraction for the Thompson metric, it follows from the Banach
fixed point theorem that Ps(ω ;A) = limk→∞ f k(X) for any X ∈ P(H ) . Since s/t > 1
and y = xs/t is convex, it follows that the inequality xs/t � hs−h−s

ht−h−t (x−ht)+hs holds on

[h−t ,ht ] . Hence h−t � (X−1/2AjX−1/2)t � ht for 0 < t < 1 implies

X �s A j = X1/2
[
(X−1/2AjX

−1/2)t
]s/t

X1/2

� X1/2
[
hs−h−s

ht −h−t ((X
−1/2AjX

−1/2)t −ht)+hs
]
X1/2

=
ht−s−hs−t

ht −h−t X +
hs−h−s

ht −h−t X�tA j.

Therefore we have

f (X) =
n

∑
j=1

ω j(X�s A j)

�
n

∑
j=1

ω j

[
ht−s −hs−t

ht −h−t X +
hs−h−s

ht −h−t X�tA j

]

=
ht−s−hs−t

ht −h−t X +
hs−h−s

ht −h−t

n

∑
j=1

ω j(X�tA j).

If we put X0 = Pt(ω ;A) , then we have

f (X0) � ht−s−hs−t

ht −h−t X0 +
hs−h−s

ht −h−t

n

∑
j=1

ω j(X0�tA j)

=
ht−s−hs−t

ht −h−t X0 +
hs−h−s

ht −h−t X0

=
ht−s−hs−t +hs−h−s

ht −h−t X0.

If we put h0 = ht−s−hs−t+hs−h−s

ht−h−t , then we have

f 2(X0) � f (h0X0) = h1−s
0 f (X0) � h(1−s)+1

0 X0
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and inductively we have

f k(X0) � h
1−(1−s)k
1−(1−s)

0 X0.

As k → ∞ , we have the desired inequality (2.1):

Ps(ω ;A) � h1/s
0 Pt(ω ;A) for 0 < t < s < 1 .

Since limt→0 h1/s
0 =

(
hs+h−s

2

)1/s
, we have the desired inequality (2.2).

Since g(s)=
(

hs+h−s

2

)1/s
is increasing on [0,1] and g(0)= 1, and g(1)= h+h−1

2 �
(h+1)2

4h , it follows that there exists s0 ∈ (0,1) such that

(
hs +h−s

2

)1/s

� (h+1)2

4h

for all 0 < s < s0 , and we have the desired inequality (2.3). �

REMARK 1. If we put t = s in Theorem1, then

(
hs−h−s +ht−s−hs−t

ht −h−t

)1/s

= 1.

In the case of n = 2, Tominaga [6] showed the following Specht type inequality,
which is regarded as a ratio type reverse inequality of the arithmetic-geometric mean
inequality:

(A �α B �) (1−α)A+ αB � S(h)A �α B for α ∈ [0,1] ,

where the Specht ratio S(h) in [5] is defined by

S(h) =
(h−1)h

1
h−1

e logh
(h �= 1) and S(1) = 1.

We would expect that the n -variable Specht type inequality

n

∑
j=1

ω jA j � S(h)GK(ω ;A) (2.4)

holds. However, we do not know whether the inequality (2.4) holds or not. We know

only the inequality (1.3) though S(h) � (h+1)2
4h for h � 1.

If we put s = 1 and t → 0 in (2.1) of Theorem 1, then we have an n -variable
Specht type inequality

n

∑
j=1

ω jA j � h+h−1

2
GK(ω ;A). (2.5)

Unfortunately, since h+h−1

2 > (h+1)2
4h , the inequality (2.5) is not better than (1.3). By

Theorem 1, we obtain a partial improvement (2.3) of the inequality (1.2) as in the proof
of (2.3).
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Since Pt(ω ;A) = P−t(ω ;A−1)−1 for −1 < t < 0, we have the negative order ver-
sion of Theorem 1:

THEOREM 2. Let A = (A1, . . . ,An) be a n-tuple of positive invertible operators
such that mI � Aj � MI for all j = 1, . . . ,n and some scalars 0 < m < M, and ω =
(ω1, . . . ,ωn) a weight vector. Put h = M/m. Then for −1 < t < s < 0

Ps(ω ;A) �
(

ht −h−t +hs−t −ht−s

hs−h−s

)−1/t

Pt(ω ;A). (2.6)

In particular, as s → 0 ,

GK(ω ;A) �
(

ht +h−t

2

)−1/t

Pt(ω ;A) (2.7)

for all −1 < t < 0 . Moreover, there exists t0 ∈ (−1,0) such that

GK(ω ;A) �
(

ht +h−t

2

)−1/t

Pt(ω ;A) � (h+1)2

4h
Pt(ω ;A) (2.8)

for all −1 < t0 < t < 0 .

Proof. For −1 < t < s < 0, we put t ′ =−s and s′ =−t . Since 0 < t ′ < s′ < 1 and
M−1I � A−1

j � m−1I for j = 1, . . . ,n , it follows from a generalized condition number
m−1

M−1 = M
m = h and Theorem 1 that

Ps′(ω ;A−1) �
(

hs′ −h−s′ +ht′−s′ −hs′−t′

ht′ −h−t′

)1/s′

Pt′(ω ;A−1).

By taking the inverse of the both sides, we have

P−t(ω ;A−1)−1 �
(

h−t −ht +h−s+t −h−t+s

h−s−hs

)1/t

P−s(ω ;A−1)−1

and hence we have the desired inequality (2.6). Similarly, as s→ 0 we have the desired

inequality (2.7). Since g(t) =
(

ht+h−t

2

)−1/t
is decreasing on [−1,0] and g(0) = 1, and

g(−1) = h+h−1

2 � (h+1)2
4h , there exists t0 ∈ (−1,0) such that

GK(ω ;A) �
(

ht +h−t

2

)−1/t

Pt(ω ;A) � (h+1)2

4h
Pt(ω ;A)

for all −1 < t0 < t < 0. Hence we have the desired inequality (2.8). �
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COROLLARY 1. Let A = (A1, . . . ,An) be a n-tuple of positive invertible operators
such that mI � Aj � MI for all j = 1, . . . ,n, and ω = (ω1, . . . ,ωn) a weight vector.
Put h = M/m. Then there exists t0 ∈ (0,1) such that

(
ht +h−t

2

)−1/t

Pt(ω ;A) � GK(ω ;A) �
(

hs +h−s

2

)1/s

Ps(ω ;A) (2.9)

for all −t0 < s < 0 < t < t0 , and the left-hand side of (2.9) converges to the middle
term as t ↓ 0 . Similarly, the right-hand side of (2.9) converges to the middle term as
s ↑ 0 .
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