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WEIGHTED NORM INEQUALITIES FOR THE GENERALIZED

MULTILINEAR STIELTJES TRANSFORMATION

VÍCTOR GARCÍA GARCÍA AND PEDRO ORTEGA SALVADOR ∗

(Communicated by P. Tradacete Perez)

Abstract. We characterize some weighted strong and weak-type inequalities for the generalized
Stieltjes and Calderón multilinear operators. As applications, we characterize a weighted multi-
linear Hilbert’s inequality and a weighted Hilbert’s multiple series theorem.

1. Introduction and results

The generalized Stieltjes transform, also known as generalized Hilbert operator, is
defined for non-negative functions f on (0,∞) by

Sλ f (x) =
∫ ∞

0

f (t)
(x+ t)λ dt, x ∈ (0,∞),

where λ > 0.
Another classical operator, closely related to Sλ , is the generalized Calderón

operator Cλ , defined also for non-negative functions f on (0,∞) by the sum of the
Hardy-type operator Pλ and its adjoint Qλ , i.e.,

Cλ f (x) = Pλ f (x)+Qλ f (x) =
1

xλ

∫ x

0
f (t)dt +

∫ ∞

x

f (t)
tλ dt.

K. Andersen characterized in [2] the pairs of weights (u,v) for which the weighted
Stieltjes inequality (∫ ∞

0
Sλ f (x)qu(x)dx

) 1
q

� K

(∫ ∞

0
f pv

) 1
p

(1)

holds for all non-negative f in the case 1 � p � q � ∞ . For λ > 0, he proved that (1)
holds if and only there exists a constant K > 0 such that for all r > 0, the inequality

rλ
(∫ ∞

0

u(x)
(x+ r)λq

dx

) 1
q
(∫ ∞

0

σ(x)
(x+ r)λ p′ dx

) 1
p′

� K (2)

Mathematics subject classification (2020): 26D15.
Keywords and phrases: Calderón operator, Hilbert inequality, Hilbert operator, multilinear Hardy op-

erators, multilinear Stieltjes transform, Stieltjes transform, weighted inequalities, weights.
This research has been supported in part by Ministerio de Ciencia, Innovación y Universidades (Grant PGC2018-

096166-B-100) and Junta de Andalucı́a (Grants FQM354 and UMA18-FEDERJA-002).
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-24-53

759

http://dx.doi.org/10.7153/mia-2021-24-53
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holds, where p′ is the conjugate exponent of p and σ = v1−p′ .
The same result holds for Cλ , since 1

2λ Cλ f (x) � Sλ f (x) � Cλ f (x) for all f and
x ∈ (0,∞) .

The m-linear generalized Stieltjes transform was defined in [6] and [8] for m-
tuples ( f1, f2, . . . , fm) of non-negative functions on (0,∞) by

Sλ ( f1, f2, . . . , fm)(x) =
∫

(0,∞)m

f1(y1) f2(y2) · · · fm(ym)
(x+ y1 + y2 + · · ·+ ym)λm

dy1dy2 . . .dym.

It is interesting to observe that multilinear operators of this type have been studied
in [4] and [5] in connection with the boundedness of the Bergman projection on tube
domains.

We also define the m-linear generalized Calderón operator as

Cλ ( f1, f2, . . . , fm)(x) =
m

∏
i=1

Pλ fi(x)+
m

∑
i=1

Qλ ( fi
m

∏
j=1
j �=i

Pλ f j)(x),

i.e., the sum of the generalized multilinear Hardy operator and its adjoints.
If λ = 1, we simply write S and C instead of S1 and C1 , respectively.
The operators Sλ and Cλ are equivalent, in the sense that there are two positive

constants K1 and K2 independent of f1, f2, . . . , fm and x such that

Cλ ( f1, f2, . . . , fm)(x) � K1Sλ ( f1, f2, . . . , fm)(x) � K2Cλ ( f1, f2, . . . , fm)(x). (3)

The boundedness of the operator S from Lp1(|x|α1)×Lp2(|x|α2)×·· ·×Lpm(|x|αm)

to Lp(|x|α ) in the case
1
p

=
m

∑
i=1

1
pi

was studied in [11]. The authors characterized in

[12] the boundedness of S and C from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(u) in

the case
1
p

=
m

∑
i=1

1
pi

and u =
m

∏
i=1

v
1
pi
i . In this paper, our purpose is to extend the previ-

ously cited Andersen’s result to the multilinear setting, in the sense of assuming some
relationships between the exponents and weights different from the ones considered in
[12]. The main theorem is the next one.

THEOREM 1. Let λ > 0 and p, p1, p2, . . . , pm > 1 with pi � p for each i ∈
{1,2, . . . ,m} . Assume that pi � min

i+1� j�m
{p′j} for each i ∈ {1,2, . . . ,m− 1} . Let

u,v1,v2, . . . ,vm be positive measurable functions on (0,∞) and σ j = v
1−p′j
j . The next

statements are equivalent:

(i) The Stieltjes transform Sλ is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to
Lp(u) .

(ii) The Calderón operator Cλ is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to
Lp(u) .
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(iii) There exists K > 0 such that for each i ∈ {1,2, . . . ,m} and every r > 0 the in-
equalities (∫ r

0
u

) 1
p
(∫ ∞

r

σi(t)
tλmp′i

dt

) 1
p′i

m

∏
j=1
j �=i

(∫ r

0
σ j

) 1
p′j � K (4)

and (∫ ∞

r

u(t)
tλmp

dt

) 1
p m

∏
j=1

(∫ r

0
σ j

) 1
p′j � K (5)

hold.

(iv) There exists K > 0 such that for each r > 0 the inequality

rλm2
(∫ ∞

0

u(t)
(t + r)λmp

dt

) 1
p m

∏
j=1

(∫ ∞

0

σ j(t)

(t + r)λmp′j
dt

) 1
p′j

� K (6)

holds.

We can also prove a weak-type result. In this setting, we will work with a more
general operator, the modified Stieltjes transform Sg,λ , defined by

Sg,λ ( f1, f2, . . . , fm)(x) = g(x)
∫ ∞

0

f1(t1) f2(t2) . . . fm(tm)
(x+ t1 + t2 + . . .+ tm)λm

dt1dt2 . . .dtm,

where g is a positive function. It is clear that the operator Sg,λ is equivalent to the
modified multilinear Calderón operator Cg,λ , defined by

Cg,λ ( f1, . . . , fm)(x) =
g(x)
xλm

(∫ x

0
f1

)
. . .

(∫ x

0
fm

)
+

m

∑
i=1

g(x)
∫ ∞

x

fi(s)
sλm

m

∏
j=1
j �=i

(∫ s

0
f j

)
ds

= Pg,λ ( f1, . . . , fm)(x)+
m

∑
i=1

D i
g,λ ( f1, . . . , fm)(x).

Weak-type inequalities for modified linear or sublinear operators are included in
the topic of mixed weak-type inequalities. This kind of inequalities goes back to An-
dersen and Muckenhoupt’s paper [3], where they studied weighted mixed weak-type
inequalities for Hardy operators, Hilbert transform and the maximal operator. Andersen
and Muckenhoupt’s results were extended and improved by E. Sawyer in [18]. Later,
many papers have dealt with this topic, even in the multilinear setting (see, for instance,
[9], [14], [15], [16] and [17]).

The weak-type result reads as follows.

THEOREM 2. Let λ > 0 and p, p1, p2, . . . , pm � 1 with pi � p for each i ∈
{1,2, . . . ,m} . Assume that pi � min

i+1� j�m
{p′j} for each i ∈ {1,2, . . . ,m− 1} . Let

u,v1,v2, . . . ,vm be positive measurable functions on (0,∞) and σ j = v
1−p′j
j . The next

statements are equivalent:
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(i) The modified Stieltjes transform Sg,λ is bounded from Lp1(v1)×Lp2(v2)×·· · ×
Lpm(vm) to Lp,∞(u) .

(ii) The modified Calderón operator Cg,λ is bounded from Lp1(v1)×Lp2(v2)×·· ·×
Lpm(vm) to Lp,∞(u) .

(iii) For each i ∈ {1,2, . . . ,m} , the conditions

sup
r>0

‖gχ(0,r)‖p,∞;u

(∫ ∞

r

σi(t)
tλmp′i

dt

) 1
p′i

m

∏
j=1
j �=i

(∫ r

0
σ j

) 1
p′j < ∞ (7)

and

sup
r>0

∥∥∥∥g(x)
xλm

χ(r,∞)(x)
∥∥∥∥

p,∞;u

m

∏
j=1

(∫ r

0
σ j

) 1
p′j < ∞ (8)

hold, where (
∫ r
0 σ j)

1
p′j and

(∫ ∞
r

σ j(t)

t
λmp′j

dt

) 1
p′j have to be understood as

esssupt∈(0,r) v
−1
j (t) and esssupt∈(r,∞)

v−1
j (t)

tλm , respectively, if p j = 1 .

(iv) There exists K > 0 such that for each r > 0 the inequality

rλm2
∥∥∥∥ g(t)

(t + r)λm

∥∥∥∥
p,∞;u

m

∏
j=1

(∫ ∞

0

σ j(t)

(t + r)λmp′j
dt

) 1
p′j

� K (9)

holds, where

(∫ ∞
0

σ j(t)

(t+r)
λmp′j

dt

) 1
p′j stands for esssupt∈(0,∞)

v−1
j (t)

(t+r)λm when p j = 1 .

Observe that the conditions on the exponents p1, p2, . . . , pm hold, for instance,
if pi � 2 for all i ∈ {1,2, . . . ,m} . Observe also that pi � min

i+1� j�m
{p′j} for each i ∈

{1,2, . . . ,m−1} is equivalent to max
1� j�m

j �=i

{p j} � p′i for all i ∈ {1,2, . . . ,m} .

The boundedness of the Stieltjes transform S is closely related to the celebrated
Hilbert’s inequality [13], which asserts that if p > 1, then

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy � π
sin π

p

(∫ ∞

0
f p
) 1

p
(∫ ∞

0
gp′
) 1

p′
.

The next result, which characterizes a weighted multilinear Hilbert’s inequality,
can be got as a simple consequence of Theorem 1 with a duality argument.

THEOREM 3. Let λ > 0 and p, p1, p2, . . . , pm > 1 with pi � p for each i ∈
{1,2, . . . ,m} . Assume that pi � min

i+1� j�m
{p′j} for each i ∈ {1,2, . . . ,m− 1} . Let
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u,v1,v2, . . . ,vm be positive measurable functions on (0,∞) and σ = u1−p′ . Then the
weighted multilinear Hilbert’s inequality

∫
(0,∞)m+1

f (y) f1(y1) . . . fm(ym)
(y+ y1 + . . .+ ym)λm

dydy1 . . .dym � K‖ f‖p′,σ‖ f1‖p1,v1 . . .‖ fm‖pm,vm (10)

holds if and only if (6) does.

It is worth noting that the authors have already characterized in [12] the weights

u,v1,v2, . . . , vm for (10) to hold in the case 1
p = ∑ j

1
p j

and u = ∏ j v
p
p j
j .

The discrete version of Theorem 3 yields to the next multiple weighted analogue
of the classical Hilbert’s double series inequality ([13]).

THEOREM 4. Let λ > 0 and p, p1, p2, . . . , pm > 1 with pi � p for each i ∈
{1,2, . . . ,m} . Assume that pi � min

i+1� j�m
{p′j} for each i ∈ {1,2, . . . ,m− 1} . Let

{un},{v1
n},{v2

n}, . . . ,{vm
n } be sequences of positive numbers. Let σn = u1−p′

n and σ j
n =

(v j
n)

1−p′j for j = 1,2, . . . ,m. Then the weighted Hilbert’s multiple series inequality

∞

∑
n=1

∞

∑
i1,i2,...,im=1

ana1
i1
a2

i2
· · ·am

im

(n+ i1 + i2 + · · ·+ im)λm
� K

(
∞

∑
n=1

ap′
n σn

) 1
p′ m

∏
j=1

(
∞

∑
i j=1

(a j
i j
)p j v j

i j

) 1
p j

holds for all positive sequences {an},{a1
n1
},{a2

n2
}, . . . ,{am

nm
} if and only if

sup
r>0

rλm2

(
∞

∑
n=1

un

(n+ r)λmp

) 1
p m

∏
j=1

⎛
⎝ ∞

∑
i j=1

σ j
i j

(i j + r)λmp′j

⎞
⎠

1
p′j

< ∞.

The next two sections consist of the proofs of Theorems 1 and 2. In order to
prove them, we will characterize some weighted weak and strong-type inequalities for
the generalized multilinear Hardy operator and its adjoints. It will be done in several
lemmas of independent interest.

Observe that, all along the paper, the letter K stands for a positive constant, not
necessarily the same at each occurrence.

2. Proof of Theorem 1

(iii) ⇒ (ii)
The proof of this implication is based on the following lemmas. The first one

characterizes the weighted inequalities for the generalized multilinear Hardy operator.
The bilinear case with λ = 1 was studied in [1].
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LEMMA 1. Let λ > 0 and p, p1, p2, . . . , pm > 1 with pi � p for each i∈{1,2, . . . ,
m} . Let u,v1,v2, . . . ,vm be positive measurable functions on (0,∞) . Then the multilin-
ear generalized Hardy operator

Pλ ( f1, f2, . . . , fm)(x) =
m

∏
j=1

Pλ f j(x)

is bounded from Lp1(v1)× . . .×Lpm(vm) to Lp(u) if and only if (5) holds.

Proof. We will prove the Lemma by induction on m . The case m = 1 is Bradley’s
Theorem ([7]). Let us suppose that the result is true for m−1 and let us prove it for m .
The inequality

(∫ ∞

0

(
m

∏
j=1

Pλ f j(x)

)p

u(x)dx

) 1
p

� K
m

∏
j=1

‖ f j‖p j ,v j

is equivalent to

(∫ ∞

0

(
m−1

∏
j=1

Pλ f j(x)

)p(
Pλ

(
fm

‖ fm‖pm,vm

)
(x)
)p

u(x)dx

) 1
p

� K
m−1

∏
j=1

‖ f j‖p j ,v j .

This is a (m−1)-linear Hardy inequality with weights w = u
(
Pλ

(
fm

‖ fm‖
))p

,v1,v2, . . . ,

vm−1 . By induction hypothesis, that inequality holds if and only if there exists a con-
stant K > 0 such that for every r > 0 and every fm � 0

(∫ ∞

r

(
Pλ

(
fm

‖ fm‖pm,vm

)
(x)
)p u(x)

xλ (m−1)p dx

) 1
p m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j � K

holds, i.e.,

(∫ ∞

r

(∫ x

0
fm

)p u(x)
xλmp

dx

) 1
p m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j � K‖ fm‖pm,vm . (11)

Taking into account that
∫ x
0 fm =

∫ r
0 fm +

∫ x
r fm and also that the inequality above re-

mains valid for fm supported on (r,∞) , we have that (11) is equivalent to the two
following inequalities:

(∫ ∞

r

u(x)
xλmp

dx

) 1
p
(∫ r

0
fm

)m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j � K‖ fm‖pm,vm (12)

and (∫ ∞

r

(∫ x

r
fm

)p u(x)
xλmp

dx

) 1
p

� K
m−1

∏
j=1

(∫ r

0
σ j

)− 1
p′j
(∫ ∞

r
f pm
m vm

) 1
pm

. (13)
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The inequality (12) holds for all fm if and only if (5) does. It is clear, indeed, that
(12) implies (5) by testing (12) with fm = σmχ(0,r) , whereas the converse follows from
(5) applying Hölder’s inequality. On the other hand, by Bradley’s Theorem ([7]), (13)
is equivalent to the existence of a constant K > 0 such that for each r > 0 and every
s > r , (∫ ∞

s

u(x)
xλmp

dx

) 1
p
(∫ s

r
σm

) 1
p′m m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j � K. (14)

Observe that we have strongly used that the boundedness constant of Bradley’s
Theorem is equivalent to the one appearing in the equivalent condition on the weights.

Therefore, (11) is equivalent to (5) and (14). Finally, let us observe that (5) implies
(14), what shows that (11) is equivalent to (5) and finishes the proof. �

The next lemma characterizes the weighted inequalities for the adjoints of the
multilinear Hardy operator.

LEMMA 2. Let λ > 0 and p, p1, p2, . . . , pm > 1 with p j � p for each j∈{1,2, . . . ,
m} . Let i0 ∈ {1,2, . . . ,m} such that max

1� j�m
j �=i0

{p j} � p′i0 . Let u,v1,v2, . . . ,vm be positive

measurable functions on (0,∞) . Then the i0 -adjoint of the multilinear Hardy operator

D i0
λ ( f1, f2, . . . , fm)(x) = Qλ ( fi0 ∏

j �=i0

Pλ f j)(x)

is bounded from Lp1(v1)× . . .×Lpm(vm) to Lp(u) if and only if (4) holds for i = i0 .

Proof. By duality, the operator D i0
λ is bounded from Lp1(v1)× . . .×Lpm(vm) to

Lp(u) if and only if the multilinear Hardy operator Pλ is bounded from Lp1(v1)× . . .×
Lpi0−1(vi0−1)× Lp′(σ)× Lpi0+1(vi0+1)× . . .× Lpm(vm) to L

p′i0 (σi0) , where σ = u1−p′

and σi0 = v
1−p′i0
i0

. Since p′ � p′i0 and max
1� j�m

j �=i0

{p j} � p′i0 , we can apply Lemma 1 to get

the equivalence with condition (4) for i = i0 . �

Now, the implication (iii) ⇒ (ii) is immediate. In fact, we only have to observe
that, by Lemma 1, (5) implies the boundedness of the multilinear generalized Hardy
operator and that, by Lemma 2, (4) implies that the adjoints D i

λ , i ∈ {1,2, . . . ,m} are
bounded. Then, the m-linear Calderón operator is bounded.

(iv) ⇒ (iii)
Assume that (6) holds. Let r > 0. The inequality (6) implies

rλm2
(∫ ∞

r

u(t)
(t + r)λmp

dt

) 1
p m

∏
j=1

(∫ r

0

σ j(t)

(t + r)λmp′j
dt

) 1
p′j

� K.



766 V. GARCÍA GARCÍA AND P. ORTEGA SALVADOR

Since t + r � 2t if t ∈ (r,∞) and t + r � 2r if t ∈ (0,r) , the previous inequality gives

rλm2
(∫ ∞

r

u(t)
tλmp

dt

) 1
p m

∏
j=1

1

rλm

(∫ r

0
σ j(t)dt

) 1
p′j � K,

which is (5). In the same way, we deduce the inequalities (4) for i ∈ {1,2, . . . ,m} from
(6).

(i) ⇒ (iv)
For this implication, we will need the following lemma, which gives a generaliza-

tion of inequality (1.14) in [2].

LEMMA 3. Let m ∈ N and λ > 0 . Then there is a positive constant K > 0 such
that for all r, t,x1, . . . ,xm ∈ (0,∞) , the inequality

1

(t + x1 + . . .+ xm)λm
� K

rλm2

(r+ t)λm
m

∏
j=1

(r+ x j)λm
(15)

holds.

Proof. Applying successively the inequality (1.14) in [2], we have

1
t + x1 + . . .+ xm

� 1
r+ t + x2 + . . .+ xm

· r
r+ x1

� 1
2r+ t + x3 + . . .+ xm

· r
r+ x2

· r
r+ x1

� . . .

� 1
mr+ t

· rm

m

∏
j=1

(r+ x j)

� K
rm

(r+ t)
m

∏
j=1

(r+ x j)
.

Raising this inequality to λm , we get (15). �
Now, we can prove the implication (i) ⇒ (iv) . Assume that (i) holds, i.e., there

is K > 0 such that(∫
(0,∞)

(∫
(0,∞)m

f1(x1) f2(x2) . . . fm(xm)
(t + x1 + x2 + . . .xm)λm

dx1dx2 . . .dxm

)p

u(t)dt

) 1
p

� K
m

∏
j=1

‖ f j‖p j ,v j .

(16)
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Let r > 0 and f j(x) = σ j(x)

(x+r)
λm

p j−1
. Then, by Lemma 3, the left-hand side of (16) is

greater than

rλm2
(∫ ∞

0

u(t)
(r+ t)λmp

dt

) 1
p m

∏
j=1

∫ ∞

0

σ j(x j)

(x j + r)
λm

(
1

p j−1+1

) dx j

= rλm2
(∫ ∞

0

u(t)
(r+ t)λmp

dt

) 1
p m

∏
j=1

∫ ∞

0

σ j(x j)

(x j + r)λmp′j
dx j.

Finally, (16) gives

rλm2
(∫ ∞

0

u(t)
(r+ t)λmp

dt

) 1
p m

∏
j=1

(∫ ∞

0

σ j(x j)

(x j + r)λmp′j
dx j

) 1
p′j

� K.

3. Proof of Theorem 2

The proof follows the pattern of the previous one. We only have to show that
condition (8) characterizes the boundedness of Pg,λ and (7) characterizes the bound-
edness of D i

g,λ for all i ∈ {1,2, . . . ,m} . In fact, we will only prove (iii)⇒ (ii) . The re-
maining implications can be proved as in the proof of Theorem 1 with obvious changes.

(iii) ⇒ (ii)
As in the proof of Theorem 1, we will need the following lemmas, of indepen-

dent interest. The interest resides in the fact that, as far as we know, there are no
results about weighted weak-type inequalities for multilinear Hardy type operators in
the literature. The first lemma characterizes the weighted weak-type inequalities for the
modified multilinear generalized Hardy operator Pg,λ .

LEMMA 4. Let λ > 0 and p, p1, p2, . . . , pm � 1 with pi � p for each i∈{1,2, . . . ,
m} . Let u,v1,v2, . . . ,vm be positive measurable functions on (0,∞) . Then, for any pos-
itive function g, the modified multilinear generalized Hardy operator

Pg,λ ( f1, f2, . . . , fm)(x) = g(x)
m

∏
j=1

Pλ f j(x)

is bounded from Lp1(v1)× . . .×Lpm(vm) to Lp,∞(u) if and only if (8) holds.

Proof. We will prove the lemma by induction on m . The result for m = 1 was
proved in [10] (see also [17]). Let us suppose that the result is true for m−1 and let us
prove it for m . The weak-type inequality∥∥∥∥∥g(x)

xλm

m

∏
j=1

(∫ x

0
f j

)∥∥∥∥∥
p,∞;u

� K
m

∏
j=1

‖ f j‖p j,v j



768 V. GARCÍA GARCÍA AND P. ORTEGA SALVADOR

is equivalent to∥∥∥∥∥g(x)
xλm

(∫ x

0

fm
‖ fm‖pm,vm

)m−1

∏
j=1

(∫ x

0
f j

)∥∥∥∥∥
p,∞;u

� K
m−1

∏
j=1

‖ f j‖p j,v j .

Let h fm(x) =
g(x)
xλ

∫ x

0

fm
‖ fm‖pm,vm

. Then, the inequality above is equivalent to the next

one: ∥∥∥∥∥ h fm(x)
xλ (m−1)

m−1

∏
j=1

(∫ x

0
f j

)∥∥∥∥∥
p,∞;u

� K
m−1

∏
j=1

‖ f j‖p j,v j .

This is a (m− 1)-linear weak-type inequality for the operator Phfm ,λ . By induction
hypothesis, it is equivalent to the existence of a constant K > 0 such that for each r > 0
and each positive function fm∥∥∥∥ h fm(x)

xλ (m−1) χ(r,∞)(x)
∥∥∥∥

p,∞;u

m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j � K.

It can also be written as∥∥∥∥g(x)
xλm

χ(r,∞)(x)
(∫ x

0
fm

)∥∥∥∥
p,∞;u

m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j � K‖ fm‖pm,vm . (17)

Taking into account that
∫ x
0 fm =

∫ r
0 fm +

∫ x
r fm and that the last inequality remains valid

for fm supported on (r,∞) , we have that the inequality above is equivalent to the two
following ones:

∥∥∥∥g(x)
xλm

χ(r,∞)(x)
(∫ x

r
fm

)∥∥∥∥
p,∞;u

� K
m−1

∏
j=1

(∫ r

0
σ j

)− 1
p′j
(∫ ∞

r
f pm
m vm

) 1
pm

(18)

and ∥∥∥∥g(x)
xλm

χ(r,∞)(x)
∥∥∥∥

p,∞;u

(∫ r

0
fm

)m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j � K‖ fm‖pm,vm . (19)

On one hand, (19) is equivalent to (8). We simply test with the function fm = σmχ(0,r)
for one implication and we apply Hölder’s inequality for the converse. On the other
hand, we can apply the result in [10] (see also [17]) and (18) is equivalent to

sup
s>r>0

∥∥∥∥g(x)
xλm

χ(s,∞)(x)
∥∥∥∥

p,∞;u

(∫ s

r
σm

) 1
p′m m−1

∏
j=1

(∫ r

0
σ j

) 1
p′j < ∞. (20)

As in the proof of Lemma 1, we have used the equivalence between the bounded-
ness constant of the Hardy operator and the constant appearing in the condition on the
weights. This fact will be also used in the proof of Lemma 5. Therefore, (17) is equiv-
alent to (8) and (20). To complete the proof, we only have to observe that (8) implies
(20), what shows that (17) is equivalent to (8). �
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Now, we will characterize the weighted inequalities for the modified adjoints
D i0

g,λ , i0 ∈ {1,2, . . . ,m} , of the multilinear generalized Hardy operator.

LEMMA 5. Let λ > 0 and p, p1, p2, . . . , pm � 1 with pi � p for each i∈{1,2, . . . ,
m} . Let i0 ∈ {1,2, . . . ,m} such that max

1� j�m
j �=i0

{p j} � p′i0 . Let u,v1,v2, . . . ,vm be positive

measurable functions on (0,∞) . Then, for any positive function g, the modified i0 -
adjoint of the multilinear generalized Hardy operator

D i0
g,λ ( f1, f2, . . . , fm)(x) = g(x)Qλ ( fi0

m

∏
j=1
j �=i0

Pλ f j)(x)

is bounded from Lp1(v1)× . . .×Lpm(vm) to Lp,∞(u) if and only if (7) holds for i = i0 .

Proof. We will work by induction on m . The result for m = 1 was proved in [10]
(see also [17]). Let us suppose that i0 ∈ {1,2, . . . ,m−1} and that if p1, p2, . . . , pm−1 >
1 verify pi � p for all i and max

1� j�m
j �=i0

{p j} � p′i0 , then the (m− 1)-linear weak-type

inequality ∥∥∥∥∥∥∥∥
g(x)

∫ ∞

x

fi0(s)
sλ (m−1)

m−1

∏
j=1
j �=i0

(∫ s

0
f j

)
ds

∥∥∥∥∥∥∥∥
p,∞;u

� K
m−1

∏
j=1

‖ f j‖p j,v j

holds, with a constant K independent of f1, f2, . . . , fm−1 if and only if

sup
r>0

‖gχ(0,r)‖p,∞;u

(∫ ∞

r

σi(t)

t
λ (m−1)p′i0

dt

) 1
p′i0

m−1

∏
j=1
j �=i0

(∫ r

0
σ j

) 1
p′j < ∞.

Let us prove the result for m . Let v1,v2, . . . ,vm,u be the weights. Let j0 ∈ {1,2, . . . ,m} ,
j0 �= i0 . We define the function h as

h(s) =
fi0(s)
sλ

∫ s

0

f j0(t)
‖ f j0‖p j0

,v j0

dt.

Then, the weak-type inequality∥∥∥∥∥∥∥∥
g(x)

∫ ∞

x

fi0(s)
sλm

m

∏
j=1
j �=i0

(∫ s

0
f j

)
ds

∥∥∥∥∥∥∥∥
p,∞;u

� K
m

∏
j=1

‖ f j‖p j ,v j
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is equivalent to the following one:∥∥∥∥∥∥∥∥
g(x)

∫ ∞

x

h(s)
sλ (m−1)

m

∏
j=1

j �=i0 , j0

(∫ s

0
f j

)
ds

∥∥∥∥∥∥∥∥
p,∞;u

� K

∥∥∥∥∥∥∥∥∥
h(s)sλ∫ s

0

f j0(t)
‖ f j0‖p j0

,v j0

dt

∥∥∥∥∥∥∥∥∥
pi0 ,vi0

m

∏
j=1

j �=i0, j0

‖ f j‖p j,v j .

(21)

Then, the (m− 1)-linear operator D i0
g,λ is bounded from Lpi0 (wi0)×

m

∏
j=1

j �=i0, j0

Lpj(v j) to

Lp,∞(u) , where

wi0(s) = vi0(s)
sλ pi0(∫ s

0

f j0(t)
‖ f j0‖p j0

,v j0

dt

)pi0
,

p j � p for all j and max
1� j�m

j �=i0

{p j} � p′i0 . Now, we are going to apply the induction

hypothesis. We will distinguish the case pi0 = 1 from pi0 > 1. Assume first that
pi0 > 1. By induction hypothesis, (21) is equivalent to the existence of a constant
K > 0 such that for all r > 0 and for all f j0 ,

‖gχ(0,r)‖p,∞;u

⎛
⎝∫ ∞

r

σi0(t)

t
λmp′i0

(∫ t

0

f j0(s)
‖ f j0‖p j0

,v j0

ds

)p′i0
dt

⎞
⎠

1
p′i0 m

∏
j=1

j �=i0, j0

(∫ r

0
σ j

) 1
p′j � K.

We can also write the inequality above as follows:

(∫ ∞

r

(∫ t

0
f j0

)p′i0 σi0(t)

t
λmp′i0

dt

) 1
p′i0 � K‖gχ(0,r)‖−1

p,∞;u

m

∏
j=1

j �=i0, j0

(∫ r

0
σ j

)− 1
p′j ‖ f j0‖p j0 ,v j0

.

(22)
Taking into account that

∫ t
0 f j0 =

∫ r
0 f j0 +

∫ t
r f j0 and also that the inequality (22) remains

valid for f j0 supported on (r,∞) , we have that (22) is equivalent to the two following
inequalities:(∫ r

0
f j0

)(∫ ∞

r

σi0(t)

t
λmp′i0

dt

) 1
p′i0 � K‖gχ(0,r)‖−1

p,∞;u

m

∏
j=1

j �=i0 , j0

(∫ r

0
σ j

)− 1
p′j ‖ f j0‖p j0

,v j0
(23)

and(∫ ∞

r

(∫ t

r
f j0

)p′i0 σi0(t)

t
λmp′i0

dt

) 1
p′i0 � K‖gχ(0,r)‖−1

p,∞;u

m

∏
j=1

j �=i0 , j0

(∫ r

0
σ j

)− 1
p′j ‖ f j0 χ(r,∞)‖p j0

,v j0
.

(24)
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On one hand, the inequality (23) holds for all f j0 if and only if (7) does. It is clear,
indeed, that (23) implies (7) by testing (23) with f j0 = σ j0 χ(0,r) , whereas the converse
follows from (7) applying Hölder’s inequality. On the other hand, taking into account
that p j0 � p′i0 , we can apply Bradley’s Theorem ([7]) and we get that (24) is equivalent
to

sup
s>r>0

‖gχ(0,r)‖p,∞;u

(∫ ∞

s

σi0(t)

t
λmp′i0

dt

) 1
p′i0
(∫ s

r
σ j0

) 1
p′j0

m

∏
j=1

j �=i0, j0

(∫ r

0
σ j

) 1
p′j < ∞. (25)

In summary, we have seen that (22) is equivalent to (7) and (25). Finally, let us observe
that (7) implies (25), what shows that (22) is equivalent to (7) in the case pi0 > 1.

Assume now that pi0 = 1. In this case, by the induction hypothesis, (21) is equiv-
alent to the existence of a constant K > 0 such that for all r > 0 and all f j0 ,

ess sup
t∈(r,∞)

(
v−1
i0

(t)

tλm

∫ t

0
f j0

)
� K‖gχ(0,r)‖−1

p,∞;u

m

∏
j=1

j �=i0, j0

(∫ r

0
σ j

)− 1
p′j ‖ f j0‖p j0

,v j0
.

Splitting the integral as in the previous case, we see that the inequality above is equiva-
lent to the two following ones:

(∫ r

0
f j0

)(
ess sup

t∈(r,∞)

v−1
i0

(t)

tλm

)
� K‖gχ(0,r)‖−1

p,∞;u

m

∏
j=1

j �=i0, j0

(∫ r

0
σ j

)− 1
p′j ‖ f j0‖p j0

,v j0
(26)

and

ess sup
t∈(r,∞)

(
v−1
i0

(t)

tλm

∫ t

r
f j0

)
� K‖gχ(0,r)‖−1

p,∞;u

m

∏
j=1

j �=i0 , j0

(∫ r

0
σ j

)− 1
p′j ‖ f j0 χ(r,∞)‖p j0

,v j0
.

(27)
As in the case pi0 > 1, inequality (26) holds for all f j0 if and only if (7) does. In order
to characterize inequality (27) we will need the next lemma.

LEMMA 6. Let r > 0 , p � 1 and w,v two positive functions on (r,∞) . Then, there
exists K > 0 such that for all positive function f supported on (r,∞) the inequality

ess sup
t∈(r,∞)

(
w(t)

∫ t

r
f

)
� K‖ f‖p,v (28)

holds if and only if

ess sup
t∈(r,∞)

(
w(t)

(∫ t

r
σ
) 1

p′
)

< ∞, (29)

where σ = v1−p′ .
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Proof. Assume that (29) holds. Then, if t ∈ (r,∞) , by Hölder’s inequality

w(t)
∫ t

r
f � w(t)

(∫ t

r
σ
) 1

p′
(∫ t

r
f pv

) 1
p

.

Since the inequality above holds for all t ∈ (r,∞) , we have

ess sup
t∈(r,∞)

(
w(t)

∫ t

r
f

)
� K‖ f‖p,v,

where K = esssupt∈(r,∞)

(
w(t)

(∫ t
r σ
) 1

p′
)

, which is finite by (29).

Conversely, let s ∈ (r,∞) such that

w(s)
∫ s

r
σ � ess sup

t∈(r,∞)

(
w(t)

∫ t

r
σ
)

.

Testing inequality (28) with f = σ χ(r,s) , we get

w(s)
∫ s

r
σ � K

(∫ s

r
σ
) 1

p

,

i.e.,

w(s)
(∫ s

r
σ
) 1

p′
� K.

Since the inequality above holds for almost all s ∈ (r,∞) , we get (29). �

By Lemma 6, (27) is equivalent to the existence of a constant K > 0 such that

ess sup
t∈(r,∞)

(
v−1
i0

(t)

tλm

(∫ t

r
σ j0

) 1
p′j0

)
‖gχ(0,r)‖p,∞;u

m

∏
j=1

j �=i0, j0

(∫ r

0
σ j

) 1
p′j � K. (30)

Therefore, we have shown that when pi0 = 1, (21) is equivalent to (7) and (30). Finally,
since (7) implies (30), we have that (21) is equivalent to (7), as we wished to prove. �

Now, the implication (iii) ⇒ (ii) is straightforward. As in the proof of Theorem
1, applying the previous lemmas we get the boundedness of the operators Pg,λ and
D i

g,λ , i ∈ {1, . . . ,m} . Then, the modified Calderón operator is bounded.

Acknowledgement. The authors would like to thank the referee for some comments
and suggestions that have improved the paper.



WEIGHTED INEQUALITIES FOR THE MULTILINEAR STIELTJES TRANSFORMATION 773

RE F ER EN C ES
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