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Abstract. In this paper, we present a Picone identity for the p(x) -Laplace equations and establish
some applications of this formula, such as Caccioppoli inequalities, nonexistence of positive
supersolutions, domain monotonicity property, uniqueness and simplicity of the first eigenvalue,
Hardy type inequality, Barta-type inequality, a nonlinear system with singular nonlinearity and
Sturmian comparison theorem for the p(x) -Laplace equations.

1. Introduction

Over the past 20 years, the differential equations and variational problems with
non-standard growth conditions and the corresponding function spaces with variable
exponents have been a very attractive field. We can refer to the book [1] and the survey
papers [2] for a quite comprehensive bibliography on this topics. These investigations
are stimulated mainly by the development of the study of electrorheological fluids [3],
image restoration [4] and the theory of nonlinear elasticity [5]–[7]. In this paper, our
work is closed with this subject.

If u and v are differentiable functions such that u � 0 and v > 0, then

|∇u|2 − u2

v2 |∇v|2 −2
u
v

∇u∇v = |∇u|2 −∇
(u2

v

)
∇v � 0. (1)

This formula is known as Picone’s identity which was first established by Picone
(see [8, 9]). Since the classical Picone’s identity was introduced, its extensions and ap-
plications have been extensively investigated. For instance, we refer to Kreith [10, 11],
Swanson [12, 13] for linear differential equations, and Berestycki, Capuzzo-Dolcetta
and Nirenberg [14] who proved a generalized Picone’s identity in order to study in-
definite superlinear elliptic problems. Tyagi [15] also proved a nonlinear analogue of
classical Picone’s identity (1) and gave its applications. In order to apply Picone’s
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identity to p -Laplace equations, the classical Picone’s identity (1) is extended to the
following formula by Allegretto and Huang [16] (see also [17]).

|∇u|p +(p−1)
up

vp |∇v|p− p
up−1

vp−1 |∇u|p−2∇u∇v

= |∇u|p−|∇v|p−2∇
(

up

vp−1

)
∇v,

(2)

where u � 0 and v > 0. Bal [19] also extended Tyagi’s in [15] to deal with p -
Laplace equations. Dwivedi [23] gave a generalized nonlinear Picone’s identity for
the p -Laplacian. Jaroš established Picone’s identity for Finsler p -Laplacian [20] and
A-harmonic operators [21]. Niu, Zhang and Luo obtained Picone’s identity for p -
Laplace equations on Heisenberg group in [27]. Lately, Dwivedi and Tyagi [24] proved
a nonlinear a nonlinear analogue of classical Picone’s identity for biharmonic operator
on Heisenberg group and dealt with some applications. Picone’s identities have played
an important role in the study of qualitative properties of solutions of differential equa-
tions. Its applications are mainly focused on follows: Caccioppoli inequality, Morse in-
dex and Hardy type inequality, nonexistence of positive supersolutions, uniqueness and
simplicity of the first eigenvalue, domain monotonicity property of the first eigenvalue,
Barta-type inequality, Sturmian comparison and oscillation etc. For these applications,
we can also refer the reader to [18, 22, 25, 26, 28, 29, 30, 31, 32, 33].

In Picone’s identity (2), p is a positive constant. If p is a variable exponent, that is,
p is a positive function of variable x . whether is there a formula similar to (2)? In other
words, can one establish Picone’s identity for the p(x)-Laplacian? The related ques-
tions had already been discussed in a few articals (see [34, 35, 36, 38, 39, 40, 41, 49]).
It is noted that p(x)-Laplace equations haven’t the homogeneity, that is, any con-
stant multiple of any non-zero solution of p(x)-Laplace equation isn’t its solution.
However, p -Laplace equations possess this property, and this property plays an im-
portant role in the constant exponents case. In order to remove this “drawback” and
establish Picone’s identity, Yoshida [34] (see also [35, 37, 39]) introduced an extra
term “a(x)(ln|u|) |∇u|p(x)−2 ∇u · ∇p(x)” in quasilinear elliptic equations with p(x)-
Laplacians (or in (3.1a)). It is the purpose of this paper to establish Picone’s identity
for the p(x)-Laplace equations without this extra term, which is an extension of the
identity (2) for the p -Laplace equations.

The paper is organized as follows. In Section 2, we state some preliminaries about
the variable exponent Lebesgue and Sobolev spaces. In Section 3, the more general
Picone’s identity for the p(x)-Laplace equations is proved. Section 4 we give some
applications of this identity.

2. Notations and some preliminary results

In order to deal with the variable exponent problems, we need recall the theory of
variable exponent Lebesgue and Sobolev spaces (see [1, 43, 44]).

Throughout this paper, let Ω ⊂ R
N , with N � 2 be a bounded domain with Lips-
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chitz boundary ∂Ω . For any continuous function p : Ω → (1,∞) we denote

1 < p− := infx∈Ωp(x) � p(x) � supx∈Ω p(x) := p+ < N for all x ∈ Ω. (3)

In the following we introduce the most important condition on the exponent in the
study of variable exponent spaces, the log-Hölder continuity condition.

DEFINITION 1. A function α : Ω → R is locally log-Hölder continuous in Ω if
there exists c1 > 0 such that

|α(x)−α(y)| � c1

log(e+1/|x− y|)
for all x,y ∈ Ω , where the constant c1 is called the local log-Hölder constant.

DEFINITION 2. α satisfies the log-Hölder decay condition if there exist α∞ ∈ R

and a constant c2 > 0 such that

|α(x)−α∞| � c2

log(e+ |x|)
for all x ∈ Ω , where the constant c2 is called the log-Hölder decay constant.

A function α is globally log-Hölder continuous in Ω if it is locally log-Hölder
continuous and satisfies the log-Hölder decay condition.

From then on, assume that

p ∈
{

p
∣∣ 1

p
is globally log-Hölder continuous inΩ

}
, (4)

and denote
P(Ω) =

{
p : p ∈C(Ω)such that(3)and(4)hold

}
.

Define the variable exponent Lebesgue spaces Lp(x)(Ω) by

Lp(x)(Ω) =
{

u|u is a measurable function inΩ such that
∫

Ω
|u(x)|p(x)dx < +∞

}
.

This space is equipped with the Luxemburg norm

|u|p(x) = inf

{
λ > 0;

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣
p(x) dx

p(x)
� 1

}
.

Let the variable exponent Sobolev spaces W 1,p(x)(Ω) defined by

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

with the norm
‖u‖p(x) = |u|p(x) + |∇u|p(x),
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which is equivalent to

‖u‖p(x) = inf

{
λ > 0;

∫
Ω

[∣∣∣ uλ
∣∣∣p(x)

+
∣∣∣∣∇u

λ

∣∣∣∣
p(x)
]

dx
p(x)

� 1

}
.

PROPOSITION 1. Both (Lp(x)(Ω), | · |p(x)) and (W 1,p(x)(Ω),‖ · ‖p(x)) are separa-

ble, reflexive and uniformly convex Banach spaces. Moreover, the space W 1,p(x)
0 (Ω) is

defined as the closure of C∞
0 (Ω) in W 1,p(x)

0 (Ω) .

PROPOSITION 2. Assume that 1 < p(x) < +∞ for all x∈ Ω , a,b � 0 and τ > 0 ,
then the following Young’s inequality holds

abp(x)−1 � 1

p(x)τ p(x)−1
ap(x) +

p(x)−1
p(x)

τbp(x). (5)

Moreover, the equality holds if and only if a = bτ .

PROPOSITION 3. Let ρp(x)(u)=
∫

Ω[|u|p(x)+|∇u|p(x)] dx
p(x) . For any u,uk ∈W 1,p(x)(Ω)

(k = 1,2, . . .) , we have

1. ‖u‖p(x) < 1 (= 1;> 1) ⇔ ρp(x)(u) < 1 (= 1;> 1);

2. ‖u‖p(x) � 1 ⇒ ‖u‖p+

p(x) � ρp(x)(u) � ‖u‖p−
p(x);

3. ‖u‖p(x) � 1 ⇒ ‖u‖p−
p(x) � ρp(x)(u) � ‖u‖p+

p(x);

4. ‖uk −u‖p(x) → 0 ⇔ ρp(x)(uk −u)→ 0.

3. Picone’s identity for the p(x)-Laplace equations

In this section, we will establish Picone’s identity for the following p(x)-Laplace
equations ⎧⎨

⎩
(3.1a) q[u] := div

(
a(x) |∇u|p(x)−2 ∇u

)
+ c(x) |u|p(x)−2 u = 0,

(3.1b) Q[u] := div
(
A(x) |∇u|p(x)−2 ∇u

)
+C(x) |u|p(x)−2 u = 0,

(6)

where a(x) , A(x) ∈C1(Ω;(0,+∞))∩C(Ω;(0,+∞)) and c(x) , C(x) ∈C(Ω;R) .
The main result of this section is as follows.
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THEOREM 1. (Picone’s identity) Assume that u and v are C2 differentiable func-
tions defined in Ω ⊂ R

N with v 	= 0 in Ω , then we have

div

(
ua(x) |∇u|p(x)−2 ∇u− |u|p(x)

|v|p(x)−2 v
A(x) |∇v|p(x)−2 ∇v

)
(7)

= A(x)Φ(u,v)− |u|p(x)

|v|p(x)−2 v

(
ln
∣∣∣u
v

∣∣∣)A(x) |∇v|p(x)−2 ∇v ·∇p

+(a(x)−A(x)) |∇u|p(x)− (c(x)−C(x)) |u|p(x) +uq[u]− |u|p(x)

|v|p(x)−2 v
Q[v],

where

Φ(u,v) = |∇u|p(x)− p(x)
|u|p(x)−2 u

|v|p(x)−2 v
|∇v|p(x)−2 ∇v ·∇u (8)

+(p(x)−1)
∣∣∣∣u∇v

v

∣∣∣∣
p(x)

,

and Φ(u,v) � 0 in Ω . Moreover, Φ(u,v) = 0 a.e. in Ω if and only if u = kv, k ∈ R in
Ω .

Proof. A direct calculation yields

∇

(
|u|p(x)

|v|p(x)−2 v

)
=p(x)

|u|p(x)−2 u

|v|p(x)−2 v
∇u− (p(x)−1)

∣∣∣u
v

∣∣∣p(x)
∇v+

|u|p(x)

|v|p(x)−2 v

(
ln
∣∣∣u
v

∣∣∣)∇p.

It follows from (3.1a) and (3.2a) that

div

(
ua(x) |∇u|p(x)−2 ∇u− |u|p(x)

|v|p(x)−2 v
A(x) |∇v|p(x)−2 ∇v

)

= a(x) |∇u|p(x) +udiv
(
a(x) |∇u|p(x)−2 ∇u

)

− |u|p(x)

|v|p(x)−2 v
div
(
A(x) |∇v|p(x)−2 ∇v

)
−∇

(
|u|p(x)

|v|p(x)−2 v

)(
A(x) |∇v|p(x)−2 ∇v

)

= a(x) |∇u|p(x) +uq[u]− c(x) |u|p(x)− |u|p(x)

|v|p(x)−2 v
Q[v]+C(x) |u|p(x)

+ (p(x)−1)
∣∣∣∣u∇v

v

∣∣∣∣
p(x)

− p(x)
|u|p(x)−2 u

|v|p(x)−2 v
A(x) |∇v|p(x)−2 ∇v ·∇u

− |u|p(x)

|v|p(x)−2 v

(
ln
∣∣∣u
v

∣∣∣)A(x) |∇v|p(x)−2 ∇v ·∇p,

which yields the desired identity (7).
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Then, using Young’s inequality (5), here replacing a with |∇u| , b with
∣∣∣ u∇v

v

∣∣∣ and

τ with 1, it follows

|∇u|
∣∣∣∣u∇v

v

∣∣∣∣
p(x)−1

� 1
p(x)

|∇u|p(x) +
p(x)−1

p(x)

∣∣∣∣u∇v
v

∣∣∣∣
p(x)

. (9)

Therefore,

Φ(u,v) = |∇u|p(x)− p(x)
|u|p(x)−2 u

|v|p(x)−2 v
|∇v|p(x)−2 ∇v ·∇u+(p(x)−1)

∣∣∣∣u∇v
v

∣∣∣∣
p(x)

= |∇u|p(x)− p(x) |∇u|
∣∣∣∣u∇v

v

∣∣∣∣
p(x)−1

+(p(x)−1)
∣∣∣∣u∇v

v

∣∣∣∣
p(x)

+ p(x)
|u∇v|p(x)−2

|v|p(x)−2

(∣∣∣u
v

∇v
∣∣∣ |∇u|− u

v
∇v ·∇u

)
�0

Now, on one hand, if Φ(u,v)(x0) = 0 and u(x0) 	= 0, we must have |∇u| =
∣∣∣ u∇v

v

∣∣∣ and∣∣∣ u∇v
v

∣∣∣ |∇u| = u∇v
v ·∇u , i.e. ∇

(
u
v

)
= 0. On the other hand, if S = {x ∈ Ω : u(x) = 0} ,

then ∇u = 0 a.e. in S (see [48]), and thus ∇
(

u
v

)
= 0 a.e. in S . We conclude that

∇
(

u
v

)
= 0 a.e. in Ω and consequently u = kv for some constant k . �

COROLLARY 1. If the assumptions of Theorem 1 hold, c(x) = C(x) = 0 and
a(x) = A(x) = 1 , then Picone’s identity (7) becomes

|∇u|p(x)−|∇v|p(x)−2 ∇v ·∇
(

|u|p(x)

|v|p(x)−2 v

)
(10)

= Φ(u,v)− |u|p(x)

|v|p(x)−2 v

(
ln
∣∣∣u
v

∣∣∣) |∇v|p(x)−2 ∇v ·∇p,

where Φ(u,v) is the same as in (8).

REMARK 1. As p(x) ≡ p , and u � 0, v > 0, (10) reduces to (2).

4. Applications

In this section, we give some applications for the p(x)-Laplace equations by using
Picone’s identity (10).

4.1. Caccioppoli inequalities

Consider the problem

−div
(
|∇u|p(x)−2 ∇u

)
= g(x) |u|p(x)−2 u, (11)
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where 0 � g(x) ∈ L∞
loc(Ω) .

u ∈W 1,p(x)
loc (Ω)∩C(Ω) is called a weak solution of problem (11) if it satisfies

∫
Ω
|∇v|p(x)−2 ∇v ·∇η dx =

∫
Ω

g(x) |v|p(x)−2 vη dx,∀η ∈W 1,p(x)
0 (Ω)∩C(Ω). (12)

Notice that if v is a solution, so is |v| and |v| � 0. In view of Theorem 4.1 in [45] and
Theorem 5.3 in [2], we obtain v > 0 in Ω .

Similarly, weak supersolutions and subsolutions of problem (11) can also be de-
fined.

The following two theorems establish Caccioppoli-type estimates for positive sub-
and supersolutions of nonlinear equations involving p(x)-Laplace operators.

THEOREM 2. Assume that 0 < u ∈ W 1,p(x)
loc (Ω)∩C(Ω) is a weak subsolution of

(11), p(x),q(x) are differentiable functions and q(x) > p(x)−1 pointwise for all x ∈
Ω . Then the inequality

∫
Ω

q(x)− p(x)+1
p(x)

∣∣∣∣ϕu
q(x)
p(x)−1∇u

∣∣∣∣
p(x)

dx (13)

�
∫

Ω
g(x)uq(x)ϕ p(x)dx+

∫
Ω

(
p(x)

q(x)− p(x)+1

)p(x)−1

uq(x) |∇ϕ |p(x) dx

+
∫

Ω
ϕ p(x)uq(x)−p(x)+1

[
p(x) |lnu| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
+
∣∣∣∣ln
(

ϕu
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)|
]
dx,

holds for all 0 � ϕ ∈C∞
0 (Ω) .

Proof. Let ε > 0. Then, integrating Picone’s identity (10), here replacing u with

(u+ ε)
q(x)
p(x) ϕ and v with u+ ε in Ω , it follows

I1 = I2, (14)

where

I1 =
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx

−
∫

Ω
|∇u|p(x)−2 ∇u ·∇

(
(u+ ε)q(x)−p(x)+1ϕ p(x)

)
dx,

I2 =
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx

−
∫

Ω
p(x) ϕ p(x)−1(u+ ε)(p(x)−1)( q(x)

p(x)−1) |∇u|p(x)−2 ∇u ·∇((u+ ε)
q(x)
p(x) ϕ)dx
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+
∫

Ω
(p(x)−1)

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

−
∫

Ω
ϕ p(x)(u+ ε)q(x)−p(x)+1ln

(
ϕ (u+ ε)

q(x)
p(x)−1

)
|∇u|p(x)−2 ∇u ·∇p(x)dx.

Since 0 � ϕ ∈C∞
0 (Ω) , 0 < u ∈W 1,p(x)

loc (Ω)∩C(Ω) is a weak subsolution of (11) and

∇
(
(u+ ε)q(x)−p(x)+1ϕ p(x)

)
= (u+ ε)q(x)−p(x)+1∇(ϕ p(x))+ (q(x)− p(x)+1)ϕ p(x) (u+ ε)q(x)−p(x) ∇u

+ ϕ p(x) (u+ ε)q(x)−p(x)+1 ln(u+ ε)∇(q(x)− p(x)+1),

we can choose (u+ ε)q(x)−p(x)+1ϕ p(x) as a test function and obtain that

∫
Ω

g(x)up(x)−1(u+ ε)q(x)−p(x)+1ϕ p(x)dx (15)

�
∫

Ω
|∇u|p(x)−2 ∇u ·∇

(
(u+ ε)q(x)−p(x)+1ϕ p(x)

)
dx

=
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx− I1.

Since

∇((u+ ε)
q(x)
p(x) ϕ)

= (u+ ε)
q(x)
p(x) ∇ϕ +

q(x)
p(x)

ϕ (u+ ε)
q(x)
p(x)−1 ∇u+ ϕ (u+ ε)

q(x)
p(x) ln(u+ ε)∇

(
q(x)
p(x)

)
,

we have

I2 =
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx (16)

−
∫

Ω
p(x) ϕ p(x)−1(u+ ε)q(x)−p(x)+1 |∇u|p(x)−2 ∇u ·∇ϕdx

−
∫

Ω
q(x) ϕ p(x)(u+ ε)q(x)−p(x) |∇u|p(x) dx

−
∫

Ω
p(x) ϕ p(x)(u+ ε)q(x)−p(x)+1ln(u+ ε) |∇u|p(x)−2 ∇u ·∇

(
q(x)
p(x)

)
dx

+
∫

Ω
(p(x)−1)

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

−
∫

Ω
ϕ p(x)(u+ ε)q(x)−p(x)+1ln

(
ϕ (u+ ε)

q(x)
p(x)−1

)
|∇u|p(x)−2 ∇u ·∇p(x)dx,
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then an easy calculation shows that

I2 �
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx (17)

+
∫

Ω
p(x)

∣∣∣∣ϕ(u+ ε)
q(x)
p(x)−1∇u

∣∣∣∣
p(x)−1

(u+ ε)
q(x)
p(x) |∇ϕ |dx

+
∫

Ω
(p(x)−1−q(x))

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

+
∫

Ω
p(x) ϕ p(x)(u+ ε)q(x)−p(x)+1 |ln(u+ ε)| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣dx

+
∫

Ω
ϕ p(x)(u+ ε)q(x)−p(x)+1

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)| dx.

By using Young’s inequality (5) with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = (u+ ε)
q(x)
p(x) |∇ϕ | ,

b = ϕ(u+ ε)
q(x)
p(x)−1 |∇u| ,

0 < τ < q(x)−p(x)+1
p(x)−1 ,

we have

I2 �
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx+
∫

Ω

1

τ p(x)−1
(u+ ε)q(x) |∇ϕ |p(x) dx (18)

+
∫

Ω
(p(x)−1−q(x)+ (p(x)−1)τ)

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

+
∫

Ω
p(x) ϕ p(x)(u+ ε)q(x)−p(x)+1 |ln(u+ ε)| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣dx

+
∫

Ω
ϕ p(x)(u+ ε)q(x)−p(x)+1

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)| dx. (19)

Therefore, (14)–(17) imply that

∫
Ω
(q(x)− p(x)+1− (p(x)−1)τ)

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx (20)

�
∫

Ω
g(x)up(x)−1(u+ ε)q(x)−p(x)+1ϕ p(x)dx (21)

+
∫

Ω

1

τ p(x)−1
(u+ ε)q(x) |∇ϕ |p(x) dx

+
∫

Ω
p(x) ϕ p(x)(u+ ε)q(x)−p(x)+1 |ln(u+ ε)| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣dx
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+
∫

Ω
ϕ p(x)(u+ ε)q(x)−p(x)+1

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)| dx.

Choosing τ = q(x)−p(x)+1
p(x) in (18) leads to

∫
Ω

q(x)− p(x)+1
p(x)

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

�
∫

Ω
g(x)up(x)−1(u+ ε)q(x)−p(x)+1ϕ p(x)dx

+
∫

Ω

(
p(x)

q(x)− p(x)+1

)p(x)−1

(u+ ε)q(x) |∇ϕ |p(x) dx

+
∫

Ω
p(x) ϕ p(x)(u+ ε)q(x)−p(x)+1 |ln(u+ ε)| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣dx

+
∫

Ω
ϕ p(x)(u+ ε)q(x)−p(x)+1

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)| dx.

Passing to the limit as ε → 0 and using the Lebesgue dominated convergence theorem
on the right hand side and Fatou’s lemma on the left hand side, we obtain

∫
Ω

q(x)− p(x)+1
p(x)

∣∣∣∣ϕu
q(x)
p(x)−1∇u

∣∣∣∣
p(x)

dx

�
∫

Ω
g(x)uq(x)ϕ p(x)dx+

∫
Ω

(
p(x)

q(x)− p(x)+1

)p(x)−1

uq(x) |∇ϕ |p(x) dx

+
∫

Ω
ϕ p(x)uq(x)−p(x)+1

[
p(x) |lnu| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
+
∣∣∣∣ln
(

ϕu
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)|
]
dx,

as claimed. �

COROLLARY 2. If the assumptions of Theorem 2 hold. Then we have

∫
Ω

q(x)− p(x)+1
p(x)

∣∣∣∣ϕu
q(x)
p(x)−1∇u

∣∣∣∣
p(x)

dx (22)

�
∫

Ω
g(x)uq(x)ϕ p(x)dx+

∫
Ω

(
p(x)+2

q(x)− p(x)+1

)p(x)−1

uq(x) |∇ϕ |p(x) dx

+
∫

Ω

(
p(x)+2

q(x)− p(x)+1

)p(x)−1

ϕ p(x)uq(x)

[
p(x)p(x)−1 |lnu|p(x)

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
p(x)

+
1

p(x)

∣∣∣∣ln
(

ϕu
q(x)
p(x)−1

)∣∣∣∣
p(x)

|∇p(x)|p(x)
]
dx.
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Proof. (16) yields

I2 �
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx (23)

+
∫

Ω
p(x)

∣∣∣∣ϕ(u+ ε)
q(x)
p(x)−1∇u

∣∣∣∣
p(x)−1

(u+ ε)
q(x)
p(x) |∇ϕ |dx

+
∫

Ω
(p(x)−1−q(x))

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

+
∫

Ω
p(x)

(
1

p(x)

) p(x)−1
p(x)

∣∣∣∣ϕ(u+ ε)
q(x)
p(x)−1∇u

∣∣∣∣
p(x)−1

p(x)
p(x)−1
p(x) ϕ(u+ ε)

q(x)
p(x) |ln(u+ ε)|

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣dx

+
∫

Ω

∣∣∣∣ϕ(u+ ε)
q(x)
p(x)−1∇u

∣∣∣∣
p(x)−1

ϕ(u+ ε)
q(x)
p(x)

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣ |∇p(x)| dx.

Using Young’s inequality (5) in the case of 0 < τ < p(x)(q(x)−p(x)+1)
(p(x)−1)(p(x)+2) yields

I2 �
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx (24)

+
∫

Ω

(
p(x)−1−q(x)+ τ(p(x)−1)

p(x)+2
p(x)

)
∣∣∣∣ϕ (u+ ε)

q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

+
∫

Ω

1

τ p(x)−1
(u+ ε)q(x) |∇ϕ |p(x) dx

+
∫

Ω

1

τ p(x)−1
p(x)p(x)−1ϕ p(x)(u+ ε)q(x) |ln(u+ ε)|p(x)

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
p(x)

dx

+
∫

Ω

1

p(x)τ p(x)−1
ϕ p(x)(u+ ε)q(x)

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣
p(x)

|∇p(x)|p(x) dx.

Choosing τ = q(x)−p(x)+1
p(x)+2 in (24) and taking into account (14) and (15) lead to

∫
Ω

q(x)− p(x)+1
p(x)

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

�
∫

Ω
g(x)up(x)−1(u+ ε)q(x)−p(x)+1ϕ p(x)dx

+
∫

Ω

(
p(x)+2

q(x)− p(x)+1

)p(x)−1

(u+ ε)q(x) |∇ϕ |p(x) dx
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+
∫

Ω

(
p(x)+2

q(x)− p(x)+1

)p(x)−1

ϕ p(x)(u+ ε)q(x)

[
p(x)p(x)−1 |ln(u+ ε)|p(x)

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
p(x)

+
1

p(x)

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣
p(x)

|∇p(x)|p(x)
]
dx.

Letting ε → 0 and using the Lebesgue dominated convergence theorem and Fatou’s
lemma, we conclude that

∫
Ω

q(x)− p(x)+1
p(x)

∣∣∣∣ϕu
q(x)
p(x)−1∇u

∣∣∣∣
p(x)

dx

�
∫

Ω
g(x)uq(x)ϕ p(x)dx+

∫
Ω

(
p(x)+2

q(x)− p(x)+1

)p(x)−1

uq(x) |∇ϕ |p(x) dx

+
∫

Ω

(
p(x)+2

q(x)− p(x)+1

)p(x)−1

ϕ p(x)uq(x)
[
p(x)p(x)−1 |lnu|p(x)

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
p(x)

+
1

p(x)

∣∣∣∣ln
(

ϕu
q(x)
p(x)−1

)∣∣∣∣
p(x)

|∇p(x)|p(x)
]
dx. �

REMARK 2. As p(x) ≡ p and q(x) ≡ q , then Theorem 2 reduces to Caccioppoli-
type estimate for positive subsolution of p -Laplace equation (see [22]).

An analogous result as Theorem 2 above holds for positive supersolutions of prob-
lem (11).

THEOREM 3. Assume that 0 < u ∈ W 1,p(x)
loc (Ω)∩C(Ω) is a weak supersolution

of (11), p(x),q(x) are differentiable functions and q(x) < p(x)− 1 pointwise for all
x ∈ Ω . Then

∫
Ω

p(x)−1−q(x)
p(x)

∣∣∣∣ϕu
q(x)
p(x)−1∇u

∣∣∣∣
p(x)

dx (25)

� −
∫

Ω
g(x)uq(x)ϕ p(x)dx

+
∫

Ω

(
p(x)

p(x)−1−q(x)

)p(x)−1

uq(x) |∇ϕ |p(x) dx

+
∫

Ω
ϕ p(x)uq(x)−p(x)+1

[
p(x) |lnu| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
+
∣∣∣∣ln
(

ϕu
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)|
]
dx,

holds for all 0 � ϕ ∈C∞
0 (Ω) .
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Proof. (16) yields

I2 �
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx (26)

−
∫

Ω
p(x)

∣∣∣∣ϕ(u+ ε)
q(x)
p(x)−1∇u

∣∣∣∣
p(x)−1

(u+ ε)
q(x)
p(x) |∇ϕ |dx

+
∫

Ω
(p(x)−1−q(x))

∣∣∣∣ϕ (u+ ε)
q(x)
p(x)−1 ∇u

∣∣∣∣
p(x)

dx

−
∫

Ω
p(x)

(
1

p(x)

) p(x)−1
p(x)

∣∣∣∣ϕ(u+ ε)
q(x)
p(x)−1∇u

∣∣∣∣
p(x)−1

(27)

p(x)
p(x)−1
p(x) ϕ(u+ ε)

q(x)
p(x) |ln(u+ ε)|

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣dx

−
∫

Ω

∣∣∣∣ϕ(u+ ε)
q(x)
p(x)−1∇u

∣∣∣∣
p(x)−1

ϕ(u+ ε)
q(x)
p(x)

∣∣∣∣ln
(

ϕ (u+ ε)
q(x)
p(x)−1

)∣∣∣∣ |∇p(x)| dx.

Since 0 < u ∈W 1,p(x)
loc (Ω)∩C(Ω) is a weak supersolution of (11), then

∫
Ω

g(x)up(x)−1(u+ ε)q(x)−p(x)+1ϕ p(x)dx (28)

�
∫

Ω
|∇u|p(x)−2 ∇u ·∇

(
(u+ ε)q(x)−p(x)+1ϕ p(x)

)
dx

=
∫

Ω

∣∣∣∣∇((u+ ε)
q(x)
p(x) ϕ)

∣∣∣∣
p(x)

dx− I1.

Using the same argument as in the proof of Theorem 2 and taking into account (14),
(27) and (28), we have

∫
Ω

p(x)−1−q(x)
p(x)

∣∣∣∣ϕu
q(x)
p(x)−1∇u

∣∣∣∣
p(x)

dx

� −
∫

Ω
g(x)uq(x)ϕ p(x)dx+

∫
Ω

(
p(x)

p(x)−1−q(x)

)p(x)−1

uq(x) |∇ϕ |p(x) dx

+
∫

Ω
ϕ p(x)uq(x)−p(x)+1

[
p(x) |lnu| |∇u|p(x)−1

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
+
∣∣∣∣ln
(

ϕu
q(x)
p(x)−1

)∣∣∣∣ |∇u|p(x)−1 |∇p(x)|
]
dx.

Thus the proof is completed. �

Using the same argument as in the proof of Corollary 2, we obtain
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COROLLARY 3. If the assumptions of Theorem 3 hold. Then we have

∫
Ω

p(x)−1−q(x)
p(x)

∣∣∣∣ϕu
q(x)
p(x)−1∇u

∣∣∣∣
p(x)

dx (29)

� −
∫

Ω
g(x)uq(x)ϕ p(x)dx

+
∫

Ω

(
p(x)+2

p(x)−1−q(x)

)p(x)−1

uq(x) |∇ϕ |p(x) dx (30)

+
∫

Ω

(
p(x)+2

p(x)−1−q(x)

)p(x)−1

ϕ p(x)uq(x)

[
p(x)p(x)−1 |lnu|p(x)

∣∣∣∣∇
(

q(x)
p(x)

)∣∣∣∣
p(x)

+
1

p(x)

∣∣∣∣ln
(

ϕu
q(x)
p(x)−1

)∣∣∣∣
p(x)

|∇p(x)|p(x)
]
dx.

REMARK 3. As p(x) ≡ p and q(x) ≡ q , then Theorem 3 reduces to Caccioppoli-
type estimate for positive supersolution of p -Laplace equations (see [22]).

4.2. Nonexistence of positive supersolutions

Consider the equation

−div
(
|∇u|p(x)−2 ∇u

)
−g(x) |u|p(x)−2 u = f (x),x ∈ Ω (31)

where Ω is a bounded domain in R
N , 0 � g(x) ∈ L∞(Ω) and 0 � f (x) ∈ L

p(x)
p(x)−1 (Ω) .

u ∈W 1,p(x)(Ω) is called a weak supersolution of equation (31) if it satisfies
∫

Ω
|∇u|p(x)−2 ∇u ·∇ηdx−

∫
Ω

g(x) |u|p(x)−2 uηdx �
∫

Ω
f (x)ηdx, (32)

for any nonnegative function η ∈W 1,p(x)
0 (Ω) . A weak subsolution u ∈W 1,p(x)(Ω) is

defined analogously with the inequality in (32) reversed.
The main result of this subsection is as follows.

THEOREM 4. If (31) has a strictly postive supersolution v ∈W 1,p(x)(Ω) . Then,

∫
Ω
|∇u|p(x) dx−

∫
Ω

g(x)|u|p(x)dx �
∫

Ω
Φ(u,v)dx+

∫
Ω

f (x)
|u|p(x)

vp(x)−1
dx (33)

−
∫

Ω

|u|p(x)

vp(x)−1

(
ln

( |u|
v

))
|∇v|p(x)−2 ∇v ·∇pdx

holds for any u ∈W 1,p(x)
0 (Ω) .
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Proof. For any given u ∈W 1,p(x)
0 (Ω) , then there exits a sequence {ϕn} ⊂C∞

0 (Ω)
such that ‖ϕn−u‖p(x) → 0 and ϕn → u a.e. in Ω as n → ∞ .

Let ε > 0. By using

η =
|ϕn|p(x)

(v+ ε)p(x)−1

as a test function in (32) and Picone’s identity (10) for the pair ϕn and v+ ε , we have

∫
Ω

g(x)vp(x)−1 |ϕn|p(x)

(v+ ε)p(x)−1
dx (34)

�
∫

Ω
|∇v|p(x)−2 ∇v ·∇

(
|ϕn|p(x)

(v+ ε)p(x)−1

)
dx−

∫
Ω

f (x)
|ϕn|p(x)

(v+ ε)p(x)−1
dx

=
∫

Ω
|∇(ϕn)|p(x) dx−

∫
Ω

Φ(ϕn,v+ ε)dx−
∫

Ω
f (x)

|ϕn|p(x)

(v+ ε)p(x)−1
dx

+
∫

Ω

|ϕn|p(x)

(v+ ε)p(x)−1

(
ln

( |ϕn|
v+ ε

))
|∇v|p(x)−2 ∇v ·∇pdx.

Letting n → ∞ and ε → 0 respectively, we can obtain (33). Thus the proof of Theorem
4 is completed. �

As an immediate consequence of Theorem 4, we have

COROLLARY 4. Assume that there exist two functions u ∈ W 1,p(x)
0 (Ω) and 0 <

v ∈W 1,p(x)(Ω) such that

∫
Ω
|∇u|p(x) dx−

∫
Ω

g(x)|u|p(x)dx <

∫
Ω

Φ(u,v)dx+
∫

Ω
f (x)

|u|p(x)

vp(x)−1
dx (35)

−
∫

Ω

|u|p(x)

vp(x)−1

(
ln

( |u|
v

))
|∇v|p(x)−2 ∇v ·∇pdx.

Then v is not the positive supersolution of (31).

4.3. Some properties of the first Dirichlet eigenvalue of p(x)-Laplace equations

The purpose of this subsection is to prove the properties of the first Dirichlet eigen-
value of p(x)-Laplace equations by using Picone’s identity (10).

In [42], Fan, Zhang and Zhao studied the eigenvalues of the p(x)-Laplacian Dirich-
let problems {

−div
(
|∇u|p(x)−2 ∇u

)
= λ |u|p(x)−2 u, in Ω,

u = 0, on ∂Ω
(36)

and showed that the first eigenvalue λp(x) defined by the Rayleigh quotient

λp(x) = inf
u∈W

p(x)
0 (Ω),u 	≡0

∫
Ω |∇u|p(x) dx∫
Ω |u|p(x) dx

, (37)
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is zero in general, and only under some special conditions λp(x) > 0 holds. More
specifically,

LEMMA 1. Let Ω ⊂ R
N (N > 1) be a bounded domain, if there is x0 	∈ Ω such

that for any ω ∈ R
N \ {0} with ‖ω‖ = 1 the function f (t) = p(x0 + tω) is monotone

for t ∈ {t ∈ R |x0 + tω ∈ Ω} , then λp(x) > 0 .

In what follows, we assume that the first eigenvalue λp(x) > 0. Notice that if u
is a nontrivial eigenfunction corresponding to λp(x) in the problem (36), so is |u| , and
|u| � 0. In view of Theorem 4.1 in [45] and Theorem 5.3 in [2], we obtain u > 0 in
Ω . Following the arguments of [46, Theorem 4.1], it is easy to see that u ∈ L∞(Ω) . By
using regularity result (see [47, Theorem 1.2]), we conclude that u ∈C1,α(Ω) .

The main result of this subsection is as follows.

4.3.1. Domain monotonicity property

THEOREM 5. Let Ω1 ⊂Ω2 and u1 , u2 be positive eigenfunctions associated with
λp(x)(Ω1) , λp(x)(Ω2) respectively, and

∫
Ω1

up(x)
1

up(x)−1
2

(
ln

(
u1

u2

))
|∇u2|p(x)−2 ∇u2 ·∇pdx � 0, (38)

then
λp(x)(Ω1) � λp(x)(Ω2). (39)

Moreover, if Ω1 ⊂ Ω2 and Ω1 	≡ Ω2 , then the inequality in (39) is strict.

Proof. Let ε > 0. Integrating identity (10) where u = u1 and v1 = u2 + ε over
Ω1 , we get

∫
Ω1

|∇u1|p(x) dx−
∫

Ω1

|∇u2|p(x)−2 ∇u2 ·∇
(

up(x)
1

(u2 + ε)p(x)−1

)
dx (40)

=
∫

Ω1

Φ(u1,u2 + ε)dx

−
∫

Ω1

up(x)
1

(u2 + ε)p(x)−1

(
ln

(
u1

u2 + ε

))
|∇u2|p(x)−2 ∇u2 ·∇pdx.

Since

∫
Ω1

|∇u1|p(x) dx−
∫

Ω1

|∇u2|p(x)−2 ∇u2 ·∇
(

up(x)
1

(u2 + ε)p(x)−1

)
dx (41)

= λp(x)(Ω1)
∫

Ω1

up(x)
1 dx−λp(x)(Ω2)

∫
Ω1

up(x)−1
2

up(x)
1

(u2 + ε)p(x)−1
dx,
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then, taking into account (40) and (41), letting ε → 0 and using the Lebesgue dominated
convergence theorem and Fatou’s lemma, we obtain

λp(x)(Ω1)� λp(x)(Ω2)+

∫
Ω1

Φ(u1,u2)dx− ∫Ω1

up(x)
1

u
p(x)−1
2

(
ln
(

u1
u2

))
|∇u2|p(x)−2 ∇u2 ·∇pdx

∫
Ω1

up(x)
1 dx

.

(42)
Φ(u1,u2) � 0 and (38) yield

λp(x)(Ω1) � λp(x)(Ω2).

If Ω1 ⊂ Ω2 , Ω1 	≡ Ω2 and

λp(x)(Ω1) = λp(x)(Ω2),

it follows that Φ(u1,u2) = 0 a.e. in Ω1 and

∫
Ω1

up(x)
1

up(x)−1
2

(
ln

(
u1

u2

))
|∇u2|p(x)−2 ∇u2 ·∇pdx = 0,

thus u1 = ku2 and ∫
Ω1

u2 kp(x) |∇u2|p(x)−2 ∇u2 ·∇pdx = 0,

for some constant k > 0. But u1 = ku2 contradicts the assumption that Ω1 ⊂ Ω2 ,
Ω1 	≡ Ω2 . The proof is completed. �

REMARK 4. Taking
u

p(x)
1

(u2+ε)p(x)−1 as a test function, which is valid since by using

regularity results,
u

p(x)
1

(u2+ε)p(x)−1 ∈W 1,p(x)
0 (Ω1) . Hence,

∫
Ω1

|∇u2|p(x)−2 ∇u2 ·∇
(

up(x)
1

(u2 + ε)p(x)−1

)
dx < +∞.

In a recent paper [38], Feng and Han take
u

p(x)
1

u
p(x)−1
2

as a test function, however, to the best

of our knowledge,
u

p(x)
1

u
p(x)−1
2

∈W 1,p(x)
0 (Ω1) is not already known. As a consequence, the

test functions used in the third Section of [38] are unreasonable.

4.3.2. Simplicity

THEOREM 6. Let u be the first eigenfunction of problem (36) with u > 0 in Ω ,

and u1 ∈W 1,p(x)
0 (Ω) be any eigenfunctions associated with λp(x) such that

∫
Ω

up(x)
1

up(x)−1

(
ln

( |u1|
u

))
|∇u|p(x)−2 ∇u ·∇pdx � 0, (43)
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then u1 = ku and ∫
Ω

u |k|p(x) |∇u|p(x)−2 ∇u ·∇pdx = 0, (44)

for some constant k ∈ R .

Proof. Let ε > 0. Integrating identity (10), here taking u = u1 and v1 = u+ ε
over Ω , we get

∫
Ω

Φ(u1,u+ ε)dx =
∫

Ω
|∇u1|p(x) dx−

∫
Ω
|∇u|p(x)−2 ∇u ·∇

(
|u1|p(x)

(u+ ε)p(x)−1

)
dx

+
∫

Ω

|u1|p(x)

(u+ ε)p(x)−1

(
ln

( |u1|
u+ ε

))
|∇u|p(x)−2 ∇u ·∇pdx

= λp(x)

∫
Ω
|u1|p(x)dx−λp(x)

∫
Ω

up(x)−1 |u1|p(x)

(u+ ε)p(x)−1
dx

+
∫

Ω

|u1|p(x)

(u+ ε)p(x)−1

(
ln

( |u1|
u+ ε

))
|∇u|p(x)−2 ∇u ·∇pdx.

Therefore, letting ε → 0 and using the Lebesgue dominated convergence theorem and
Fatou’s lemma, we obtain

∫
Ω

Φ(u1,u)dx �
∫

Ω

|u1|p(x)

up(x)−1

(
ln

( |u1|
u

))
|∇u|p(x)−2 ∇u ·∇pdx.

Φ(u1,u) � 0 and (43) yield

∫
Ω

Φ(u1,u)dx =
∫

Ω

|u1|p(x)

up(x)−1

(
ln
|u1|
u

)
|∇u|p(x)−2 ∇u ·∇pdx = 0,

which implies that u1 = ku and∫
Ω

u |k|p(x) |∇u|p(x)−2 ∇u ·∇pdx = 0.

for some constant k ∈ R , this completes the proof. �

4.3.3. Uniqueness

THEOREM 7. Let (λ ,u1) be an eigenpair for problem (36) with u1 > 0 in Ω , and

0 < u ∈W 1,p(x)
0 (Ω) be the first eigenfunction such that

∫
Ω

up(x)

up(x)−1
1

(
ln

(
u
u1

))
|∇u1|p(x)−2 ∇u1 ·∇pdx � 0, (45)

then
λ = λp(x). (46)
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Moreover, we obtain u = ku1 and∫
Ω

kp(x)u1 |∇u1|p(x)−2 ∇u1 ·∇pdx = 0,

for some constant k ∈ R
+ .

Proof. Let ε > 0. Integrating identity (10), here taking v1 = u1 + ε over Ω and
using the same procedures as those in the proof of Theorem 6, we get∫

Ω
Φ(u,u1)dx �(λp(x)−λ )

∫
Ω

up(x)dx (47)

+
∫

Ω

up(x)

up(x)−1
1

(
ln

(
u
u1

))
|∇u1|p(x)−2 ∇u1 ·∇pdx.

Φ(u,u1) � 0 and (45) yield
λ � λp(x).

Taking into account λ � λp(x) , it follows that λ = λp(x) . Therefore, (45)–(47) imply
Φ(u,u1) = 0 and

∫
Ω

up(x)

up(x)−1
1

(
ln

(
u
u1

))
|∇u1|p(x)−2 ∇u1 ·∇pdx = 0,

which mean u = ku1 and∫
Ω

kp(x)u1 |∇u1|p(x)−2 ∇u1 ·∇pdx = 0,

for some constant k ∈ R
+ . This completes the proof. �

REMARK 5. If p(x) ≡ p , then Theorem 5, Theorem 6 and Theorem 7 reduce to
the case of p -Laplace equations (see [16, 21, 26]).

4.4. Hardy type inequality

THEOREM 8. Suppose 0 < v ∈W 1,p(x)(Ω) that

−div(|∇v|p(x)−2 ∇v) � λg(x)vp(x)−1, in Ω, (48)

for some λ > 0 and 0 � g(x) ∈ L∞(Ω) . Then for any 0 � u ∈W 1,p(x)
0 (Ω) such that

∫
Ω

up(x)

vp(x)−1

(
ln
(u

v

))
|∇v|p(x)−2 ∇v ·∇pdx � 0, (49)

the following inequality holds∫
Ω

λg(x)up(x)dx �
∫

Ω
|∇u|p(x) dx. (50)
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Moreover, the equality holds if and only if u = kv and∫
Ω

vkp(x) |∇v|p(x)−2 ∇v ·∇pdx = 0,

for some constant k ∈ R
+ .

Proof. Since 0 � u ∈ W 1,p(x)
0 (Ω) , then there exits a positive sequence {ϕn} ⊂

C∞
0 (Ω) such that ‖ϕn−u‖p(x) → 0 and ϕn → u a.e. in Ω as n → ∞ .

Let ε > 0. Since
(ϕn)p(x)

(v+ ε)p(x)−1
∈W 1,p(x)

0 (Ω),

applying identity (10) to the pair ϕn and v+ ε and taking into account (48) yield

∫
Ω

λg(x)vp(x)−1 (ϕn)p(x)

(v+ ε)p(x)−1
dx (51)

�
∫

Ω
|∇v|p(x)−2 ∇v ·∇

(
(ϕn)p(x)

(v+ ε)p(x)−1

)
dx

=
∫

Ω
|∇(ϕn)|p(x) dx−

∫
Ω

Φ(ϕn,v+ ε)dx

+
∫

Ω

(ϕn)p(x)

(v+ ε)p(x)−1

(
ln

(
ϕn

v+ ε

))
|∇v|p(x)−2 ∇v ·∇pdx.

Letting n → ∞ , and making use of Lebesgue dominated convergence theorem on the
right hand side and Fatou’s lemma on the left-hand side, we obtain

∫
Ω

λg(x)vp(x)−1 up(x)

(v+ ε)p(x)−1
dx �

∫
Ω
|∇u|p(x) dx−

∫
Ω

Φ(u,v+ ε)dx (52)

+
∫

Ω

up(x)

(v+ ε)p(x)−1

(
ln

(
u

v+ ε

))
|∇v|p(x)−2 ∇v ·∇pdx.

Once again we repeat the above procedures by letting ε → 0 obtain∫
Ω

λg(x)up(x)dx �
∫

Ω
|∇u|p(x) dx−

∫
Ω

Φ(u,v)dx (53)

+
∫

Ω

up(x)

vp(x)−1

(
ln
(u

v

))
|∇v|p(x)−2 ∇v ·∇pdx.

Therefore, Φ(u,v) � 0 and (49) imply (50) holds. If∫
Ω

λg(x)up(x)dx =
∫

Ω
|∇u|p(x) dx,

it follows that Φ(u,v) = 0 and

∫
Ω

up(x)

vp(x)−1

(
ln
(u

v

))
|∇v|p(x)−2 ∇v ·∇pdx = 0,
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which yield u = kv and ∫
Ω

vkp(x) |∇v|p(x)−2 ∇v ·∇pdx = 0,

for some constant k ∈ R
+ . Thus this theorem is proved. �

REMARK 6. Theorem 8 extends the reult as that of [16] (see also [26]) to p(x)-
Laplacian.

4.5. Barta-type inequality

THEOREM 9. If the assumptions of Theorem 8 hold. Then the following Barta’s
inequality holds

inf
0�u∈W1,p(x)

0 (Ω),u 	≡0

∫
Ω |∇u|p(x) dx− ∫Ω λg(x)up(x)dx∫

Ω up(x)dx
(54)

� inf
x∈Ω

−div(|∇v|p(x)−2 ∇v)−λg(x)vp(x)−1

vp(x)−1
.

Moreover, the equality holds if and only if u = kv and∫
Ω

vkp(x) |∇v|p(x)−2 ∇v ·∇pdx = 0,

for some constant k ∈ R
+ .

Proof. Denote the right hand side of (54) by β (λ ) . Then we have

−div(|∇v|p(x)−2 ∇v)−λg(x)vp(x)−1 � β (λ )vp(x)−1.

Applying (50) (with obvious extension) we obtain∫
Ω
|∇u|p(x) dx−

∫
Ω

λg(x)up(x)dx � β (λ )
∫

Ω
up(x)dx, (55)

the equality holds if and only if u = kv and∫
Ω

vkp(x) |∇v|p(x)−2 ∇v ·∇pdx = 0,

for some constant k ∈ R
+ . If u 	≡ 0 in Ω , we can divide by

∫
Ω up(x)dx and the result

(54) follows. �

COROLLARY 5. If the assumptions of Theorem 8 hold and g(x) ≡ 0 . Then

λp(x) � inf
x∈Ω

−div(|∇v|p(x)−2 ∇v)
vp(x)−1

, (56)

with the equality if and only if v is an eigenfunction corresponding to λp(x) and∫
Ω

vkp(x) |∇v|p(x)−2 ∇v ·∇pdx = 0.
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REMARK 7. If p(x) ≡ p , Theorem 9 and Corollary 5 reduce to the case of p -
Laplace equations (see [21]).

4.6. A nonlinear system with singular nonlinearity

In this subsection, we consider the following system with singular nonlinearity.

THEOREM 10. Consider⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−div
(
|∇u|p(x)−2 ∇u

)
= vp(x)−1, in Ω,

−div
(
|∇v|p(x)−2 ∇v

)
= v2p(x)−2

up(x)−1 , in Ω,

u > 0,v > 0, in Ω,

u = v = 0, on ∂Ω.

(57)

If (u,v) ∈W 1,p(x)
0 (Ω)×W1,p(x)

0 (Ω) is a weak solution of (57) and

∫
Ω

up(x)

vp(x)−1

(
ln
(u

v

))
|∇v|p(x)−2 ∇v ·∇pdx � 0, (58)

then u = kv and ∫
Ω

vkp(x) |∇v|p(x)−2 ∇v ·∇pdx = 0,

for some constant k ∈ R
+ .

Proof. Since 0 � u ∈ W 1,p(x)
0 (Ω) , then there exits a positive sequence {ϕn} ⊂

C∞
0 (Ω) such that ‖ϕn−u‖p(x) → 0 and ϕn → u a.e. in Ω as n → ∞ . Let ε > 0.

Since
(ϕn)p(x)

(v+ ε)p(x)−1
∈W 1,p(x)

0 (Ω),

we have

∫
Ω
|∇v|p(x)−2 ∇v ·∇

(
(ϕn)p(x)

(v+ ε)p(x)−1

)
dx (59)

=
∫

Ω

(|v|p(x)−2 v)2

up(x)−1

(ϕn)p(x)

(v+ ε)p(x)−1
dx.

Since
u ∈W 1,p(x)

0 (Ω),

we have ∫
Ω
|∇u|p(x) dx =

∫
Ω

vp(x)−1udx. (60)
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By using Picone’s identity (10) for the pair ϕn and v+ ε , we have

∫
Ω

Φ(ϕn,v+ ε)dx =
∫

Ω
|∇(ϕn)|p(x) dx−

∫
Ω
|∇v|p(x)−2 ∇v ·∇

(
(ϕn)p(x)

(v+ ε)p(x)−1

)
dx

+
∫

Ω

(ϕn)p(x)

(v+ ε)p(x)−1

(
ln

(
ϕn

v+ ε

))
|∇v|p(x)−2 ∇v ·∇pdx

=
∫

Ω
|∇(ϕn)|p(x) dx−

∫
Ω

v2p(x)−2

up(x)−1

(ϕn)p(x)

(v+ ε)p(x)−1
dx

+
∫

Ω

(ϕn)p(x)

(v+ ε)p(x)−1

(
ln

(
ϕn

v+ ε

))
|∇v|p(x)−2 ∇v ·∇pdx. (61)

Letting n → ∞ and ε → 0 respectively, we have

∫
Ω

Φ(u,v)dx �
∫

Ω

up(x)

vp(x)−1

(
ln
(u

v

))
|∇v|p(x)−2 ∇v ·∇pdx. (62)

Φ(u,v) � 0 and (58) imply

Φ(u,v) =
∫

Ω

up(x)

vp(x)−1

(
ln
(u

v

))
|∇v|p(x)−2 ∇v ·∇pdx = 0,

namely, u = kv and ∫
Ω

vkp(x) |∇v|p(x)−2 ∇v ·∇pdx = 0,

for some constant k ∈ R
+ . The proof is completed. �

REMARK 8. As p(x) ≡ p , this result is discussed in [26].

4.7. Sturmian comparison theorem

In this subsection, we discuss Sturmian comparison theorem because it plays an
important role in the qualitative theory of elliptic partial differential equations.

THEOREM 11. Let g1,g2 ∈ L∞(Ω) , g1 � g2 and g1 	≡ g2 in Ω . If 0 < u ∈
W 1,p(x)

0 (Ω) is a solution of

{
−div

(
|∇u|p(x)−2 ∇u

)
= g1(x) |u|p(x)−2 u, in Ω,

u = 0, on ∂Ω,
(63)

then any solution of the equation{
−div

(
|∇v|p(x)−2 ∇v

)
= g2(x) |v|p(x)−2 v, in Ω,

v = 0, on ∂Ω
(64)
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satisfying ∫
Ω

up(x)

|v|p(x)−2 v

(
ln

(
u
|v|
))

|∇v|p(x)−2 ∇v ·∇pdx � 0, (65)

must change sign in Ω .

Proof. Suppose the contrary. Let v > 0. Then an easy calculation shows that

0 �
∫

Ω
Φ(u,v)dx =

∫
Ω
(g1(x)−g2(x))up(x)dx (66)

+
∫

Ω

up(x)

vp(x)−1

(
ln
(u

v

))
|∇v|p(x)−2 ∇v ·∇pdx

< 0.

This is a contradiction. Hence v must change sign in Ω . �
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