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LOWER BOUNDS FOR THE SPREAD OF A NONNEGATIVE MATRIX
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Abstract. Given an integer n � 2 and a real number a � 0 , let Cn(a) be the collection of all
nonnegative n×n matrices A = [ai, j ]ni, j=1 such that a = min1�i�n ai,i and r(A) > a , where r(A)
denotes the spectral radius of A . We prove some lower bounds for the spread s(A) of A ∈ Cn(a)
that is defined as the maximum distance between any two eigenvalues of A . In particular, we
prove that

s(A) >
2

2+
√

2n
(r(A)−a)

for all A ∈ Cn(a) .

1. Introduction

Let A be a complex n×n matrix with the spectrum {λ1,λ2, . . . ,λn} . The spectral
radius and the trace of A are denoted by r(A) and tr(A) , respectively. The spread s(A)
of A is the maximum distance between any two eigenvalues, that is,

s(A) = max
i, j

|λi −λ j| .

This quantity was introduced by Mirsky [5], and it has been studied by several authors;
see e.g. [4] and the references therein. Note that s(λA) = |λ |s(A) for every complex
number λ .

Given an integer n � 2 and a real number a � 0, let Cn(a) be the collection of
all nonnegative n×n matrices A = [ai, j]ni, j=1 such that a = min1�i�n ai,i and r(A) > a .
We are searching for lower bounds for the spread of A ∈ Cn(a) . In [1] we have already
proved some lower bounds for the spread of A ∈ Cn(0) . The present paper improves
and extends some results from [1]. We will also restrict our attention to a special subset
of Cn(a) . Given an integer n � 2 and a real number a � 0, let Dn(a) be the collection
of all matrices in Cn(a) having exactly two distinct eigenvalues.
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2. The case of A ∈ Cn(0)

For the convenience of the reader, we first recall relevant results from [1]. We
begin with [1, Proposition 2.1].

PROPOSITION 2.1. If A ∈ Cn(0) , then

s(A) � 1
n

r(A) .

Let A be a nonnegative n× n matrix and let sk := tr(Ak) for k ∈ N . The JLL-
inequalities (discovered independently by Loewy and London [3], and Johnson [2])
state that

sm
k � nm−1skm

for all positive integers k and m . These inequalities follow easily from Hölder’s in-
equality. A slight modification of their proof gives the following inequalities; see [1,
Proposition 2.2].

PROPOSITION 2.2. If A ∈ Cn(0) , then

sm
1 � (n−1)m−1sm

for all m ∈ N .

Applying Proposition 2.2 one can show the following theorem; see [1, Theorem
2.3].

THEOREM 2.3. If A ∈ Cn(0) , then

s(A) >
2

4+
√

2(n+3)
r(A)

for n � 6 ,

s(A) � 5

8+
√

74
r(A)

for n = 5 , and

s(A) � 1
3

r(A)

for n = 4 .

For n∈ {2,3} one can show sharp bounds for the spread of a matrix in Cn(0) ; see
[1, Proposition 2.4].

PROPOSITION 2.4. If A ∈ C2(0) , then s(A) � r(A); if A ∈ C3(0) , then s(A) �
3
4 r(A) . Both bounds are sharp.
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The following sharp lower bound for the spread of a matrix in Dn(0) is proved in
[1, Theorem 2.5].

THEOREM 2.5. If A ∈ Dn(0) , then

s(A) � n
2(n−1)

r(A).

Moreover, this bound is sharp, i.e., there is a (necessarily irreducible) matrix A∈Dn(0)
such that s(A) = n

2(n−1) r(A) .

Here we recall that a nonnegative n× n matrix is irreducible, if there exists no
permutation matrix P such that

PT AP =
[
A11 A12

0 A22

]
,

where A11 and A22 are square matrices.
Using Proposition 2.2 we now improve Theorem 2.3.

THEOREM 2.6. If n � 3 and A ∈ Cn(0) , then

s(A) >
2

2+
√

2n
r(A) .

Proof. With no loss of generality we can assume that r(A) = 1. Since the result
is true if s(A) � 1, we may also assume that s := s(A) ∈ [0,1) . Let λ1 = r(A) = 1, λ2 ,
λ3 , . . . , λn be the spectrum of A . By Proposition 2.2, we have(

n

∑
i=1

λi

)2

= s2
1 � (n−1)s2 = (n−1)

n

∑
i=1

λ 2
i

or (
1+

n

∑
i=2

λi

)2

� (n−1)

(
1+

n

∑
i=2

λ 2
i

)

or

1+2
n

∑
i=2

λi +

(
n

∑
i=2

λi

)2

� (n−1)+ (n−1)
n

∑
i=2

λ 2
i .

Since
n−1

∑
i=2

n

∑
j=i+1

(λi −λ j)2 +

(
n

∑
i=2

λi

)2

= (n−1)
n

∑
i=2

λ 2
i ,

this inequality can be rewritten to the form

1+2
n

∑
i=2

λi � (n−1)+
n−1

∑
i=2

n

∑
j=i+1

(λi −λ j)2. (1)
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The right-hand side of (1) is clearly at most (n−1)+ (n−1)(n−2)s2/2. To obtain a
lower bound for the left-hand side of (1), we observe that

n

∑
i=2

λi = Re
n

∑
i=2

λi =
n

∑
i=2

Reλi � (n−1)(1− s) ,

since Re (1−λi) � s , and so Reλi � 1− s . Therefore, the inequality (1) gives that

(n−1)+
(n−1)(n−2)

2
s2 � 1+2(n−1)(1− s).

This implies the inequality

2(n−1)+ (n−1)(n−2)s2 > 4(n−1)(1− s)

or
(n−2)s2 +4s−2 > 0.

It follows that

s >
−4+

√
8n

2(n−2)
=

2

2+
√

2n
.

This completes the proof. �
The following proposition shows the lower bound for the spread of a matrix in

C4(0) that is better than the bound in Theorem 2.6 for n = 4.

PROPOSITION 2.7. If A ∈ C4(0) , then

s(A) � 4

3+
√

17
r(A) .

Proof. As in the proof of Theorem 2.6, we can assume that r(A) = 1 and s :=
s(A) ∈ [0,1) . Let λ1 = r(A) = 1, λ2 , λ3 , and λ4 be the spectrum of A . Then the
inequality (1) gives that

2(λ2 + λ3 + λ4) � 2+(λ2−λ3)2 +(λ2−λ4)2 +(λ3−λ4)2 . (2)

We claim that
(λ2−λ3)2 +(λ2−λ4)2 +(λ3−λ4)2 � 2s2 .

Suppose first that all eigenvalues of A are real, so that we can assume that 1 = λ1 �
λ2 � λ3 � λ4 � 0. Then

(λ2−λ3)2 +(λ3−λ4)2 � ((λ2 −λ3)+ (λ3−λ4))2 = (λ2 −λ4)2 � s2,

and so the claim follows. Suppose now that two eigenvalues of A are complex, so
that we can assume that λ3 = λ 2 and λ4 ∈ R . Then (λ2−λ3)2 = (λ2 −λ 2)2 < 0 and
(λ2−λ4)2 +(λ3−λ4)2 � 2s2 , and so the claim follows also in this case.
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Therefore, the right-hand side of (2) is at most 2+ 2s2 , and the left-hand side of
(2) is at least 6(1− s) . Consequently, we have

1+ s2 � 3(1− s)

or
s2 +3s−2 � 0.

It follows that

s >
−3+

√
17

2
=

4

3+
√

17
,

completing the proof. �

3. The case of A ∈ Cn(a)

We start with an easy extension of Proposition 2.1.

PROPOSITION 3.1. Given an integer n � 2 and a real number a � 0 , let A ∈
Cn(a) . Then

s(A) � 1
n
(r(A)−a) .

Proof. Let B := A− aI , where I denotes the identity matrix. Then B ∈ Cn(0) .
Since r(B) is the Perron eigenvalue of B , r(B) + a is the Perron eigenvalue of A =
B+aI , and so r(A) = r(B)+a . By Proposition 2.1,

s(A) = s(B) � 1
n

r(B) =
1
n
(r(A)−a) ,

completing the proof. �
In a similar manner we can extend Theorem 2.6, Proposition 2.4, Proposition 2.7

and Theorem 2.5.

THEOREM 3.2. Given an integer n � 3 and a real number a � 0 , let A ∈ Cn(a) .
Then

s(A) >
2

2+
√

2n
(r(A)−a) .

Proof. It is clear that B := A−aI ∈ Cn(0) , s(A) = s(B) and r(A) = r(B)+a . By
Theorem 2.6, we have

s(B) >
2

2+
√

2n
r(B) ,

and so

s(A) >
2

2+
√

2n
(r(A)−a) . �
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PROPOSITION 3.3. Let a be a nonnegative number. If A ∈ C2(a) , then s(A) �
r(A)−a. If A ∈ C3(a) , then s(A) � 3

4(r(A)−a) . Both bounds are sharp.

Proof. Let A∈C2(a) . Then B := A−aI ∈C2(0) , s(A) = s(B) and r(A) = r(B)+
a . By Proposition 2.4, we have s(B) � r(B) , and so s(A) � r(A)− a . The diagonal
matrix diag(a,a+1)∈ C2(a) shows that this lower bound can be achieved.

Similarly, we can prove the second assertion of the proposition. To prove that the
bound is sharp, we define a matrix

A =

⎡
⎣a 2 0

0 a+3 1
2 0 a+3

⎤
⎦ ∈ C3(a).

Its spectrum is equal to {a+4,a+1,a+1} , so that s(A) = 3 and r(A) = a+4. �

PROPOSITION 3.4. Let a be a nonnegative number. If A ∈ C4(a) , then

s(A) � 4

3+
√

17
(r(A)−a).

THEOREM 3.5. Let a be a nonnegative number and n � 2 an integer. If A ∈
Dn(a) , then

s(A) � n
2(n−1)

(r(A)−a).

Moreover, this bound can be achieved, i.e., there is a (necessarily irreducible) matrix
A0 ∈ Dn(a) such that s(A0) = n

2(n−1) (r(A0)−a) .

Proof. Let A ∈ Dn(a) . Then B := A− aI ∈ Dn(0) , s(A) = s(B) and r(A) =
r(B)+a . Now, the desired lower bound for the spread follows from Theorem 2.5.

To show that the lower bound can be achieved, as in [1] we define the matrix
A = [ai, j]ni, j=1 with nonzero elements: ai,i+1 = n− i for i = 1,2, . . . ,n− 1, ai,i = n
for i = 2,3, . . . ,n , and ai, j = 2 if i− j is an even positive integer. We also introduce
the upper triangular matrix U = [ui, j]ni, j=1 with nonzero elements: ui,i+1 = n− i for
i = 1,2, . . . ,n−1, u1,1 = 2(n−1) and ui,i = n−2 for i = 2,3, . . . ,n . It is shown in [1]
that A and U are similar matrices. Put A0 := A+aI ∈Dn(a) . Then r(A0) = r(A)+a =
r(U)+a = 2(n−1)+a and s(A0) = s(A) = s(U) = n . �

Using the matrix A from the last proof we can show the following result.

PROPOSITION 3.6. Given an integer n � 2 and real numbers a � 0 and d >
0 , there exists a matrix in Dn(a) the spectrum of which is contained in the interval
[a+(n−2)d,a+2(n−1)d] .

Proof. Let us keep the notation of the last proof. Then B := dA+aI ∈ Dn(a) and
the spectrum of B is equal to {a+(n−2)d,a+2(n−1)d} . �
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It would be interesting to know the following infimum

kn := inf

{
s(A)
r(A)

: A ∈ Cn(0)
}

.

By Theorem 2.6, we have kn � 2
2+

√
2n

.
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