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NECESSARY AND SUFFICIENT CONDITIONS FOR A DIFFERENCE

CONSTITUTED BY FOUR DERIVATIVES OF A FUNCTION INVOLVING

TRIGAMMA FUNCTION TO BE COMPLETELY MONOTONIC

FENG QI

To Magnus Xi-Zhe Qi, my first grandson

(Communicated by S. Varošanec)

Abstract. In the paper, by virtue of convolution theorem for the Laplace transforms, Bernstein’s
theorem for completely monotonic functions, and other techniques, the author finds necessary
and sufficient conditions for a difference constituted by four derivatives of a function involving
trigamma function to be completely monotonic.

1. Motivations

In the literature [1, Section 6.4], the function

Γ(z) =
∫ ∞

0
tz−1e−tdt, ℜ(z) > 0

and its logarithmic derivative ψ(z) = [lnΓ(z)]′ = Γ′(z)
Γ(z) are respectively called Euler’s

gamma function and digamma function. Further, the functions ψ ′(z) , ψ ′′(z) , ψ ′′′(z) ,
and ψ(4)(z) are known as trigamma, tetragamma, pentagamma, and hexagamma func-
tions respectively. As a whole, all the derivatives ψ(k)(z) for k ∈ {0}∪N are known as
polygamma functions, where N denotes the set of all positive integers.

Recall from Chapter XIII in [7], Chapter 1 in [22], and Chapter IV in [24] that,
if a function f (x) on an interval I has derivatives of all orders on I and satisfies
(−1)n f (n)(x) � 0 for x∈ I and n∈ {0}∪N , then we call f (x) a completely monotonic
function on I .

There are a number of papers and mathematicians dedicated to investigation of
complete monotonicity of some functions involving the gamma and polygamma func-
tions. For more information and details, please refer to the papers [2, 4, 5, 18, 20, 27]
and closely related references therein.
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Let α = (α1,α2, . . . ,αn) and β = (β1,β2, . . . ,βn) ∈ R
n . A n -tuple α is said to

strictly majorize β (in symbols α � β ) if
(
α[1],α[2], . . . ,α[n]

) �= (
β[1],β[2], . . . ,β[n]

)
,

∑k
i=1 α[i] � ∑k

i=1 β[i] for 1 � k � n− 1, and ∑n
i=1 αi = ∑n

i=1 βi , where α[1] � α[2] �
· · · � α[n] and β[1] � β[2] � · · · � β[n] are rearrangements of α and β in a descending
order. A real-valued function φ defined on a set A ⊂ R

n is said to be Schur-convex
on A if xxxxx ≺ yyyyy for xxxxx,yyyyy ∈ A means φ(xxxxx) < φ(yyyyy) . See [6, p. 8, Definition A.1] and [6,
p. 80, Definition A.1]. There have been a lot of literature such as the papers [3, 21, 23,
25, 28, 29] dedicated to investigation of Schur-convexity.

Let

G(x) = x
[
xψ ′(x)−1

]− 1
2

= x2
[

ψ ′(x)− 1
x
− 1

2x2

]
, x ∈ (0,∞).

In [26, Theorem 1], the function xαG(x) was proved to be completely monotonic on
(0,∞) if and only if α � 0. In other words, the completely monotonic degree of the
function ψ ′(x)− 1

x − 1
2x2 with respect to x on (0,∞) is 2 . For the notion of completely

monotonic degrees, please refer to [10, 26] and closely related references therein.
For k ∈ {0}∪N and θk,τk ∈ R , let

Gk,θk(x) = G(2k+1)(x)+ θk
[
G(k)(x)

]2

and

Gk,τk (x) =
G(2k+1)(x)[

(−1)kG(k)(x)
]τk

on (0,∞) . In [16, Theorem 3.1 and Theorem 4.1], the author discovered that,

1. if and only if θk � 3(2k+2)!
k!(k+1)! , the function Gk,θk(x) is completely monotonic on

(0,∞) ;

2. if and only if θk � 0, the function −Gk,θk(x) is completely monotonic on (0,∞) ;

3. if and only if τk � 2, the function Gk,τk (x) is decreasing on (0,∞) ;

4. if τk � 1, the function Gk,τk (x) is increasing on (0,∞) ;

5. only if

τk �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′(1), k = 0

− ψ ′′′(1)
ψ ′(1)ψ ′′(1)

, k = 1

k−1
k

ψ(k−1)(1)ψ(2k+1)(1)
ψ(k)(1)ψ(2k)(1)

, k � 2,

the function Gk,τk (x) is increasing on (0,∞) ;
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6. the limits

lim
x→0+

Gk,τk (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2τ0 , k = 0

6ψ ′′(1), k = 1

2(2k+1)
(k−1)τkkτk−1

ψ(2k)(1)∣∣ψ(k−1)(1)
∣∣ , k � 2

and

lim
x→∞

Gk,τk(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞, τk > 2

−3(2k+2)!
k!(k+1)!

, τk = 2

0, τk < 2

are valid;

7. the double inequality

−3(2k+2)!
k!(k+1)!

< Gk,2(x) <

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−4, k = 0

6ψ ′′(1), k = 1

2(2k+1)
(k−1)2k

ψ(2k)(1)∣∣ψ(k−1)(1)
∣∣ , k � 2

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot
be replaced by any greater and less numbers respectively.

For m,n ∈ {0}∪N , let

Gm,n(x) =
G(m+n+1)(x)

G(m)(x)G(n)(x)

and
Gm,n;λm,n(x) = G(m+n+1)(x)+ λm,nG

(m)(x)G(n)(x)

on (0,∞) . In [13, Theorems 3.1 and 4.1], the author obtained the following results:

1. the function Gm,n(x) is decreasing in x ∈ (0,∞) and maps from (0,∞) ,

(a) if (m,n) = (0,0) , onto the interval (−6,−4) ;

(b) if (m,n) ∈ {(1,0),(0,1)} , onto the interval
(−12,−4ψ ′(1)

)
;

(c) if (m,n) ∈ {(2,0),(0,2)} , onto the interval
(
−18, 6ψ ′′(1)

ψ ′(1)

)
;

(d) if (m,n) = (1,1) , onto the interval
(−36,6ψ ′′(1)

)
;

(e) if (m,n) ∈ {(2,1),(1,2)} , onto the interval
(
−72,− 6ψ ′′′(1)

ψ ′(1)

)
;
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(f) if m,n � 2, onto the interval(
−6(m+n+1)!

m!n!
,
(m+n+1)(m+n)
mn(m−1)(n−1)

ψ(m+n)(1)
ψ(m−1)(1)ψ(n−1)(1)

)
.

2. the double inequality

− 6(m+n+1)!
m!n!

< Gm,n(x)

<

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4, (m,n) = (0,0)

−4ψ ′(1), (m,n) ∈ {(1,0),(0,1)}
6ψ ′′(1)
ψ ′(1)

, (m,n) ∈ {(2,0),(0,2)}

6ψ ′′(1), (m,n) = (1,1)

−6ψ ′′′(1)
ψ ′(1)

, (m,n) ∈ {(2,1),(1,2)}

(m+n+1)(m+n)
mn(m−1)(n−1)

ψ(m+n)(1)
ψ(m−1)(1)ψ(n−1)(1)

, m,n � 2

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot
be replaced by any larger and smaller numbers respectively;

3. if and only if λm,n � 0, the function (−1)m+n+1Gm,n;λm,n(x) is completely mono-
tonic on (0,∞) ;

4. if and only if λm,n � 6(m+n+1)!
m!n! , the function (−1)m+nGm,n;λm,n(x) is completely

monotonic on (0,∞) .

In this paper, we would like to consider monotonicity of the function

GGGGGi, j;p,q(x) =
G(i)(x)G( j)(x)
G(p)(x)G(q)(x)

and complete monotonicity of the function

GGGGGi, j;p,q;Λi, j;p,q(x) = (−1)i+ jG(i)(x)G( j)(x)− (−1)�+mΛi, j;p,qG
(p)(x)G(q)(x) (1.1)

on (0,∞) , where i, j, p,q ∈ {0}∪N such that (i, j) � (p,q) . Figure 1 plotted by the
software MATHEMATICA hints that the function GGGGG17,11;15,13(x) is not monotonic in
x ∈ (0,∞) .

Therefore, in this paper, we will only consider the functions ±GGGGGi, j;p,q;Λi, j;p,q(x)
and find necessary and sufficient conditions on Λi, j;p,q for ±GGGGGi, j;p,q;Λi, j;p,q(x) to be
completely monotonic on (0,∞) .
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Figure 1: The graph of the function GGGGG17,11;15,13(x) on
( 1

3 ,9
)

2. Lemmas

The following lemmas are necessary in this paper.

LEMMA 2.1. ([13, Lemma 2.3] and [16, Lemma 2.1]) Let

w(t) =

⎧⎪⎪⎨
⎪⎪⎩

et [(t−2)et + t +2]
(et −1)3 , t �= 0;

1
6
, t = 0.

Then the following conclusions are valid:

1. the function w(t) is infinitely differentiable, positive, and even on (−∞,∞) , is
increasing on (−∞,0) , and is decreasing on (0,∞);

2. the function w(t) is logarithmically concave on (−∞,∞) .

LEMMA 2.2. (Convolution theorem for the Laplace transforms [24, pp. 91–92])
Let fk(t) for k = 1,2 be piecewise continuous in arbitrary finite intervals included in
(0,∞) . If there exist some constants Mk > 0 and ck � 0 such that | fk(t)| � Mkeckt for
k = 1,2 , then∫ ∞

0

[∫ t

0
f1(u) f2(t−u)du

]
e−stdt =

∫ ∞

0
f1(u)e−sudu

∫ ∞

0
f2(v)e−svdv.

LEMMA 2.3. ([11, Lemma 2.6]) For m,n, p,q ∈ N such that (p,q) � (m,n) , the
function

sm−1(1− s)n−1 +(1− s)m−1sn−1

sp−1(1− s)q−1 +(1− s)p−1sq−1
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is increasing in s ∈ (
0, 1

2

)
.

LEMMA 2.4. (Bernstein’s theorem [24, p. 161, Theorem 12b]) A function f (x) is
completely monotonic on (0,∞) if and only if

f (x) =
∫ ∞

0
e−xtdσ(t), x ∈ (0,∞), (2.1)

where σ(s) is non-decreasing and the integral in (2.1) converges for x ∈ (0,∞) .

LEMMA 2.5. ([9, Lemma 2.4]) For i, j, �,m ∈ {0} ∪N with (i, j) � (�,m) , the
inequality i! j! > �!m! is valid.

LEMMA 2.6. ([10, Theorem 6.1]) If f (x) is differentiable and logarithmically con-
cave on (−∞,∞) , then the product f (x) f (x0 − x) for any fixed number x0 ∈ R is in-
creasing in x ∈ (−∞, x0

2

)
and decreasing in x ∈ ( x0

2 ,∞
)
.

3. Necessary and sufficient conditions of complete monotonicity

In this section, we find necessary and sufficient conditions on Λi, j;p,q for the func-
tions ±GGGGGi, j;p,q;Λi, j;p,q(x) defined by (1.1) to be completely monotonic on (0,∞) .

THEOREM 3.1. For i, j, p,q ∈ {0}∪N such that (i, j) � (p,q) ,

1. if Λi, j;p,q � 1 , the function GGGGGi, j;p,q;Λi, j;p,q(x) defined by (1.1) is completely mono-
tonic on (0,∞);

2. if and only if Λi, j;p,q � i! j!
p!q! , the function −GGGGGi, j;p,q;Λi, j;p,q(x) is completely mono-

tonic on (0,∞);

3. the double inequality

1 <
G(i)(x)G( j)(x)
G(p)(x)G(q)(x)

<
i! j!
p!q!

(3.1)

is valid on (0,∞) and the right hand side inequality is sharp in the sense that the
number i! j!

p!q! can not be replaced by any smaller one.

Proof. In the proof of [17, Theorem 4], the author derived an integral representa-
tion

G(x) =
∫ ∞

0
w(t)e−xtdt, (3.2)

where w(t) is defined in Lemma 2.1. Combining (3.2) with Lemma 2.2 gives

GGGGGi, j;p,q;Λi, j;p,q(x) =
∫ ∞

0
w(t)tie−xtdt

∫ ∞

0
w(t)t je−xtdt

−Λi, j;p,q

∫ ∞

0
w(t)t pe−xtdt

∫ ∞

0
w(t)tqe−xtdt
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=
∫ ∞

0

[∫ t

0
ui(t −u) jw(u)w(t −u)du

]
e−xtdt

−Λi, j;p,q

∫ ∞

0

[∫ t

0
up(t−u)qw(u)w(t −u)du

]
e−xtdt

=
∫ ∞

0

[ ∫ t
0 ui(t −u) jw(u)w(t −u)du∫ t
0 up(t−u)qw(u)w(t −u)du

−Λi, j;p,q

]

×
[∫ t

0
up(t−u)qw(u)w(t −u)du

]
e−xtdt

=
∫ ∞

0

[ ∫ 1
0 si(1− s) jw(st)w((1− s)t)ds∫ 1
0 sp(1− s)qw(st)w((1− s)t)ds

−Λi, j;p,q

]

×
[∫ t

0
up(t−u)qw(u)w(t −u)du

]
e−xtdt.

By Lemma 2.3, we obtain that the double inequality

1 <
si(1− s) j +(1− s)is j

sp(1− s)q +(1− s)psq < ∞ (3.3)

is valid and sharp for s ∈ (
0, 1

2

)
and (i, j) � (p,q) . Hence, we have

∫ 1
0 si(1− s) jw(st)w((1− s)t)ds∫ 1
0 sp(1− s)qw(st)w((1− s)t)ds

=
∫ 1/2
0 [si(1− s) j + s j(1− s)i]w(st)w((1− s)t)ds∫ 1/2

0 [sp(1− s)q + sq(1− s)p]w(st)w((1− s)t)ds

> 1. (3.4)

Consequently, by Lemma 2.4, when Λi, j;p,q � 1, the function GGGGGi, j;p,q;Λi, j;p,q(x) is com-
pletely monotonic on (0,∞) .

By virtue of Lemma 2.1, we acquire

lim
t→0+

∫ 1
0 si(1− s) jw(st)w((1− s)t)ds∫ 1
0 sp(1− s)qw(st)w((1− s)t)ds

=
∫ 1
0 si(1− s) jds∫ 1
0 sp(1− s)qds

=
B(i+1, j +1)
B(p+1,q+1)

=
i! j!
p!q!

.

Let

Si, j;p,q(t) =
∫ 1/2

0

[
si(1− s) j + s j(1− s)i]w(st)w((1− s)t)ds

− i! j!
p!q!

∫ 1/2

0
[sp(1− s)q + sq(1− s)p]w(st)w((1− s)t)ds

=
∫ 1/2

0

([
si(1− s) j + s j(1− s)i]

− i! j!
p!q!

[sp(1− s)q + sq(1− s)p]
)

w(st)w((1− s)t)ds
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=
∫ 1/2

0

[
si(1− s) j + s j(1− s)i

sp(1− s)q + sq(1− s)p −
i! j!
p!q!

]
× [sp(1− s)q + sq(1− s)p]w(st)w((1− s)t)ds

for t ∈ (0,∞) and (i, j) � (p,q) . By Lemma 2.3, Lemma 2.5, and the sharp inequal-
ity (3.3), we find that the function

si(1− s) j + s j(1− s)i

sp(1− s)q + sq(1− s)p −
i! j!
p!q!

is decreasing in s ∈ (
0, 1

2

)
and has a unique zero s0 ∈

(
0, 1

2

)
for (i, j) � (p,q) . As a

result, utilizing Lemmas 2.1 and 2.6, we have

Si, j;p,q(t) =
(∫ s0

0
+

∫ 1/2

s0

)[
si(1− s) j + s j(1− s)i

sp(1− s)q + sq(1− s)p −
i! j!
p!q!

]
× [sp(1− s)q + sq(1− s)p]w(st)w(t − st)ds

< w(s0t)w(t− s0t)
∫ 1/2

0

[
si(1− s) j + s j(1− s)i

sp(1− s)q + sq(1− s)p −
i! j!
p!q!

]
× [sp(1− s)q + sq(1− s)p]ds

= w(s0t)w(t− s0t)
∫ 1/2

0

(
si(1− s) j + s j(1− s)i

− i! j!
p!q!

[sp(1− s)q + sq(1− s)p]
)

ds

= w(s0t)w(t− s0t)
(∫ 1/2

0

[
si(1− s) j + s j(1− s)i]ds

− i! j!
p!q!

∫ 1/2

0
[sp(1− s)q + sq(1− s)p]ds

)

= w(s0t)w(t− s0t)
[
B(i+1, j +1)− i! j!

p!q!
B(p+1,q+1)

]

= w(s0t)w(t− s0t)
[

i! j!
(i+ j +1)!

− i! j!
p!q!

p!q!
(p+q+1)!

]
= 0.

Accordingly, the inequality

∫ 1/2
0

[
si(1− s) j + s j(1− s)i

]
w(st)w((1− s)t)ds∫ 1/2

0 [sp(1− s)q + sq(1− s)p]w(st)w((1− s)t)ds
<

i! j!
p!q!

is valid and sharp for t ∈ (0,∞) and (i, j) � (p,q) .
Therefore, by the equality in (3.4) and Lemma 2.4, for (i, j) � (p,q) , if and only

if Λi, j;p,q � i! j!
p!q! , the function −GGGGGi, j;p,q;Λi, j;p,q(x) is completely monotonic on (0,∞) .
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The double inequality (3.1) follows from complete monotonicity of the functions
±GGGGGi, j;p,q;Ωi, j;p,q(x) on (0,∞) . The sharpness of the right hand side inequality in (3.1)
follows from the limit

lim
x→∞

[
(−1)kxk+1G(k)(x)

]
=

k!
6

.

in [16, Lemma 2.2], where k � 0. The proof of Theorem 3.1 is complete. �

4. Remarks

Finally, we list several remarks.

REMARK 4.1. What is the necessary and sufficient condition on Λi, j;p,q such that
the function GGGGGi, j;p,q;Λi, j;p,q(x) defined in (1.1) is completely monotonic on (0,∞)?

What is the sharp lower bound of the left hand side inequality in (3.1)?

REMARK 4.2. For N0 = {0}∪N , n > 2, and two nonnegative integer tuples ααααα =
(α1,α2, . . . ,αn) ∈ N

n
0 and βββββ = (β1,β2, . . . ,βn) ∈ N

n
0 with ααααα � βββββ , let

GGGGGααααα ,βββββ ;Cααααα,βββββ
(x) =

n

∏
r=1

[
(−1)αrG(αr)(x)

]−Cααααα ,βββββ

n

∏
r=1

[
(−1)βrG(βr)(x)

]
on (0,∞) . One can discuss necessary and sufficient conditions on Cααααα ,βββββ ∈ R such that
the functions ±GGGGGααααα ,βββββ ;Cααααα,βββββ

(x) are respectively completely monotonic on (0,∞) .

REMARK 4.3. This paper is a revised version of the electronic preprint [8] and
the tenth one in a series of articles including [15, 9, 11, 12, 13, 14, 16, 17, 19].

Acknowledgements. The author appreciates anonymous referees for their careful
corrections to and valuable comments on the original version of this paper.
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