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A TRUDINGER-MOSER INEQUALITY WITH MEAN VALUE ZERO
ON A COMPACT RIEMANN SURFACE WITH BOUNDARY

MENGIJIE ZHANG

(Communicated by M. Praljak)

Abstract. In this paper, on a compact Riemann surface (X,g) with smooth boundary 0%, we
concern a Trudinger-Moser inequality with mean value zero. To be exact, let A;(X) denotes
the first eigenvalue of the Laplace-Beltrami operator with respect to the zero mean value condi-
tionand . = {u € W'2(Z,g) : |Veul3 <1 and [sudvy =0}, where W!2(Z,g) is the usual
Sobolev space, | -||» denotes the standard L?-norm and V, represent the gradient. By the
method of blow-up analysis, we obtain

sup ezmz(H”H“H%)dvg < oo, VO o0 < A (2);
ues /X

when o > A;(X), the supremum is infinite. Moreover, we prove the supremum is attained by
a function uy € C™ (Z) N.7 for sufficiently small o > 0. Based on the similar work in the
Euclidean space, which was accomplished by Lu-Yang [19], we strengthen the result of Yang
[29].

1. Introduction

Let Q C R? be a smooth bounded domain and WO1 ’2(9) be the completion of
C7 () under the Sobolev norm || Vgaul|3 = [ |[Vgou|?dx, where Vi is the gradient
operator on R? and || - ||, denotes the standard L?-norm. The classical Trudinger-
Moser inequality [37, 24, 23, 27, 20], as the limit case of the Sobolev embedding, says

sup P dx < too, ¥V B < 4. (1)

12
ueWy = (Q), [[Vgaull2<1

Moreover, 4r is called the best constant for this inequality in the sense that when
B > 4r, all integrals in (1) are still finite, but the supremum is infinite. It is interesting
to know whether or not the supremum in (1) can be attained. For this topic, we refer the
reader to Carleson-Chang [4], Flucher [12], Lin [18], Struwe [25], Adimurthi-Struwe
[2], Li [15], Yang [28], Zhu [38], Tintarev [26] and the references therein.
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There are many extensions of (1). Adimurthi-Druet [1] generalized (1) to the
following form

sup A (raluld) gy < oo VO < o < A4(Q), )
ueWy ?(Q),||Vgaull2<1

where A;(Q) is the first eigenvalue of the Laplacian with Dirichlet boundary condition
in Q. This inequality is sharp in the sense that if o > A,(Q), all integrals in (2) are
still finite, but the supremum is infinite. Obviously, (2) is reduced to (1) when o = 0.
Various extensions of the inequality (2) were obtained by Yang [28, 33], Tintarev [26]
and Zhu [38] respectively. It was extended by Lu-Yang [19] to a version, namely

sup A (1 elulz) gy < 4o VO < 0 < 21(Q),  (3)
WEW!2(Q), fqudv=0, |V ol <1 /2

where A, (Q) denotes the first nonzero Neumann eigenvalue of the Laplacian opera-
tor. This inequality is sharp in the sense that all integrals in (3) are still finite when
o> Il (Q), but the supremum is infinite. Moreover, for sufficiently small ¢« > 0, the
supremum is attained.

Trudinger-Moser inequalities were introduced on Riemannian manifolds by Aubin
[3], Cherrier [6] and Fontana [13]. In particular, let (X,g) be a 2-dimensional compact

Riemann surface, W!?(Z,g) the completion of C**(Z) under the norm ||u||€Vl>2(Z7g) =

Js(* +|V4u|?)dvy, where V, stands for the gradient operator on (X,g). When (Z,g)
is closed Riemann surface, there holds

sup /eﬁ"zdvg < oo, V B < 4. @)
UEW2(2.g), [y udvg=0,|[Viul <1 >

Moreover, 47 is called the best constant for this inequality in the sense that when 3 >
47, all integrals in (4) are still finite, but the supremum is infinite. Based on the works
of Ding-Jost-Li-Wang [9] and Adimurthi-Struwe [2], Li [14, 15] proved the existence
of extremals for the supremum in (4). When (Z,g) is a compact Riemann surface with
smooth boundary 0%, Yang [29] obtained the same inequality as (4), namely

sup /eﬁuzdvg < oo, VB <27 ®)
W10 fpatng 0|Vl <1 2

This inequality is sharp in the sense that if B > 27, all integrals in (5) are still finite,
but the supremum is infinite. Furthermore, the supremum in (5) can be attained.

In view of the inequality (3) in the Euclidean space, we strengthen (5) on (X, g)
with smooth boundary dX. Precisely we have the following:

THEOREM 1. Let (X,g) be a compact Riemann surface with smooth boundary
d% and

2

= n 2
UEW12(g), fyudvg=0uz0 |ue|5



A TRUDINGER-MOSER INEQUALITY WITH MEAN VALUE ZERO 777

be the first eigenvalue of the Laplace-Beltrami operator Ay with respect to the zero
mean value condition. Denote a function space

S = {u eW'?(z,g): /udvg =0, |Veull2 < 1}
by
and
Fg(u):/eﬁu2(1+aHuH%)dvg.
by

Then there hold

(i) for any o0 = Ay (Z), sup,c.y F2" (1) = +oo;

(ii) for any 0 < o < A (Z), sup,c.o F2™(u) < +oo;

(iii) for sufficiently small o > 0, sup,c o Faz’r(u) can be attained by some function
o €C7 (3)N.57.

For the proof, we employ the method of blow-up analysis, which was originally
used by Carleson-Chang[4], Ding-Jost-Li-Wang [9], Adimurthi-Struwe [2], Li [14],
and Yang [31, 33]. For related works, we refer the reader to Adimurthi-Druet [1], do
O-de Souza [8, 10], Nguyen [21, 22], Li-Yang [16], Zhu [39], Fang-Zhang [1 1], Yang-
Zhu [35, 36] and Csat6-Nguyen-Roy [7]. We should point out that the blow-up occurs
on the boundary dX in our case. The key ingredient in the proof of our theorem is
the isothermal coordinate system on dX. Though such coordinates have been used
by many authors (see for example Li-Liu [17] and Yang [29, 30, 32]), the proof of
its existence around has just been provided by Yang-Zhou [34] via Riemann mapping
theorems involving the boundary.

The remaining part of this paper will be organized as follows: In Section 2, we
prove (Theorem 1, (i)) by constructing test functions; in Section 3, we prove (Theorem
1, (ii)) by using blow-up analysis; in Section 4, we construct a sequence of functions
to show (Theorem 1, (#ii)) holds. Hereafter we do not distinguish the sequence and the
subsequence; moreover, we often denote various constants by the same C.

2. The case of o > A, (X)

In this section, we select test functions to prove Theorem 1 (i). Let 4;(X) be
defined by (6) and o > A;(X). From a direct method of variation, one obtains that
there exists some function ugy € ., such that

2
M () =||Vsuol; - (7)
By a direct calculation, we derive that u satisfies the Euler-Lagrange equation

Agu() = 2,1 (Z) uop in 27
dug _
on

/uodvg =0, /u%dvg =1,
z b

0 on 82, (8)
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where n denotes the outward unit normal vector on dX. Applying elliptic estimates
to (8), we obtain uy € . NC= (X). Consequently, there exist a point xo € X with
uo(xp) > 0 and a neighborhood U of x¢ with ug(x) > up(xp)/2 in U. Let § =
(tg\/Tns)_l, where #; > 0 such that —2Ing — 40 and #2y/—Ing — 0 as € — 0.
Following ([34], Lemma 4), we can take an isothermal coordinate system (¢! (B}, ¢)
such that ¢(xo) =0 and ¢~ (Bf) C U, where Bf = {(xi, x2) € R* : x} +x3 <
82, x, > 0}. In such coordinates, the metric g has the representation g = e*/ (dx{ + dx3)
and f is a smooth function with f(0) =0.
On @, we define a sequence of functions

—1lne
Y iy x| < 8v/e,
- 2r

g (x) = >
In—, &8Ve<|x <8é.
wlne x|
Moreover, we set
g0 in ¢! (@ :
Ug = )

seo i z\o7 (B]),

where ¢ € C5 (£\ ¢ '(Bs)) and s¢ is a real number such that [;uedvy = 0. Set
Ve = Ug +teug. According to (7)—(9), we have

—1
||Vg||§ = ||ugH§+t£2 ||u0||§—|—2tg/zuguodvg =t£2+2tg/zugu0dvg+0 (E) (10)

and

~1
vangj =1+ M) +2/11(2)z£/2u8u0dvg+0 (E) : (11)

Take v = ve/||Vgve||3 €. . From o > A;(Z) and (9)~(11), we have thaton ¢ ! <IB%
2 |2 2 1 ||V£H§
2mv; <1+aHv£H2> 22 (4@ .
[Vevell, IVevell,

[—1 !
><2mgu(2)—ln£+4mg %Suo> (l—l—o(\/%rlg))

>—Ine+tevV—1Ine (vSnuo+0(1)> .

5ve)

Hence there holds

/e2ﬂv§2(1+a\\v’g\\%)dv >/ L v Tne(VBrugto(1)) g,
$2 [ o, 4

b P (IB%S\/E) €

>C(6)et8\/—lne(muo(x0)+o(l))
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for some positive constant C(8). In view of up(xp) > 0, we get sup,c.o F2"(u) >
limg_ F2™ (v%) = +oo. This completes the proof of Theorem 1 (7).

3. The case of 0 < o < A;(X)

In this section, we will prove Theorem 1 (i7) in three steps: firstly, we consider the
existence of maximizers for subcritical functionals and give the corresponding Euler-
Lagrange equation; secondly, we deal with the asymptotic behavior of the maximiz-
ers through blow-up analysis; finally, we deduce an upper bound of the supremum
sup,c » F2*(u) under the assumption that blow-up occurs.

Step 1. Existence of maximizers for subcritical functionals

Using the similar proof of ([19], Step 1), we have the following

LEMMA 1. For any € > 0, there exists some function ug € . NC* (f) with
|Veute||3 =1, such that

sup Fo™ ¢ (u) = F™* (ue).
uces

Moreover, ug satisfies the Euler-Lagrange equation

Iue

e Oon 0z,

Be 2 Ue .
Agtte = —uee®"e + Youe — — in T,
gUe e £ Yele e >
1+ ol e 3 (12

L+ 20t ug] |3

o 2 Be 2
=~ :/uzeo‘f"fdv , = /u %"z dy,,
Iy PN EA Sht o He = Area(®) £ 8

oe = (2m —¢) (1 +O‘||“8||%) y Be=

where Area(Z) = [5 1dv,.

It follows from Lebesgue’s dominated convergence theorem that

lim F2" € (ue) = sup F2"(u). (13)
€=0 ues

Seeing the fact of 1+te' > €' forany r > 0, we get

2 1 2
A z/uzeas"fdv > —/ <e°‘8”8—1>dv
€ s ¢ &7 Oe JX &

which together with (13) leads to

liminf A > 0. (14)
e—0
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In view of (12), (14) and B < 1, we obtain

1 2 2
< — ugle® e dy, + u eO‘S”Edv,>
AeArea(X) (/{u62:|us|>l}| e £ {ueZ:|us|<1}| : ¢

1 2 2 2
< = u eO‘S”Edv,—F/ eO‘S”Edv,>
AeArea(X) (/{u62:|us|>l} € © 7 Nueziue <1y ‘

o | n e’
T Area(X)  Ae
<cC. (15)

He
Ae

Step 2. Blow-up analysis

Since ue is bounded in W!?(Z,g), there exists some function uy € W?(Z, g)
such that

ue — ug weakly in W' g,
ug — ug strongly in L? (X, g) ,Vp > 1, (16)

Ug — U a.e. In X.

Then we have [ ugdv, =0 and ||Vuol3 < 1.

We set ce = |ue(xe)| = maxs |ug|. We first assume that c¢ is bounded, which
together with elliptic estimates completes the proof of Theorem 1 (ii). Without loss of
generality, we assume

ce = ug(xg) — oo (17)

and xe — xp as € — 0. Applying maximum principle to (12), we have xy € 0.

Following ([34], Lemma 4), we can take an isothermal coordinate system (U, @)
near x, such that ¢(xo) =0, ¢(U) =B, and ¢(UNIT) = IRZ NB, for some fixed
r >0, where R? = {x = (x;,x2) €R*:x, > 0}. In such coordinates, the metric g
has the representation g = ¢*/ (dx{ +dx3) and f is a smooth function with f(0) = 0.
Denote % = ¢ (x¢) and ife = ue 0 ¢~ ' . To proceed, we observe an energy concentration
phenomenon of .

LEMMA 2. There hold ug =0 and |V4ue|*dvg — 8y, in sense of measure, where
5xo stands for the Dirac measure centered at x.

Proof. We first prove uy = 0. Suppose not, we can see that 0 < ||Vguol/3 < 1.
Letting 1 = ||Vguol[3, one has ||V, (e —uo)||3 — 1 —n < 1 and 1+ a|uel5 — 1+
o Hung < 14 n as € — 0. For sufficiently small €, we obtain

2—n?

2

(1+ elue13) Ve (e — o) [ < =5 < 1.
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From the Holder inequality, there holds

/eqagu%dvgg/eq(l-&-%)agu(z)+q(l+5)as(Mg—uO)ZdVg
) )

ol

202 (ug—ug)?
sq(1+8)(2m—e) 5L —=E0
gc /e HVg(Ms*MO)HZ dVg
z

for sufficiently small &, some 7, s, ¢ > 1 satisfying sq(1 4+ 8)(2 —n?)/2 < 1 and
1/r+1/s=1. In view of the Trudinger-Moser inequality (5), we get e% is bounded
in L7(X,g). Hence Aque is bounded in some L7(Z,g) from (12) and (15). Applying
the elliptic estimate to (12), one gets ug is uniformly bounded, which contradicts our
assumption ¢ — +oo. That is to say up =0.

Next we prove |Vue|>dvy — 8y, in sense of measure. Suppose not. There exists
some r > 0 such that

. 2
lim Voue|"dv, :=1n < 1,
-0 B,-(X()) | ¢ 8} ¢ n

where B,(xp) is a geodesic ball centered at xy with radius r. For sufficiently small &,
we can see that [p (. [Velte *dv, < (n+1)/2 < 1. Then we choose a cut-off function

p in C} (¢ (Bry(xo))). which is equal to 1 in ¢ (B, (xo)) such that

V, (piie) [*dx 1.
/¢<Br<xo>>| s(pie)|

n-+3
<——K<
4

Hence we obtain

/ eaequgdvg — / eaeqﬁ%ezfdx
Br/Z(XO) ¢(Br/2(x0))

< C/ eQEQ(Pﬁs)zdx
¢ (Br(x9))

< C/ e
o (Br(x0))

From the Trudinger-Moser inequality (5), we get e®% is bounded in L9 (B, 2(x0),8)
for any ¢ > 1 satisfying q(n +3)/4 < 1. Applying the elliptic estimate to (12), one
gets ue is uniformly bounded in B, /4 (x0). This contradicts (17) and ends the proof of

the lemma. [l
re = _te (18)
[

g3 (pite)?
4 1Ve(pae)l3 gy,

Denote
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Using ¢; = maxy |ug|, the inequality (5), (12) and Lemma 2, we have

k
c 2
rick = %/u%eaﬁuﬁdvg
Becke®ce Jx
k
< e /e(2ﬂ+()g(l))(175)u3dvg
(1+0g(1))e2m(1-8)cz Jx

k
Ce

o2m(1-8)2

<C

where k is an integer and 0 < § < 1. It follows from (17) that

lim rick =o. (19)
Define
. ugo§ ' (x1,x2), x>0,
ug(x) = _1
ug 0@~ (x1,—x2), x2<0,
and
~ f(xler)a Xy = 07
flx) =
f(xlv_x2)7 X2 <07

on B,. Let Us = {x € R?: % + rex € B, }. Then one has Uz — R?ase — 0 from (19).
Define two blowing up functions on Ug,

el) = TR 7D, 0)
Qe (x) = ce (I (Xe +rex) —ce). 201

Now we study the convergence behavior of Y, and .

LEMMA 3. Up to a subsequence, there hold

lim ye(x) =1 in Gy (R?), (22)
E—

lim e (x) = p(x) in Cpo(R?), (23)

E—
where

_ 1 T, 2

qo(x)——ﬂln<l+5\x\> (24)

and

/ AT gy = 1. (25)
RZ



A TRUDINGER-MOSER INEQUALITY WITH MEAN VALUE ZERO 783

Proof. By (12) and (18)—(21), a direct computation shows

2 Ffo
—Apa Ve = (C£2%eag(we+1)<pe + ey — %) &2 Fetrex) (26)
Cele
2
Cel 7o
_ARZ(PS = (Wgeas(WSJrl)(Pe +C§’%YSWS _ Szi“é‘) e2f(X5+r5x)' (27)

Since |ye| < 1 and lim,_o —Ap2 Y = 0, we have by the elliptic estimate to (26) that
limg_o We = y in CL (R?), where y is a bounded harmonic function in R?. Note that
v (0) = limg_ ye (0) = 1. It follows from the Liouville theorem that y = 1 in R?.
That is to say (22) holds.
Note that @g (x) < @: (0) =0 for any x € Us. Applying (19) and the elliptic
estimate to (27), we obtain (23), where ¢ satisfies
—Ag2 = "™ in R?,

¢(0) =0=sup o,
RZ
/ Pdx < 2.
R2

By the uniqueness theorem in Chen-Li [5], we have (24). Moreover, a simple calcula-
tion gives

/ e Pdx = 2. (28)
]RZ

For any fixed R >0, let By ={x €Bgr: %z +rex € B, } and B = {x € Bg: % +rex €
B, }., we have

1
/ 0y = lim | y2e%e(1HVe)ee gy
ER BS

£—0J/Bp
. L 5 g2
= lim —lge ™ edx
£=0 By, (32) Ae
. 1 2 . 1 )
< lim —ii2e%"edx + lim —iiZe% e dy.
e=0JBE (%) Ae e=0/By, (%) Ae

This inequality together with [y, ﬁgeo‘f’;gdx < Ae and (28) gives

. . 1 2

lim lim — e dy = 1,
R—tee—0.JBL (%) Ae

. . 1 2

lim lim — 2% e dy = 1.

R—+oe0e—0 BRre (%e) Ae

That is to say (25) holds. Then we have the lemma. [J
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Next we discuss the convergence behavior of ue away from xo. Denote u, g =
min{ Bce,ue} € WH2 (2, g) for any real number 0 < 8 < 1. Following ([29], Lemma

3.6), we get
lim || Ve |3 = B-
e—0 stepll2
LEMMA 4. Letting Ae be defined by (12), we obtain

A
limsup F2"€(ug) = Area(Z) + lim —;:
£—0 e—0 cg

and

. Ae L 2
lim — = lim lim e%"edv,.
£-0 g Rodeoe—=0Jo-1(BE (%))

Proof. Recalling (12) and (29), for any real number 0 < f8 < 1, one gets

F2™¢(u.) — Area(X) :/ (eagu% —1)dvy+ (eO‘E”% -

{x€Ziug <Pce} {x€Ziug>Pee}

</( ocsuzﬁ 1)d ”3 auzd
e &b — Vet = e credy
s ¢ B2 ¢

/{er: ug>Pce}t

2 A
</eaeusﬁ agugdvgﬁ—%
) B?cz

- 1/r N l/s Ae
I Eug 5 A
< (/Ze *ﬁdvg> (/Z Uy dvg> + B

(29)

(30)

(€29

1)dv,

2
By (5) and (29), ¢®"«8 is bounded in L" (X,g) for some r > 1. Then letting € — 0

first, and then § — 1, we obtain

A
limsup F2™ € (u) — Area(Z) < limsup —; .
£—0 e—0 Cg

According to ¢g = maxstte, (12) and Lemma 2, we have

e 1
F2¢(ug) — Area(X) >

£ 2
— — — [ uzdv
2 2 e%Ve
CS CS

that is to say
li 2nT—¢€ .. Afg
imsup F"*(ug) — Area(Z) > liminf —-.
£—0 e—0 Cg

Combining (32) and (33), one gets (30).

(32)

(33)
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Applying (12) and (18)—(21), we obtain

s

Rrg

O dy, — / 0t (x) 21 () g
(%)) ore (Fe)

_ rgeaecg (x)eocg (e (x)+1) @ (x) e2f(f£+r£x) dx

B (0)
A 1 )

g / e (e () 1) @e(x) 2 (Retrex) g
¢z JB(0) Be

Letting € — O first and then R — +oo, we have (31) by (23)-(25). O

Next we consider the properties of cgue. Using the similar idea of ([29], Lemma
3.9), one gets

&cgugeas"%dvg — &y, (34)

Ae

After a slight modification of ([31], Lemma 4.8), we have

LEMMA 5. Assume u € C (X) is a solution of Aqu = f(x) in (2,8) and satisfies
lul[1 < collf]l1. Then for any 1 < q <2, there holds ||Vqu| 4 < C(q,c0,Z, &) || f]1-

LEMMA 6. Forany 1 < q <2, ceue is bounded in W"4(X,g). Moreover, there
holds

cette — G weakly in W (Z,g), V1 < ¢ < 2,
2
cette — G strongly in L¥ (£,g), V1 < s < 2—q,
—q
cellg — G in Clloc (Z\{x0}),

where G is a Green function satisfying

1 .
AgG—(SXO—f—O{G—m 1nZ7
G
% =0on 82\{X0}, (35)
Gdv, =0.
o

Proof. Tt follows from (12) that

Ag (cette) = &ceueeo‘s“g + Yecette — ce BE. (36)
A,g 2’8
According to (12) and (34), we have
Celle 1 /ﬁs Qeti? 1
= — eledy, = — (1 1)). 37
Ae Area(Z) Js 2 £ 8T Area(3) (1+0:(1)) 37)
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In view of Lemma 2, (12), (15), (34), (36) and (37), we have Ag (ceue) is bounded in
L'(Z,g). From Lemma 5, there holds c¢u is boundedin W'4(X, g) forany 1 < g <?2.
Then ceue — G weakly in W4 (2, g) forany 1 < g <2 and ceue — G strongly in
L*(%,g) forany 1 <s<2q/(2—q).

We choose a cut-off function p in C*(X), which is equal to 0 in Bs(xo) and
equal to 1 in £\ Bys(xo) such that limg_g ||V, (pue)||3 = 0. Hence there holds

2.2
v/ 2 p_ug
/ Jsoeid </ eSOCsH g(p"f)quvg(pug)H% .
Z\By;(x0) Z\By;(x0)

From the Trudinger-Moser inequality (5), €% is bounded in L* (%,g) forsome s > 1.
Applying the elliptic estimate and the compact embedding theorem to (36), we obtain
cette — G in CL(Z\ {x0}). Testing (36) by ¢ € C! (X), we obtain (35). [

loc

Applying the elliptic estimate, we can decompose G as the form
1
G:—;ln|x—x0|+AxO+G(x), (38)
where Ay, is a constant only on xo and ¢(x) € C~ (X) with 6 (xp) = 0.

Step 3. Upper bound estimate

To derive an upper bound of sup,. »» F2* (1), we use the capacity estimate, which
was first used by Li [14] in this topic.

LEMMA 7. There holds

n
sup F2%(u) < Area(Z) + —e' 2%,
uc.s 2

Proof. We take an isothermal coordinate system (U, ¢) near xo such that ¢(xp) =
0, ¢(U) C R and ¢(UNJT) C IRZ. In such coordinates, the metric g has the
representation g = e/ (dx% +dx§) and f is a smooth function with f(0) = 0. Denote
flg = Ug O (Z)’1 . We claim that

A T
im = < —e' T, (39)
£—0 Cg 2
To confirm this claim, we set a = sup 9B R2 e and b = 1nfa]BR,€ rR2 Ue for suffi-

ciently small 6 > 0 and some fixed R > 0. According to (23), (24), (38) and Lemma
6, one gets

1 /1 1
a:—<5m3+m“mgn+%00,

1 1 T
—eet— [ ——1 (1 —R2> 1
b cg+c ( 2nn +2 + 0¢( )),
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where 05(1) — 0 as § — 0 and 0(1) — 0 as € — 0. It follows from a direct compu-
tation that

m(a—b)* = me+2In8 —2mA, —In (1+ ng) tos(1) +og(l).  (40)
Define a function space

dil
- 12 . o —
W= {0 W12 (833 ) 5 s =g = 5

= O} 5
ORIN(B5\Brre )

where v denotes the outward unit normal vector on ami . Applying the direct method

of variation, we obtain inf,cw, , fW\BE |Vgau|?dx can be attained by some function
’ 3 e

m(x) € Wy, with Agam(x) = 0. We can check that

_a(In|x| —In(Rre)) +b(Ind —In|x|)

mx) = Ind — In(Rre)
and
24 n(a—b)*
/IB%}\IB%X,S |Vgam(x)|~dx = 5 —Tn(Rre) (41)

Recalling (12) and (18), we have

1. A 1
Ind —In(Rre) =Ind —InR — 51n ﬁ;g + E(xgcg. (42)

Letting uj = max{a, min{b, de}} € Wy, one gets |Vgpouf| < [Vgaiie| in BY \ By,

for sufficiently small €. According to this and ||Vgue||3 = 1, we obtain

2 2
< 1_/2\(1)1(3*) V| dvg_/q)1(IB+ )|Vg“8‘ dvg. (43)

Rrg
Now we compute f):\qu(zasg) |Vt |*dv, and f‘l’*l(BE@) |Vgute|*dvg. In view of (35)
and (38), we obtain

1.1
V,G[*dv, = —In = + A, Glj3 1 1).
é\¢1(3+) 2G| dvg P n5+ o+ al[Gl3+0e(1) +05(1)

Hence we have by Lemma 6

1 /1 1
Ve dve = = [ =In< +A, G|3 1 1)). @4
Lo g Vot P = 3 (i Gl o) oo(1)) . a9
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It follows from (21), (23) and (24) that

a1 Ty |
/11)1(18* )\Vgug| dvg—g<ﬁln(l+§R)——+08(1)+0R(1) . (45)

Rre 2n

where og(1) — 0 as R — 0. Recalling (40)—(45), we obtain

Ae
2
Ce

In glng—kl—i-ZEAxo—Fo(l),
where o(1) — 0 as € — O first, then R — +e and § — 0. Hence (39) is followed.
Combining (13), (39) and Lemma 4, we finish the proof of the lemma. [

From Lemma 7, the proof of Theorem 1 (ii) follows immediately under the hy-
pothesis of cg — +oo.

4. Existence of the extremal functions

The content in this section is carried out under the condition 0 < a < () and
ce — +oo. Set a cut-off function & € CF (Bare(xo)) with & =1 on Bge(xp) and
Vo€l = O(1/(Re)). Denote T =G+ 'ln|x —xo| —Ay,, where G is defined
as in (38). Let R = —In¢g, then R — 4o and Re — 0 as € — 0. We construct a
blow-up sequence

cz—zlln(l—i-%W)—Fb
r : ) XEBRg()CO),
2+ a|Gj3
G—¢r
D S L %€ Bage(x)\ Bre(w),  (46)
2+ o|G|3
G
—— x € X\ Bage(xo),
2+ al|Gl3

where b and ¢ are constants to be determined later. In order to assure that v € C™ (f) s
we obtain

1 T 1
2 - T p2 __
¢ 2nln(l+ 2R )+b nln(R£)+AxO. 47

It follows from ||Vyve|l, =1 that

1 1. © 1 1
2 _
cc=A — Eln8+%ln§_%+0<ﬁ) +O(Reln(Re)) +o:(1).  (48)

In view of (47) and (48), we have

1 1
b:ﬁ—’_O(ﬁ) + O (Reln(Re)) +o0g (1). (49)
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A delicate and simple calculation shows

HGHz—f—O(Rsln(Re)) _ IGI3+ 0 (ReIn (Re)) (1— a||GII%)7 (50)

=
+a|Gl3 c? ?

Ivel3 = )

which gives on (Bge (x0),8)

2 2 4
— drros||G InR
vaé(1+avg||%)>2ﬂ62+4’”"21“<1+§|x = )‘ ] 2+0<—n4>.
C C

g2

Denote v; = [s vedvy/Area(Z). It is easy to know that v; = O ((Re)?Ing) and v, —
vy € .. On the one hand, by (47)—(50), there holds

2
/ 2rlve—ve) (1+alve—vl3) 4,
Bge(x0)

2
dewbmxo_w 1+2”AX0+0<IHR)+0<IHIHS). (51)

c2 ct R?

On the other hand, from the fact of ¢ >+ 1 for any 7 > 0 and (46), one gets

*\2 *
/ 2R (ve—%) (1+auvrvgu§)dvg
Z\Bge (x0)

2/ 1427 (ve —v)?)dv
Z\sze(xo)( (ve = e )
>Area(2)+2n”G”2 +0 (12R) +0(R*). (52)

It follows from (51) and (52) that
/ezn(vs_vg)2(1+auvg—v;Hg)dvg
b

T 27||G||3
> Area (5) + 561+2nAx0 4 w (1 _ na2HGH%el+2nAxo>
C

Inlng InR 2 9
o) 0 O(R°¢e
ro(%) o) rowe,

According to R = —In¢ and (47), we obtain

FX(ve —vi) > Area(Z) + geHz”A"O. (53)

for sufficiently small & and €. The contradiction between (13) and (53) indicates that
ce must be bounded when ¢ is sufficiently small. When |c¢| < C, using Lebesgue’s
dominated convergence, we have

F3™ (ug) = sup 3" (u).
ues

Moreover, it is easy to see up € C (X) N~ from Lemma 1 and (16). Therefore, we
obtain Theorem 1 (iii).
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