LOWER BOUNDS FOR THE SPREAD OF A NONNEGATIVE MATRIX

Roman Drnovšek

(Communicated by J.-C. Bourin)

Abstract

Given an integer $n \geqslant 2$ and a real number $a \geqslant 0$, let $\mathscr{C}_{n}(a)$ be the collection of all nonnegative $n \times n$ matrices $A=\left[a_{i, j} j_{i, j=1}^{n}\right.$ such that $a=\min _{1 \leqslant i \leqslant n} a_{i, i}$ and $r(A)>a$, where $r(A)$ denotes the spectral radius of A. We prove some lower bounds for the spread $s(A)$ of $A \in \mathscr{C}_{n}(a)$ that is defined as the maximum distance between any two eigenvalues of A. In particular, we prove that $$
s(A)>\frac{2}{2+\sqrt{2 n}}(r(A)-a)
$$ for all $A \in \mathscr{C}_{n}(a)$.

1. Introduction

Let A be a complex $n \times n$ matrix with the spectrum $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. The spectral radius and the trace of A are denoted by $r(A)$ and $\operatorname{tr}(A)$, respectively. The spread $s(A)$ of A is the maximum distance between any two eigenvalues, that is,

$$
s(A)=\max _{i, j}\left|\lambda_{i}-\lambda_{j}\right| .
$$

This quantity was introduced by Mirsky [5], and it has been studied by several authors; see e.g. [4] and the references therein. Note that $s(\lambda A)=|\lambda| s(A)$ for every complex number λ.

Given an integer $n \geqslant 2$ and a real number $a \geqslant 0$, let $\mathscr{C}_{n}(a)$ be the collection of all nonnegative $n \times n$ matrices $A=\left[a_{i, j}\right]_{i, j=1}^{n}$ such that $a=\min _{1 \leqslant i \leqslant n} a_{i, i}$ and $r(A)>a$. We are searching for lower bounds for the spread of $A \in \mathscr{C}_{n}(a)$. In [1] we have already proved some lower bounds for the spread of $A \in \mathscr{C}_{n}(0)$. The present paper improves and extends some results from [1]. We will also restrict our attention to a special subset of $\mathscr{C}_{n}(a)$. Given an integer $n \geqslant 2$ and a real number $a \geqslant 0$, let $\mathscr{D}_{n}(a)$ be the collection of all matrices in $\mathscr{C}_{n}(a)$ having exactly two distinct eigenvalues.

[^0]
2. The case of $A \in \mathscr{C}_{n}(0)$

For the convenience of the reader, we first recall relevant results from [1]. We begin with [1, Proposition 2.1].

Proposition 2.1. If $A \in \mathscr{C}_{n}(0)$, then

$$
s(A) \geqslant \frac{1}{n} r(A) .
$$

Let A be a nonnegative $n \times n$ matrix and let $s_{k}:=\operatorname{tr}\left(A^{k}\right)$ for $k \in \mathbb{N}$. The JLLinequalities (discovered independently by Loewy and London [3], and Johnson [2]) state that

$$
s_{k}^{m} \leqslant n^{m-1} s_{k m}
$$

for all positive integers k and m. These inequalities follow easily from Hölder's inequality. A slight modification of their proof gives the following inequalities; see [1, Proposition 2.2].

Proposition 2.2. If $A \in \mathscr{C}_{n}(0)$, then

$$
s_{1}^{m} \leqslant(n-1)^{m-1} s_{m}
$$

for all $m \in \mathbb{N}$.
Applying Proposition 2.2 one can show the following theorem; see [1, Theorem 2.3].

Theorem 2.3. If $A \in \mathscr{C}_{n}(0)$, then

$$
s(A)>\frac{2}{4+\sqrt{2(n+3)}} r(A)
$$

for $n \geqslant 6$,

$$
s(A) \geqslant \frac{5}{8+\sqrt{74}} r(A)
$$

for $n=5$, and

$$
s(A) \geqslant \frac{1}{3} r(A)
$$

for $n=4$.
For $n \in\{2,3\}$ one can show sharp bounds for the spread of a matrix in $\mathscr{C}_{n}(0)$; see [1, Proposition 2.4].

Proposition 2.4. If $A \in \mathscr{C}_{2}(0)$, then $s(A) \geqslant r(A)$; if $A \in \mathscr{C}_{3}(0)$, then $s(A) \geqslant$ $\frac{3}{4} r(A)$. Both bounds are sharp.

The following sharp lower bound for the spread of a matrix in $\mathscr{D}_{n}(0)$ is proved in [1, Theorem 2.5].

THEOREM 2.5. If $A \in \mathscr{D}_{n}(0)$, then

$$
s(A) \geqslant \frac{n}{2(n-1)} r(A)
$$

Moreover, this bound is sharp, i.e., there is a (necessarily irreducible) matrix $A \in \mathscr{D}_{n}(0)$ such that $s(A)=\frac{n}{2(n-1)} r(A)$.

Here we recall that a nonnegative $n \times n$ matrix is irreducible, if there exists no permutation matrix P such that

$$
P^{T} A P=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right],
$$

where A_{11} and A_{22} are square matrices.
Using Proposition 2.2 we now improve Theorem 2.3.
THEOREM 2.6. If $n \geqslant 3$ and $A \in \mathscr{C}_{n}(0)$, then

$$
s(A)>\frac{2}{2+\sqrt{2 n}} r(A) .
$$

Proof. With no loss of generality we can assume that $r(A)=1$. Since the result is true if $s(A) \geqslant 1$, we may also assume that $s:=s(A) \in[0,1)$. Let $\lambda_{1}=r(A)=1, \lambda_{2}$, $\lambda_{3}, \ldots, \lambda_{n}$ be the spectrum of A. By Proposition 2.2, we have

$$
\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2}=s_{1}^{2} \leqslant(n-1) s_{2}=(n-1) \sum_{i=1}^{n} \lambda_{i}^{2}
$$

or

$$
\left(1+\sum_{i=2}^{n} \lambda_{i}\right)^{2} \leqslant(n-1)\left(1+\sum_{i=2}^{n} \lambda_{i}^{2}\right)
$$

or

$$
1+2 \sum_{i=2}^{n} \lambda_{i}+\left(\sum_{i=2}^{n} \lambda_{i}\right)^{2} \leqslant(n-1)+(n-1) \sum_{i=2}^{n} \lambda_{i}^{2}
$$

Since

$$
\sum_{i=2}^{n-1} \sum_{j=i+1}^{n}\left(\lambda_{i}-\lambda_{j}\right)^{2}+\left(\sum_{i=2}^{n} \lambda_{i}\right)^{2}=(n-1) \sum_{i=2}^{n} \lambda_{i}^{2}
$$

this inequality can be rewritten to the form

$$
\begin{equation*}
1+2 \sum_{i=2}^{n} \lambda_{i} \leqslant(n-1)+\sum_{i=2}^{n-1} \sum_{j=i+1}^{n}\left(\lambda_{i}-\lambda_{j}\right)^{2} \tag{1}
\end{equation*}
$$

The right-hand side of (1) is clearly at most $(n-1)+(n-1)(n-2) s^{2} / 2$. To obtain a lower bound for the left-hand side of (1), we observe that

$$
\sum_{i=2}^{n} \lambda_{i}=\operatorname{Re} \sum_{i=2}^{n} \lambda_{i}=\sum_{i=2}^{n} \operatorname{Re} \lambda_{i} \geqslant(n-1)(1-s)
$$

since $\operatorname{Re}\left(1-\lambda_{i}\right) \leqslant s$, and so $\operatorname{Re} \lambda_{i} \geqslant 1-s$. Therefore, the inequality (1) gives that

$$
(n-1)+\frac{(n-1)(n-2)}{2} s^{2} \geqslant 1+2(n-1)(1-s)
$$

This implies the inequality

$$
2(n-1)+(n-1)(n-2) s^{2}>4(n-1)(1-s)
$$

or

$$
(n-2) s^{2}+4 s-2>0
$$

It follows that

$$
s>\frac{-4+\sqrt{8 n}}{2(n-2)}=\frac{2}{2+\sqrt{2 n}}
$$

This completes the proof.
The following proposition shows the lower bound for the spread of a matrix in $\mathscr{C}_{4}(0)$ that is better than the bound in Theorem 2.6 for $n=4$.

Proposition 2.7. If $A \in \mathscr{C}_{4}(0)$, then

$$
s(A) \geqslant \frac{4}{3+\sqrt{17}} r(A) .
$$

Proof. As in the proof of Theorem 2.6, we can assume that $r(A)=1$ and $s:=$ $s(A) \in[0,1)$. Let $\lambda_{1}=r(A)=1, \lambda_{2}, \lambda_{3}$, and λ_{4} be the spectrum of A. Then the inequality (1) gives that

$$
\begin{equation*}
2\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right) \leqslant 2+\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\lambda_{2}-\lambda_{4}\right)^{2}+\left(\lambda_{3}-\lambda_{4}\right)^{2} \tag{2}
\end{equation*}
$$

We claim that

$$
\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\lambda_{2}-\lambda_{4}\right)^{2}+\left(\lambda_{3}-\lambda_{4}\right)^{2} \leqslant 2 s^{2}
$$

Suppose first that all eigenvalues of A are real, so that we can assume that $1=\lambda_{1} \geqslant$ $\lambda_{2} \geqslant \lambda_{3} \geqslant \lambda_{4} \geqslant 0$. Then

$$
\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\lambda_{3}-\lambda_{4}\right)^{2} \leqslant\left(\left(\lambda_{2}-\lambda_{3}\right)+\left(\lambda_{3}-\lambda_{4}\right)\right)^{2}=\left(\lambda_{2}-\lambda_{4}\right)^{2} \leqslant s^{2}
$$

and so the claim follows. Suppose now that two eigenvalues of A are complex, so that we can assume that $\lambda_{3}=\bar{\lambda}_{2}$ and $\lambda_{4} \in \mathbb{R}$. Then $\left(\lambda_{2}-\lambda_{3}\right)^{2}=\left(\lambda_{2}-\bar{\lambda}_{2}\right)^{2}<0$ and $\left(\lambda_{2}-\lambda_{4}\right)^{2}+\left(\lambda_{3}-\lambda_{4}\right)^{2} \leqslant 2 s^{2}$, and so the claim follows also in this case.

Therefore, the right-hand side of (2) is at most $2+2 s^{2}$, and the left-hand side of (2) is at least $6(1-s)$. Consequently, we have

$$
1+s^{2} \geqslant 3(1-s)
$$

or

$$
s^{2}+3 s-2 \geqslant 0
$$

It follows that

$$
s>\frac{-3+\sqrt{17}}{2}=\frac{4}{3+\sqrt{17}}
$$

completing the proof.

3. The case of $A \in \mathscr{C}_{n}(a)$

We start with an easy extension of Proposition 2.1.

Proposition 3.1. Given an integer $n \geqslant 2$ and a real number $a \geqslant 0$, let $A \in$ $\mathscr{C}_{n}(a)$. Then

$$
s(A) \geqslant \frac{1}{n}(r(A)-a) .
$$

Proof. Let $B:=A-a I$, where I denotes the identity matrix. Then $B \in \mathscr{C}_{n}(0)$. Since $r(B)$ is the Perron eigenvalue of $B, r(B)+a$ is the Perron eigenvalue of $A=$ $B+a I$, and so $r(A)=r(B)+a$. By Proposition 2.1,

$$
s(A)=s(B) \geqslant \frac{1}{n} r(B)=\frac{1}{n}(r(A)-a),
$$

completing the proof.
In a similar manner we can extend Theorem 2.6, Proposition 2.4, Proposition 2.7 and Theorem 2.5.

THEOREM 3.2. Given an integer $n \geqslant 3$ and a real number $a \geqslant 0$, let $A \in \mathscr{C}_{n}(a)$. Then

$$
s(A)>\frac{2}{2+\sqrt{2 n}}(r(A)-a)
$$

Proof. It is clear that $B:=A-a I \in \mathscr{C}_{n}(0), s(A)=s(B)$ and $r(A)=r(B)+a$. By Theorem 2.6, we have

$$
s(B)>\frac{2}{2+\sqrt{2 n}} r(B)
$$

and so

$$
s(A)>\frac{2}{2+\sqrt{2 n}}(r(A)-a) .
$$

Proposition 3.3. Let a be a nonnegative number. If $A \in \mathscr{C}_{2}(a)$, then $s(A) \geqslant$ $r(A)-a$. If $A \in \mathscr{C}_{3}(a)$, then $s(A) \geqslant \frac{3}{4}(r(A)-a)$. Both bounds are sharp.

Proof. Let $A \in \mathscr{C}_{2}(a)$. Then $B:=A-a I \in \mathscr{C}_{2}(0), s(A)=s(B)$ and $r(A)=r(B)+$ a. By Proposition 2.4, we have $s(B) \geqslant r(B)$, and so $s(A) \geqslant r(A)-a$. The diagonal matrix $\operatorname{diag}(a, a+1) \in \mathscr{C}_{2}(a)$ shows that this lower bound can be achieved.

Similarly, we can prove the second assertion of the proposition. To prove that the bound is sharp, we define a matrix

$$
A=\left[\begin{array}{ccc}
a & 2 & 0 \\
0 & a+3 & 1 \\
2 & 0 & a+3
\end{array}\right] \in \mathscr{C}_{3}(a)
$$

Its spectrum is equal to $\{a+4, a+1, a+1\}$, so that $s(A)=3$ and $r(A)=a+4$.
Proposition 3.4. Let a be a nonnegative number. If $A \in \mathscr{C} 4(a)$, then

$$
s(A) \geqslant \frac{4}{3+\sqrt{17}}(r(A)-a)
$$

THEOREM 3.5. Let a be a nonnegative number and $n \geqslant 2$ an integer. If $A \in$ $\mathscr{D}_{n}(a)$, then

$$
s(A) \geqslant \frac{n}{2(n-1)}(r(A)-a)
$$

Moreover, this bound can be achieved, i.e., there is a (necessarily irreducible) matrix $A_{0} \in \mathscr{D}_{n}(a)$ such that $s\left(A_{0}\right)=\frac{n}{2(n-1)}\left(r\left(A_{0}\right)-a\right)$.

Proof. Let $A \in \mathscr{D}_{n}(a)$. Then $B:=A-a I \in \mathscr{D}_{n}(0), s(A)=s(B)$ and $r(A)=$ $r(B)+a$. Now, the desired lower bound for the spread follows from Theorem 2.5.

To show that the lower bound can be achieved, as in [1] we define the matrix $A=\left[a_{i, j}\right]_{i, j=1}^{n}$ with nonzero elements: $a_{i, i+1}=n-i$ for $i=1,2, \ldots, n-1, a_{i, i}=n$ for $i=2,3, \ldots, n$, and $a_{i, j}=2$ if $i-j$ is an even positive integer. We also introduce the upper triangular matrix $U=\left[u_{i, j}\right]_{i, j=1}^{n}$ with nonzero elements: $u_{i, i+1}=n-i$ for $i=1,2, \ldots, n-1, u_{1,1}=2(n-1)$ and $u_{i, i}=n-2$ for $i=2,3, \ldots, n$. It is shown in [1] that A and U are similar matrices. Put $A_{0}:=A+a I \in \mathscr{D}_{n}(a)$. Then $r\left(A_{0}\right)=r(A)+a=$ $r(U)+a=2(n-1)+a$ and $s\left(A_{0}\right)=s(A)=s(U)=n$.

Using the matrix A from the last proof we can show the following result.
Proposition 3.6. Given an integer $n \geqslant 2$ and real numbers $a \geqslant 0$ and $d>$ 0 , there exists a matrix in $\mathscr{D}_{n}(a)$ the spectrum of which is contained in the interval $[a+(n-2) d, a+2(n-1) d]$.

Proof. Let us keep the notation of the last proof. Then $B:=d A+a I \in \mathscr{D}_{n}(a)$ and the spectrum of B is equal to $\{a+(n-2) d, a+2(n-1) d\}$.

It would be interesting to know the following infimum

$$
k_{n}:=\inf \left\{\frac{s(A)}{r(A)}: A \in \mathscr{C}_{n}(0)\right\}
$$

By Theorem 2.6, we have $k_{n} \geqslant \frac{2}{2+\sqrt{2 n}}$.

REFERENCES

[1] R. DRNOVŠEK, The spread of the spectrum of a nonnegative matrix with a zero diagonal element, Linear Algebra Appl. 439 (2013), 2381-2387.
[2] C. R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (1981), 113-130.
[3] R. LOEWY, D. LONDON, A note on an inverse eigenvalue problem for nonnegative matrices, Linear and Multilinear Algebra 6 (1978/79), 83-90.
[4] J. K. MERIKOSKi, R. KUmAR, Characterizations and lower bounds for the spread of a normal matrix, Linear Algebra Appl. 364 (2003), 13-31.
[5] L. Mirsky, The spread of a matrix, Mathematika 3 (1956), 127-130.
(Received January 10, 2021)
Roman Drnovšek Department of Mathematics
Faculty of Mathematics and Physics, University of Ljubljana
Jadranska 19, SI-1000 Ljubljana, Slovenia
e-mail: roman.drnovsek@fmf.uni-lj.si

[^0]: Mathematics subject classification (2020): 15B48, 15A42.
 Keywords and phrases: Nonnegative matrices, spectrum, spread, spectral radius.
 The author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0222).

