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Abstract. In this paper, on a compact Riemann surface (Σ,g) with smooth boundary ∂Σ , we
concern a Trudinger-Moser inequality with mean value zero. To be exact, let λ1(Σ) denotes
the first eigenvalue of the Laplace-Beltrami operator with respect to the zero mean value condi-
tion and S =

{
u ∈W 1,2(Σ,g) : ‖∇gu‖2

2 � 1 and
∫

Σ udvg = 0
}

, where W 1,2(Σ,g) is the usual
Sobolev space, ‖ · ‖2 denotes the standard L2 -norm and ∇g represent the gradient. By the
method of blow-up analysis, we obtain

sup
u∈S

∫
Σ
e2πu2(1+α‖u‖2

2)dvg < +∞, ∀ 0 � α < λ1(Σ);

when α � λ1(Σ) , the supremum is infinite. Moreover, we prove the supremum is attained by
a function uα ∈ C∞ (Σ)∩S for sufficiently small α > 0 . Based on the similar work in the
Euclidean space, which was accomplished by Lu-Yang [19], we strengthen the result of Yang
[29].

1. Introduction

Let Ω ⊆ R
2 be a smooth bounded domain and W 1,2

0 (Ω) be the completion of
C∞

0 (Ω) under the Sobolev norm ‖∇
R2u‖2

2 =
∫

Ω |∇
R2u|2dx, where ∇

R2 is the gradient
operator on R

2 and ‖ · ‖2 denotes the standard L2 -norm. The classical Trudinger-
Moser inequality [37, 24, 23, 27, 20], as the limit case of the Sobolev embedding, says

sup
u∈W1,2

0 (Ω),‖∇
R2u‖2�1

∫
Ω

eβu2
dx < +∞, ∀ β � 4π . (1)

Moreover, 4π is called the best constant for this inequality in the sense that when
β > 4π , all integrals in (1) are still finite, but the supremum is infinite. It is interesting
to know whether or not the supremum in (1) can be attained. For this topic, we refer the
reader to Carleson-Chang [4], Flucher [12], Lin [18], Struwe [25], Adimurthi-Struwe
[2], Li [15], Yang [28], Zhu [38], Tintarev [26] and the references therein.
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There are many extensions of (1). Adimurthi-Druet [1] generalized (1) to the
following form

sup
u∈W1,2

0 (Ω),‖∇
R2u‖2�1

∫
Ω

e4πu2(1+α‖u‖2
2)dx < +∞, ∀ 0 � α < λ1(Ω), (2)

where λ1(Ω) is the first eigenvalue of the Laplacian with Dirichlet boundary condition
in Ω. This inequality is sharp in the sense that if α � λ1(Ω) , all integrals in (2) are
still finite, but the supremum is infinite. Obviously, (2) is reduced to (1) when α = 0.
Various extensions of the inequality (2) were obtained by Yang [28, 33], Tintarev [26]
and Zhu [38] respectively. It was extended by Lu-Yang [19] to a version, namely

sup
u∈W1,2(Ω),

∫
Ω udx=0,‖∇

R2u‖2�1

∫
Ω

e2πu2(1+α‖u‖2
2)dx < +∞, ∀ 0 � α < λ 1(Ω), (3)

where λ 1(Ω) denotes the first nonzero Neumann eigenvalue of the Laplacian opera-
tor. This inequality is sharp in the sense that all integrals in (3) are still finite when
α � λ 1(Ω) , but the supremum is infinite. Moreover, for sufficiently small α > 0, the
supremum is attained.

Trudinger-Moser inequalities were introduced on Riemannian manifolds by Aubin
[3], Cherrier [6] and Fontana [13]. In particular, let (Σ,g) be a 2-dimensional compact
Riemann surface, W 1,2(Σ,g) the completion of C∞(Σ) under the norm ‖u‖2

W1,2(Σ,g) =∫
Σ(u2 + |∇gu|2)dvg , where ∇g stands for the gradient operator on (Σ,g) . When (Σ,g)

is closed Riemann surface, there holds

sup
u∈W1,2(Σ,g),

∫
Σ udvg=0,‖∇gu‖2�1

∫
Σ
eβu2

dvg < +∞, ∀ β � 4π . (4)

Moreover, 4π is called the best constant for this inequality in the sense that when β >
4π , all integrals in (4) are still finite, but the supremum is infinite. Based on the works
of Ding-Jost-Li-Wang [9] and Adimurthi-Struwe [2], Li [14, 15] proved the existence
of extremals for the supremum in (4). When (Σ,g) is a compact Riemann surface with
smooth boundary ∂Σ , Yang [29] obtained the same inequality as (4), namely

sup
u∈W1,2(Σ,g),

∫
Σ udvg=0,‖∇gu‖2�1

∫
Σ
eβu2

dvg < +∞, ∀ β � 2π . (5)

This inequality is sharp in the sense that if β > 2π , all integrals in (5) are still finite,
but the supremum is infinite. Furthermore, the supremum in (5) can be attained.

In view of the inequality (3) in the Euclidean space, we strengthen (5) on (Σ,g)
with smooth boundary ∂Σ . Precisely we have the following:

THEOREM 1. Let (Σ,g) be a compact Riemann surface with smooth boundary
∂Σ and

λ1(Σ) = inf
u∈W1,2(Σ,g),

∫
Σ udvg=0,u �≡0

‖∇gu‖2
2

‖u‖2
2

(6)
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be the first eigenvalue of the Laplace-Beltrami operator Δg with respect to the zero
mean value condition. Denote a function space

S =
{

u ∈W 1,2(Σ,g) :
∫

Σ
udvg = 0, ‖∇gu‖2 � 1

}

and

Fβ
α (u) =

∫
Σ
eβu2(1+α‖u‖2

2)dvg.

Then there hold
(i) for any α � λ1(Σ), supu∈S F2π

α (u) = +∞;
(ii) for any 0 � α < λ1(Σ) , supu∈S F2π

α (u) < +∞;
(iii) for sufficiently small α > 0 , supu∈S F2π

α (u) can be attained by some function
uα ∈C∞ (Σ)∩S .

For the proof, we employ the method of blow-up analysis, which was originally
used by Carleson-Chang[4], Ding-Jost-Li-Wang [9], Adimurthi-Struwe [2], Li [14],
and Yang [31, 33]. For related works, we refer the reader to Adimurthi-Druet [1], do
Ó-de Souza [8, 10], Nguyen [21, 22], Li-Yang [16], Zhu [39], Fang-Zhang [11], Yang-
Zhu [35, 36] and Csató-Nguyen-Roy [7]. We should point out that the blow-up occurs
on the boundary ∂Σ in our case. The key ingredient in the proof of our theorem is
the isothermal coordinate system on ∂Σ . Though such coordinates have been used
by many authors (see for example Li-Liu [17] and Yang [29, 30, 32]), the proof of
its existence around has just been provided by Yang-Zhou [34] via Riemann mapping
theorems involving the boundary.

The remaining part of this paper will be organized as follows: In Section 2, we
prove (Theorem 1, ( i)) by constructing test functions; in Section 3, we prove (Theorem
1, ( ii)) by using blow-up analysis; in Section 4, we construct a sequence of functions
to show (Theorem 1, ( iii)) holds. Hereafter we do not distinguish the sequence and the
subsequence; moreover, we often denote various constants by the same C .

2. The case of α � λ1(Σ)

In this section, we select test functions to prove Theorem 1 ( i). Let λ1(Σ) be
defined by (6) and α � λ1(Σ) . From a direct method of variation, one obtains that
there exists some function u0 ∈ S , such that

λ1(Σ) =
∥∥∇gu0

∥∥2
2 . (7)

By a direct calculation, we derive that u0 satisfies the Euler-Lagrange equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δgu0 = λ1(Σ)u0 in Σ,

∂u0

∂n
= 0 on ∂Σ,∫

Σ
u0dvg = 0,

∫
Σ
u2

0dvg = 1,

(8)
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where n denotes the outward unit normal vector on ∂Σ . Applying elliptic estimates
to (8), we obtain u0 ∈ S ∩C∞ (Σ) . Consequently, there exist a point x0 ∈ ∂Σ with
u0(x0) > 0 and a neighborhood U of x0 with u0(x) � u0(x0)/2 in U . Let δ =(
tε
√− lnε

)−1
, where tε > 0 such that −t2ε lnε → +∞ and t2ε

√− lnε → 0 as ε → 0.
Following ([34], Lemma 4), we can take an isothermal coordinate system

(
φ−1

(
B

+
δ
)
,φ
)

such that φ(x0) = 0 and φ−1
(
B

+
δ
) ⊂ U , where B

+
δ = {(x1, x2) ∈ R

2 : x2
1 + x2

2 �
δ 2, x2 > 0} . In such coordinates, the metric g has the representation g = e2 f

(
dx2

1 +dx2
2

)
and f is a smooth function with f (0) = 0.

On B
+
δ , we define a sequence of functions

ũε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
− lnε
2π

, |x| � δ
√

ε ,√
−2

π lnε
ln

δ
|x| , δ

√
ε < |x| � δ .

Moreover, we set

uε =

⎧⎨
⎩

ũε ◦φ in φ−1
(

B
+
δ

)
,

sε ϕ in Σ\φ−1
(
B

+
δ

)
,

(9)

where ϕ ∈ C∞
0

(
Σ\φ−1(Bδ )

)
and sε is a real number such that

∫
Σ uεdvg = 0. Set

vε = uε + tεu0 . According to (7)–(9), we have

‖vε‖2
2 = ‖uε‖2

2 + t2ε ‖u0‖2
2 +2tε

∫
Σ
uεu0dvg = t2ε +2tε

∫
Σ
uεu0dvg +O

(−1
lnε

)
(10)

and ∥∥∇gvε
∥∥2

2 = 1+ λ1(Σ)t2ε +2λ1(Σ)tε
∫

Σ
uεu0dvg +O

(−1
lnε

)
. (11)

Take v∗ε = vε/‖∇gvε‖2
2 ∈S . From α � λ1(Σ) and (9)–(11), we have that on φ−1

(
B

+
δ
√

ε

)

2πv∗2ε

(
1+ α ‖v∗ε‖2

2

)
=2πv2

ε
1∥∥∇gvε
∥∥2

2

(
1+ α

‖vε‖2
2∥∥∇gvε
∥∥2

2

)

�
(

2πt2ε u2
0− lnε +4πtε

√
− lnε
2π

u0

)(
1+o

(
tε√− lnε

))

�− lnε + tε
√− lnε

(√
8πu0 +o(1)

)
.

Hence there holds∫
Σ
e2πv∗2ε (1+α‖v∗ε‖2

2)dvg �
∫

φ−1
(
B

+
δ
√

ε

) 1
ε
etε

√− lnε(
√

8πu0+o(1))dvg

�C(δ )etε
√− lnε(

√
2πu0(x0)+o(1))
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for some positive constant C(δ ). In view of u0(x0) > 0, we get supu∈S F2π
α (u) �

limε→0 F2π
α (v∗ε) = +∞ . This completes the proof of Theorem 1 ( i).

3. The case of 0 � α < λ1(Σ)

In this section, we will prove Theorem 1 ( ii) in three steps: firstly, we consider the
existence of maximizers for subcritical functionals and give the corresponding Euler-
Lagrange equation; secondly, we deal with the asymptotic behavior of the maximiz-
ers through blow-up analysis; finally, we deduce an upper bound of the supremum
supu∈S F2π

α (u) under the assumption that blow-up occurs.

Step 1. Existence of maximizers for subcritical functionals

Using the similar proof of ([19], Step 1), we have the following

LEMMA 1. For any ε > 0 , there exists some function uε ∈ S ∩C∞ (Σ) with
‖∇guε‖2

2 = 1 , such that

sup
u∈S

F2π−ε
α (u) = F2π−ε

α (uε).

Moreover, uε satisfies the Euler-Lagrange equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε
∂n

= 0 on ∂Σ,

Δguε =
βε
λε

uεe
αε u2

ε + γεuε − με
λε

in Σ,

αε = (2π − ε)
(
1+ α‖uε‖2

2

)
, βε =

1+ α‖uε‖2
2

1+2α‖uε‖2
2

,

γε =
α

1+2α‖uε‖2
2

, λε =
∫

Σ
u2

εe
αε u2

ε dvg, με =
βε

Area(Σ)

∫
Σ
uεe

αε u2
ε dvg,

(12)

where Area(Σ) =
∫

Σ 1dvg .

It follows from Lebesgue’s dominated convergence theorem that

lim
ε→0

F2π−ε
α (uε) = sup

u∈S
F2π

α (u). (13)

Seeing the fact of 1+ tet � et for any t � 0, we get

λε =
∫

Σ
u2

εe
αεu2

ε dvg � 1
αε

∫
Σ

(
eαεu2

ε −1
)

dvg,

which together with (13) leads to

liminf
ε→0

λε > 0. (14)
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In view of (12), (14) and βε � 1, we obtain∣∣∣∣με
λε

∣∣∣∣ � 1
λεArea(Σ)

(∫
{u∈Σ:|uε |�1}

|uε |eαε u2
ε dvg +

∫
{u∈Σ:|uε |<1}

|uε |eαε u2
ε dvg

)

� 1
λεArea(Σ)

(∫
{u∈Σ:|uε |�1}

u2
εe

αε u2
ε dvg +

∫
{u∈Σ:|uε |<1}

eαε u2
ε dvg

)

� 1
Area(Σ)

+
eαε

λε
� C. (15)

Step 2. Blow-up analysis

Since uε is bounded in W 1,2(Σ,g) , there exists some function u0 ∈ W 1,2(Σ,g)
such that ⎧⎪⎨

⎪⎩
uε ⇀ u0 weakly in W 1,2 (Σ,g) ,

uε → u0 strongly in Lp (Σ,g) ,∀p > 1,

uε → u0 a.e. in Σ.

(16)

Then we have
∫

Σ u0dvg = 0 and ‖∇gu0‖2
2 � 1.

We set cε = |uε(xε)| = maxΣ |uε | . We first assume that cε is bounded, which
together with elliptic estimates completes the proof of Theorem 1 ( ii). Without loss of
generality, we assume

cε = uε(xε) → +∞ (17)

and xε → x0 as ε → 0. Applying maximum principle to (12), we have x0 ∈ ∂Σ .
Following ([34], Lemma 4), we can take an isothermal coordinate system (U,φ)

near x0 , such that φ(x0) = 0, φ(U) = B
+
r and φ(U ∩∂Σ) = ∂R

2
+∩Br for some fixed

r > 0, where R
2
+ =

{
x = (x1,x2) ∈ R

2 : x2 > 0
}

. In such coordinates, the metric g
has the representation g = e2 f

(
dx2

1 +dx2
2

)
and f is a smooth function with f (0) = 0.

Denote x̃ε = φ(xε ) and ũε = uε ◦φ−1 . To proceed, we observe an energy concentration
phenomenon of uε .

LEMMA 2. There hold u0 = 0 and |∇guε |2dvg ⇀ δx0 in sense of measure, where
δx0 stands for the Dirac measure centered at x0 .

Proof. We first prove u0 ≡ 0. Suppose not, we can see that 0 < ‖∇gu0‖2
2 � 1.

Letting η = ‖∇gu0‖2
2 , one has ‖∇g (uε −u0)‖2

2 → 1−η < 1 and 1+ α ‖uε‖2
2 → 1+

α ‖u0‖2
2 � 1+ η as ε → 0. For sufficiently small ε , we obtain

(
1+ α ‖uε‖2

2

)
‖∇g (uε −u0)‖2

2 � 2−η2

2
< 1.
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From the Hölder inequality, there holds

∫
Σ
eqαε u2

ε dvg �
∫

Σ
eq(1+ 1

δ )αε u2
0+q(1+δ )αε (uε−u0)

2
dvg

�C

⎛
⎝∫

Σ
e
sq(1+δ )(2π−ε) 2−η2

2
(uε−u0)

2

‖∇g(uε−u0)‖22 dvg

⎞
⎠

1
s

for sufficiently small δ , some r, s, q > 1 satisfying sq(1 + δ )(2− η2)/2 < 1 and
1/r+1/s = 1. In view of the Trudinger-Moser inequality (5), we get eαεu2

ε is bounded
in Lq (Σ,g) . Hence Δguε is bounded in some Lq (Σ,g) from (12) and (15). Applying
the elliptic estimate to (12), one gets uε is uniformly bounded, which contradicts our
assumption cε → +∞ . That is to say u0 ≡ 0.

Next we prove |∇guε |2dvg ⇀ δx0 in sense of measure. Suppose not. There exists
some r > 0 such that

lim
ε→0

∫
Br(x0)

∣∣∇guε
∣∣2dvg := η < 1,

where Br(x0) is a geodesic ball centered at x0 with radius r . For sufficiently small ε ,
we can see that

∫
Br(x0) |∇guε |2dvg � (η +1)/2 < 1. Then we choose a cut-off function

ρ in C1
0

(
φ
(
Br0(x0)

))
, which is equal to 1 in φ

(
Br0/2(x0)

)
such that

∫
φ(Br(x0))

|∇g (ρ ũε) |2dx � η +3
4

< 1.

Hence we obtain ∫
Br/2(x0)

eαε qu2
ε dvg =

∫
φ(Br/2(x0))

eαε qũ2
ε e2 f dx

� C
∫

φ(Br(x0))
eαε q(ρ ũε )2dx

� C
∫

φ(Br(x0))
e

αε q η+3
4

(ρũε )2

‖∇g(ρũε )‖22 dx.

From the Trudinger-Moser inequality (5), we get eαεu2
ε is bounded in Lq

(
Br/2(x0),g

)
for any q > 1 satisfying q(η + 3)/4 � 1. Applying the elliptic estimate to (12), one
gets uε is uniformly bounded in Br/4 (x0) . This contradicts (17) and ends the proof of
the lemma. �

Denote

rε =

√
λε

βεc2
εeαεc2

ε
. (18)
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Using cε = maxΣ |uε | , the inequality (5), (12) and Lemma 2, we have

r2
εc

k
ε =

ck
ε

βεc2
εeαε c2

ε

∫
Σ
u2

εe
αε u2

ε dvg

� ck
ε

(1+oε(1))e2π(1−δ )c2
ε

∫
Σ
e(2π+oε(1))(1−δ )u2

ε dvg

� C
ck

ε

e2π(1−δ )c2
ε
,

where k is an integer and 0 < δ < 1. It follows from (17) that

lim
ε→0

r2
εc

k
ε = 0. (19)

Define

ũε(x) =

{
uε ◦φ−1 (x1,x2) , x2 � 0,

uε ◦φ−1 (x1,−x2) , x2 < 0,

and

f̃ (x) =

{
f (x1,x2) , x2 � 0,

f (x1,−x2) , x2 < 0,

on Br . Let Uε =
{
x ∈ R

2 : x̃ε + rεx ∈ Br
}

. Then one has Uε →R
2 asε → 0 from (19).

Define two blowing up functions on Uε ,

ψε(x) =
ũ(x̃ε + rεx)

cε
, (20)

ϕε (x) = cε (ũ(x̃ε + rεx)− cε) . (21)

Now we study the convergence behavior of ψε and ϕε .

LEMMA 3. Up to a subsequence, there hold

lim
ε→0

ψε(x) = 1 in C1
loc(R

2), (22)

lim
ε→0

ϕε(x) = ϕ(x) in C1
loc(R

2), (23)

where

ϕ (x) = − 1
2π

ln
(
1+

π
2
|x|2
)

(24)

and ∫
R2

+

e4πϕ(x)dx = 1. (25)
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Proof. By (12) and (18)–(21), a direct computation shows

−Δ
R2ψε =

(
c−2

ε ψεe
αε(ψε +1)ϕε + r2

ε γε ψε − r2
ε με

cε λε

)
e2 f̃ (x̃ε+rε x), (26)

−Δ
R2ϕε =

(
ψεe

αε (ψε+1)ϕε + c2
εr

2
ε γε ψε − cε r2

ε με
λε

)
e2 f̃ (x̃ε+rε x). (27)

Since |ψε | � 1 and limε→0−Δ
R2ψε = 0, we have by the elliptic estimate to (26) that

limε→0 ψε = ψ in C1
loc(R

2) , where ψ is a bounded harmonic function in R
2 . Note that

ψ (0) = limε→0 ψε (0) = 1. It follows from the Liouville theorem that ψ ≡ 1 in R
2 .

That is to say (22) holds.
Note that ϕε (x) � ϕε (0) = 0 for any x ∈ Uε . Applying (19) and the elliptic

estimate to (27), we obtain (23), where ϕ satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δ
R2ϕ = e4πϕ in R

2,

ϕ (0) = 0 = sup
R2

ϕ ,

∫
R2

e4πϕdx � 2.

By the uniqueness theorem in Chen-Li [5], we have (24). Moreover, a simple calcula-
tion gives

∫
R2

e4πϕdx = 2. (28)

For any fixed R > 0, let B
′
R = {x ∈ BR : x̃ε + rεx ∈ B

+
r } and B

′′
R = {x ∈ BR : x̃ε + rεx ∈

B
−
r } , we have

∫
BR

e4πϕdx = lim
ε→0

∫
BR

1
βε

ψ2
ε eαε(1+ψε )ϕε dx

= lim
ε→0

∫
BRrε (x̃ε )

1
λε

ũ2
εe

αε ũ2
ε dx

� lim
ε→0

∫
B

+
Rrε (x̃ε )

1
λε

ũ2
εe

αε ũ2
ε dx+ lim

ε→0

∫
B
−
Rrε (x̃ε )

1
λε

ũ2
εe

αε ũ2
ε dx.

This inequality together with
∫
Uε

ũ2
εe

αε ũ2
ε dx � λε and (28) gives

lim
R→+∞

lim
ε→0

∫
B

+
Rrε (x̃ε )

1
λε

ũ2
εe

αε ũ2
ε dx = 1,

lim
R→+∞

lim
ε→0

∫
B
−
Rrε (x̃ε )

1
λε

ũ2
εe

αε ũ2
ε dx = 1.

That is to say (25) holds. Then we have the lemma. �
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Next we discuss the convergence behavior of uε away from x0 . Denote uε,β =
min{βcε ,uε} ∈W 1,2 (Σ,g) for any real number 0 < β < 1. Following ([29], Lemma
3.6), we get

lim
ε→0

∥∥∇guε,β
∥∥2

2 = β . (29)

LEMMA 4. Letting λε be defined by (12), we obtain

limsup
ε→0

F2π−ε
α (uε) = Area(Σ)+ lim

ε→0

λε
c2

ε
(30)

and

lim
ε→0

λε
c2

ε
= lim

R→+∞
lim
ε→0

∫
φ−1(B

+
Rrε (x̃ε ))

eαε u2
ε dvg. (31)

Proof. Recalling (12) and (29), for any real number 0 < β < 1, one gets

F2π−ε
α (uε)−Area(Σ) =

∫
{x∈Σ:uε �β cε}

(eαε u2
ε −1)dvg +

∫
{x∈Σ:uε>β cε}

(eαε u2
ε −1)dvg

�
∫

Σ
(eαε u2

ε,β −1)dvg +
u2

ε
β 2c2

ε

∫
{x∈Σ:uε >β cε}

eαε u2
ε dvg

�
∫

Σ
eαε u2

ε,β αεu
2
εdvg +

λε
β 2c2

ε

�
(∫

Σ
erαε u2

ε,β dvg

)1/r(∫
Σ

αs
εu

2s
ε dvg

)1/s

+
λε

β 2c2
ε
.

By (5) and (29), eαε u2
ε,β is bounded in Lr (Σ,g) for some r > 1. Then letting ε → 0

first, and then β → 1, we obtain

limsup
ε→0

F2π−ε
α (uε)−Area(Σ) � limsup

ε→0

λε
c2

ε
. (32)

According to cε = maxΣuε , (12) and Lemma 2, we have

F2π−ε
α (uε)−Area(Σ) � λε

c2
ε
− 1

c2
ε

∫
Σ
u2

εdvg,

that is to say

limsup
ε→0

F2π−ε
α (uε)−Area(Σ) � liminf

ε→0

λε

c2
ε
. (33)

Combining (32) and (33), one gets (30).
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Applying (12) and (18)–(21), we obtain∫
φ−1(B

+
Rrε (x̃ε ))

eαεu2
ε dvg =

∫
B

+
Rrε (x̃ε )

eαε u2
ε (x)e2 f (x)dx

=
∫

B
+
R (0)

r2
εe

αε c2
ε (x)eαε (ψε (x)+1)ϕε (x)e2 f (x̃ε+rε x)dx

=
λε
c2

ε

∫
B

+
R (0)

1
βε

eαε(ψε (x)+1)ϕε (x)e2 f (x̃ε+rε x)dx.

Letting ε → 0 first and then R → +∞ , we have (31) by (23)–(25). �
Next we consider the properties of cεuε . Using the similar idea of ([29], Lemma

3.9), one gets

βε
λε

cεuεe
αε u2

ε dvg ⇀ δx0 . (34)

After a slight modification of ([31], Lemma 4.8), we have

LEMMA 5. Assume u ∈C∞ (Σ) is a solution of Δgu = f (x) in (Σ,g) and satisfies
‖u‖1 � c0‖ f‖1 . Then for any 1 < q < 2 , there holds ‖∇gu‖q � C (q,c0,Σ, g)‖ f‖1.

LEMMA 6. For any 1 < q < 2 , cεuε is bounded in W 1,q(Σ,g) . Moreover, there
holds ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
cεuε ⇀ G weakly in W 1,q (Σ,g) , ∀1 < q < 2,

cεuε → G strongly in Ls (Σ,g) , ∀1 < s <
2q

2−q
,

cεuε → G in C1
loc (Σ\ {x0}),

where G is a Green function satisfying⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΔgG = δx0 + αG− 1
Area(Σ)

in Σ,

∂G
∂n

= 0 on ∂Σ\ {x0} ,∫
Σ
Gdvg = 0.

(35)

Proof. It follows from (12) that

Δg (cεuε) =
βε

λε
cεuεe

αε u2
ε + γεcεuε − cε

με

λε
. (36)

According to (12) and (34), we have∣∣∣∣cε με
λε

∣∣∣∣= 1
Area(Σ)

∫
Σ

βε
λε

cεuεe
αε u2

ε dvg =
1

Area(Σ)
(1+oε (1)) . (37)
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In view of Lemma 2, (12), (15), (34), (36) and (37), we have Δg (cεuε) is bounded in
L1(Σ,g) . From Lemma 5, there holds cεuε is bounded in W 1,q(Σ,g) for any 1 < q < 2.
Then cεuε ⇀ G weakly in W 1,q (Σ,g) for any 1 < q < 2 and cεuε → G strongly in
Ls(Σ,g) for any 1 < s < 2q/(2−q).

We choose a cut-off function ρ in C∞ (Σ) , which is equal to 0 in Bδ (x0) and
equal to 1 in Σ\B2δ(x0) such that limε→0 ‖∇g (ρuε)‖2

2 = 0. Hence there holds

∫
Σ\B2δ (x0)

esαε u2
ε dx �

∫
Σ\B2δ (x0)

e
sαε‖∇g(ρuε )‖2

2
ρ2u2

ε
‖∇g(ρuε )‖22 dx.

From the Trudinger-Moser inequality (5), eαε u2
ε is bounded in Ls (Σ,g) for some s > 1.

Applying the elliptic estimate and the compact embedding theorem to (36), we obtain
cεuε → G in C1

loc (Σ\ {x0}) . Testing (36) by φ ∈C1 (Σ) , we obtain (35). �
Applying the elliptic estimate, we can decompose G as the form

G = − 1
π

ln |x− x0|+Ax0 + σ(x), (38)

where Ax0 is a constant only on x0 and σ(x) ∈C∞ (Σ) with σ(x0) = 0.

Step 3. Upper bound estimate

To derive an upper bound of supu∈S F2π
α (u) , we use the capacity estimate, which

was first used by Li [14] in this topic.

LEMMA 7. There holds

sup
u∈S

F2π
α (u) � Area(Σ)+

π
2

e1+2πAx0 .

Proof. We take an isothermal coordinate system (U,φ) near x0 such that φ(x0) =
0, φ(U) ⊂ R

2
+ and φ(U ∩ ∂Σ) ⊂ ∂R

2
+ . In such coordinates, the metric g has the

representation g = e2 f
(
dx2

1 +dx2
2

)
and f is a smooth function with f (0) = 0. Denote

ũε = uε ◦φ−1 . We claim that

lim
ε→0

λε
c2

ε
� π

2
e1+2πAx0 . (39)

To confirm this claim, we set a = sup∂Bδ∩R2
+
ũε and b = inf∂BRrε ∩R2

+
ũε for suffi-

ciently small δ > 0 and some fixed R > 0. According to (23), (24), (38) and Lemma
6, one gets

a =
1
cε

(
1
π

ln
1
δ

+Ax0 +oδ(1)+oε(1)
)

,

b = cε +
1
cε

(
− 1

2π
ln
(
1+

π
2

R2
)

+oε(1)
)

,
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where oδ (1) → 0 as δ → 0 and oε(1) → 0 as ε → 0. It follows from a direct compu-
tation that

π(a−b)2 = πc2
ε +2lnδ −2πAx0 − ln

(
1+

π
2

R2
)

+oδ (1)+oε(1). (40)

Define a function space

Wa,b =

{
ũ ∈W 1,2 (

B
+
δ \B

+
Rrε

)
: ũ|∂Bδ∩R

2
+

= a, ũ|∂BRrε ∩R
2
+

= b,
∂ ũ
∂v

∣∣∣∣
∂R

2
+∩(Bδ \BRrε )

= 0

}
,

where v denotes the outward unit normal vector on ∂R
2
+ . Applying the direct method

of variation, we obtain infu∈Wa,b

∫
B

+
δ \B

+
Rrε

|∇
R2u|2dx can be attained by some function

m(x) ∈Wa,b with Δ
R2m(x) = 0. We can check that

m(x) =
a(ln |x|− ln(Rrε ))+b(lnδ − ln |x|)

lnδ − ln(Rrε )

and

∫
B

+
δ \B

+
Rrε

|∇
R2m(x)|2dx =

π(a−b)2

lnδ − ln(Rrε)
. (41)

Recalling (12) and (18), we have

lnδ − ln(Rrε) = lnδ − lnR− 1
2

ln
λε

βεc2
ε

+
1
2

αεc
2
ε . (42)

Letting u∗ε = max{a, min{b, ũε}} ∈ Wa,b , one gets |∇
R2u∗ε | � |∇

R2 ũε | in B
+
δ \B

+
Rrε

for sufficiently small ε . According to this and ‖∇guε‖2
2 = 1, we obtain

∫
B

+
δ \B

+
Rrε

|∇
R2m(x)|2dx �

∫
B

+
δ \B

+
Rrε

|∇
R2u∗ε(x)|2dx

� 1−
∫

Σ\φ−1(B
+
δ )

|∇guε |2dvg−
∫

φ−1(B
+
Rrε )

|∇guε |2dvg. (43)

Now we compute
∫

Σ\φ−1(B
+
δ ) |∇guε |2dvg and

∫
φ−1(B

+
Rrε )

|∇guε |2dvg . In view of (35)

and (38), we obtain

∫
Σ\φ−1(B

+
δ )

|∇gG|2dvg =
1
π

ln
1
δ

+Ax0 + α‖G‖2
2 +oε(1)+oδ(1).

Hence we have by Lemma 6

∫
Σ\φ−1(B

+
δ )

|∇guε |2dvg =
1
c2

ε

(
1
π

ln
1
δ

+Ax0 + α‖G‖2
2 +oε(1)+oδ(1)

)
. (44)
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It follows from (21), (23) and (24) that∫
φ−1(B

+
Rrε )

|∇guε |2dvg =
1
c2

ε

(
1
2π

ln
(
1+

π
2

R2
)
− 1

2π
+oε (1)+oR (1)

)
, (45)

where oR(1) → 0 as R → +∞ . Recalling (40)–(45), we obtain

ln
λε
c2

ε
� ln

π
2

+1+2πAx0 +o(1),

where o(1) → 0 as ε → 0 first, then R → +∞ and δ → 0. Hence (39) is followed.
Combining (13), (39) and Lemma 4, we finish the proof of the lemma. �

From Lemma 7, the proof of Theorem 1 ( ii) follows immediately under the hy-
pothesis of cε → +∞ .

4. Existence of the extremal functions

The content in this section is carried out under the condition 0 � α < λ1(Σ) and
cε → +∞ . Set a cut-off function ξ ∈ C∞

0 (B2Rε(x0)) with ξ = 1 on BRε(x0) and
‖∇gξ‖L∞ = O(1/(Rε)) . Denote τ = G + π−1 ln |x− x0| − Ax0 , where G is defined
as in (38). Let R = − lnε , then R → +∞ and Rε → 0 as ε → 0. We construct a
blow-up sequence

vε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2− 1
2π ln

(
1+ π

2
|x−x0|2

ε2

)
+b√

c2 + α‖G‖2
2

, x ∈ BRε (x0),

G− ξ τ√
c2 + α‖G‖2

2

, x ∈ B2Rε(x0)\BRε(x0),

G√
c2 + α‖G‖2

2

, x ∈ Σ\B2Rε(x0),

(46)

where b and c are constants to be determined later. In order to assure that vε ∈C∞ (Σ) ,
we obtain

c2− 1
2π

ln
(
1+

π
2

R2
)

+b = − 1
π

ln(Rε)+Ax0 . (47)

It follows from ‖∇gvε‖2 = 1 that

c2 = Ax0 −
1
π

lnε +
1
2π

ln
π
2
− 1

2π
+O

(
1
R2

)
+O(Rε ln(Rε))+oε (1) . (48)

In view of (47) and (48), we have

b =
1
2π

+O

(
1
R2

)
+O(Rε ln(Rε))+oε (1) . (49)
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A delicate and simple calculation shows

‖vε‖2
2 =

‖G‖2
2 +O(Rε ln(Rε))
c2 + α‖G‖2

2

� ‖G‖2
2 +O(Rε ln(Rε))

c2

(
1− α‖G‖2

2

c2

)
, (50)

which gives on (BRε (x0) ,g)

2πv2
ε
(
1+ α‖vε‖2

2

)
� 2πc2 +4πb−2ln

(
1+

π
2
|x− x0|2

ε2

)
− 4πα2‖G‖4

2

c2 +O

(
lnR
c4

)
.

Denote v∗ε =
∫

Σ vεdvg/Area(Σ) . It is easy to know that v∗ε = O
(
(Rε)2 lnε

)
and vε −

v∗ε ∈ S . On the one hand, by (47)–(50), there holds∫
BRε (x0)

e2π(vε−v∗ε )2(1+α‖vε−v∗ε‖2
2)dvg

�π
2

e1+2πAx0 − 2π2α2‖G‖4
2

c2 e1+2πAx0 +O

(
lnR
c4

)
+O

(
ln lnε
R2

)
. (51)

On the other hand, from the fact of et � t +1 for any t � 0 and (46), one gets∫
Σ\BRε (x0)

e2π(vε−v∗ε )2(1+α‖vε−v∗ε‖2
2)dvg

�
∫

Σ\B2Rε (x0)

(
1+2π(vε − v∗ε)

2)dvg

�Area(Σ)+2π
‖G‖2

2

c2 +O

(
lnR
c4

)
+O

(
R2ε2) . (52)

It follows from (51) and (52) that∫
Σ
e2π(vε−v∗ε )2(1+α‖vε−v∗ε‖2

2)dvg

�Area(Σ)+
π
2

e1+2πAx0 +
2π‖G‖2

2

c2

(
1−πα2‖G‖2

2e
1+2πAx0

)
+O

(
ln lnε
R2

)
+O

(
lnR
c4

)
+O

(
R2ε2) .

According to R = − lnε and (47), we obtain

F2π
α (vε − v∗ε) > Area(Σ)+

π
2

e1+2πAx0 . (53)

for sufficiently small α and ε . The contradiction between (13) and (53) indicates that
cε must be bounded when α is sufficiently small. When |cε | � C , using Lebesgue’s
dominated convergence, we have

F2π
α (u0) = sup

u∈S
F2π

α (u).

Moreover, it is easy to see u0 ∈ C∞ (Σ)∩S from Lemma 1 and (16). Therefore, we
obtain Theorem 1 ( iii).
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