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BESOV-MORREY SPACES AND VOLTERRA INTEGRAL OPERATOR

RONG YANG AND XIANGLING ZHU*

(Communicated by Ivan Peric)

Abstract. In this paper, we introduce a class of Besov-Morrey spaces Bﬁ (s). For any positive
Borel measure p, we characterize the boundedness and compactness of the identity operator
from Bll;(s) spaces into tent spaces 7;7(it). As an application, the boundedness, compactness

and essential norm of the Volterra integral operator 7, from Bll;(s) spaces to some general
function spaces are also investigated.

1. Introduction

Let D denote the open unit disk in the complex plane C and 9D its boundary. For
any arc I C D, let |I| = 5 [;|d{| denote the normalized length of / and S(I) be the
Carleson box defined by

S()={zeD:1-I|<[z] <1, z/|z] € I}.
Let 0 < p <o and U be a positive Borel measure on ). We say that it isa p-Carleson

measure if (5()
u
||l~LHCM,, ‘= sup
Icd

<
p [P -

When p =1, it gives the classical Carleson measure. p is said to be a vanishing p-
Carleson measure if limyz o % = 0. When p = 1, it gives the vanishing Carleson
measure.

Let 0 <t <oo, 0<q<oo and u be a positive Borel measure on D. Let 7, (u)

be the space of all (-measurable functions f such that (see, e.g., [16])
1
9, = sup — / 2)|9du(z) < oo.
11500 = s90 177 [, Q)b

For 0 <5 <1 < p < oo, the Besov-type space, denoted by B)(s), is the space of
all functions f € H(ID) such that

171, = PO + [ P Q1= Y2 dAR) <.
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Here dA is the normalized Lebesgue area measure in D such that A(D) = 1. In partic-
ular, B,,(0) is the Besov space, and we always denote it by B,.

Let 0 < p<oo, —2 < g<ooand 0< s < oo, The space F(p,q,s), introduced by
Zhao in [34], is the space consisting of all f € H(D) such that

A IZ (pas) =|f(0)|p+21615/D\f’(Z)l”(1—\le)q(l—lﬁa(Z)lz)SdA(Z)<

where 0,(z) = {=% . When g+s > —1, the space F(p,q,s) is nontrivial. It is easy
to see that F(p,p —2+5,0) is the Besov-type space B,(s), F(2,0,s) = Qy, the QO
space, and F(2,0,1) = BMOA, the space of analytic functions of bounded mean oscil-
lation. F(p,p,0) is just the classical Bergman space A?. When s > 1, F(p,p—2,s)
is equivalent to the Bloch space ([34]), denoted by 4, consisting of all f € H(DD) such
that ||| = [£(0)| 4 sup,ep(1 — [z[*)]f' ()| < . We will denote F(2,¢,0) by Z; in
this paper.

Let 0 < A < 1. The analytic Morrey space fll, which was introduced in [33],
is the space of all f € H? such that

171722 = L£(0) |+ sup(1 - 1al?) 72 |1 f 0 6u— F(a) 2 < oo

Clearly, .#*! coincides with the BMOA space. .#>° is just the Hardy space H>
(see [9, 14]). Moreover, BMOA C ¥** c H? for 0 < A < 1. The space .Z>* was
investigated in [9, 13, 14, 33].

Let 0 < p,A < 1. In [4] was introduced the Dirichlet-Morrey space @5’1, which
consists of all f € 5 such that

171 j22 = 1£(O )|+Sup(1—\a| ) | fo0u f@)llgg <.

Itis easy to check that @12’/1 = 32&@;71 = Qmﬁg’o = _@5 and

QyC 2P C 2, 0<A<L

They studied the boundedness and compactness of the Volterra operator 7, on the space
@ﬁ’l. For example, if T, is bounded on @5,1 ,then g € Q),, while if g € W), , then T is

bounded on :@,%’/l . Here the space W), is the space consisting of all functions g € H(ID)
such that (see [4])

L 1f@PIE P - 2Prdae) <Clfi,, 1< 73,
D P

In this paper, we introduce a class of Morrey spaces, which we will call Besov-
Morrey spaces, and denote them by Bl’l (s). Let 0 < 5,4 < 1< p <eo. We say that an

f € Bp(s) belongs to the Besov-Morrey space B; (s), if

1A 1535y = (O )\+Sup(1—la\ ) HfoGa() f(@)lp, ) <o
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Under the above norm, B?; (s) is a Banach space. It is easy to see that Bll,(s) =F(p,p—
2,s) and B‘I),(s) = B)(s). Moreover,

F(p,p—2,5) CBj(s) C Bp(s), 0<A<l.
Let f,g € H(ID). The Volterra integral operator 7, is defined by

1@ = | £()g'(§)dg, zeD.

In [17], Pommerenke showed that T, is bounded on H 2 if and only if g € BMOA.
In [1], Aleman and Siskakis proved that T, is bounded on H” (p > 1) if and only if
g € BMOA. In [2], the authors showed that T, is bounded on the Bergman space A? if
and only if g € #. See [7, 8, 10, 12, 13, 18, 19, 21, 22,23, 24, 25,26, 29, 35] and the
references therein for more study of the operator 7.

The rest of this paper is organized as follows. In Section 2, some basic properties
of Besov-Morrey spaces were studied. In Section 3, we study the boundedness and
compactness of the identity operator Id from Bl’l (s) to tent spaces T,7(u). As an ap-
plication, the boundedness, compactness and the essential norm of the Volterra integral
operator Ty B?; () = F(q,q—2+ @J) are given in Section 4.

In this paper, we say that f < g if there exists a constant C > 0 such that f < Cg.

Denote by f =< g whenever f < g < f.

2. Some basic properties

PROPOSITION 1. Let 0 <s<1, 0<A <1< p<eand f€ H(D). Then f €
Bf;(s) if and only if
1

sup —— [ @IP (1~ [2P)r A () < o (1)
cam 1™ Js

Proof. Assume that f € Bf; (s). Given any arc I C 9D, let a = (1 — |1])§, where
& is the center of 1. We have

|1 —az| =~ 1—|a*~|I|, z€ S(I).
Note that
1715y > (1= 1aP) 0P| fo 0, @l

= (a0 [ (Foo @ (1~ [Py 2 aA)
= (1= 1Py [P QPO )20~ )Py dAG)
= (110200 [ a0 -y U g

11— az>

7 [ AP @R aaG),

2 -
IAT)
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which implies the desired result by the arbitrariness of /.
Conversely, suppose that (1) holds. Let dus(z) = [f'(z)[P (1 — [z[*)P~2T5dA(z).
Then

ur(S(I)) 1 / , 2\ p—2+s
SUp ————" = SUp —— If (@) (1 = [2])P""dA(z) < oo
cop I 1con I s

So py is an sA -Carleson measure. Then for a € D,
1f e 0= F(@)ll5 () =/le’(Z)lp(l—IZI2)”‘2(1—\Ga(Z)Iz)SdA(Z)
1— 2\s
= [1r@ra—p e S

|1—EZ‘2'Y
(1 [ay
= | ——5-d .
D |1—az/* M)
Thus
sup(1 — a1 o 0~ Fl@l = sup(1 — afyH) [ BB gy
acD ¢ Bp(s) acD D ‘1 _ﬁz‘zs !
(1 _ ‘a|2)2s7s7t
= AL
e Y
1—|af?)?
g [ O

achJD |l - az‘p-‘rq

< oo,

where ¢ = (2—A)s >0, p=sA > 0. The last inequality used the Lemma 2.2 in [16].
The proof is complete. [

REMARK 1. From the proof of Proposition 1, we see that

1
p ~ / P(1— 2\p—2+s A7),
150 % 590 i [ 7@ P aA()

PROPOSITION 2. Let 0 < s,A <1< p<ooand f € H(D). For any feBl’l(s),

£ 11 (5)
‘f(@|§ﬁ7 zeD
(I—z) 7

Proof. Suppose that f € B?; (s). By Lemma 4.12 in [36], for any analytic function
gon D,

lg(0)]” < (P—1+S)/D\g(2)|”(1 — [2?)P72dA(z).
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Apply the function g = (f o0, — f(a))’ to the above inequality, we obtain

£ (@P(1—a]*)? < (p—1+S)/ |(fo0a) ()7 (1= [2*)P~**dA(2)
__(p=1+y)
(T a7
MR

(1 —laP) M| fo Ga—f(a)”gp(_y)

foreach a € D. Thus

||fHB7L(\)
f (@) S ﬁ7 ac
(1=laP)~7 "

Since f(z) — f(0) = [ f'(§)d&, by integrating both sides of the last inequality, we
obtain the desired result. [J

3. Embedding Bl’l (s) into tent spaces

In this section, we study the boundedness and compactness of the identity operator
Id: BI% (s) — T,7(1). We say that Id is compact if

1
r}grolo |I‘t/ |fu(2)|9du(z) =0,

where I C D, {f,} is a bounded sequence in B; (s) and converges to zero uniformly
on compact subsets of D.

LEMMA 1. [16, Corollary 2.5] Let a,b € D and r > —1, s,t > 0 such that 0 <
s+t—r—2<s. Then

1— 1
/¢ @S 7o
D |1 — az|*|1 — bzt (1—lal?)

LEMMA 2. Let 0<s< 1, 0<A <1< p<ooandbeD. Then the function
1

fb(z) = ﬁa
(1-bz)" 7

belongs to BIQ; (s).
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Proof. By Lemma 1, we obtain

Iillgy = sup(1 = a0 Py 0= F(@)f

acD

= sup(1— a1 [ [(fy0 ) I (1~ [2P)>"dA()

aeD
_ _ 1—lal?)’
= sup(1 a4 [ (g - ey S aay
aeD D |1 —az]
1— 2 p72+s 1 412)s
e -l L
ach D |1 — bz|Pt35(=A)|1 — az|?s

2
—p(1 - gy [ U EDTD
acD D ‘1 — bz‘lﬂrb‘(l*l)“ _ §Z|2S

< oo,

as desired. [

LEMMA 3. [3]Let 1 <p <eo, s> —1,1>0 suchthatt <2+s. If f € H(D),
then
» (=2 / p l—IZI )P
— dA(z).
L1r0=ror =t @I S AR

Now we are in a position to state and prove the main results in this section.

THEOREM 1. Let [ be a positive Borel measure on D, 0 <s<1, 0<A <1<
p < q<oo, 0<t <o such that p—’—|—sl > s and p—t —sA > 0. Then the identity

operator 1d : By(s) — T,(1t) is bounded if and only lf Wwisa (t+ q‘( sU=1))_Carleson
measure.

Proof. First we suppose that Id : B; (s) — T,7(u) is bounded. For any I C dDD, let
& be the midpoint of 7 and a = (1 — |I])&. Set

1—laf?
fa(2) = ——— 7555 2€D.
(I—az) 7

By Lemma 2, we see that f, € BI% (s) with sup,cp || fallpa(y S 1. Since [1—az| ~
p
1—|a>~ 1], z€ S(I), we get

u(sn) 1
= T o V194 (2) S Ll <

which implies that y is a (¢ + qs( #(U-2)y_Carleson measure.
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Conversely, let u be a (r + 2= 5 @U=4)) Carleson measure. Let f € B%(s). For any

1 C dD, let & be the midpoint of / and a = (1 — |I|)&. Note that

1 1 1
7 o V@I S g [ @)+ [ 176) = staltanta
=E|+E>.
11,3,
By Proposition 2, |f(z)] < 7S( Hence
(1-1zP)
1 1 ||fH;I;A(S)
Ei=— 9d e du(z
V= o @) S e )
- _HE)

< m’*"“ el U

Using Theorem 1 of [6] and the assumption that Z +s(1 —A) >0, we see that u

isa (r+ q‘( #U=2)) Carleson measure if and only if @p C L(u). Note that

245+ 5 —sA
fEBA(s )C@p 2t B . We obtain
B= i [, 110~ r@pdut)
oy [ |f@-f@]
SO-lay [ [ g | e
e [ ]d f0-f@ spzesitg o\
S ((1—a|> LI ot | U dA<z>>
Since
dfQ)~fl@) _F@1=a)7+aE)(fE) ~fl@)1-az)7
dz (| _az)i (1—az)* ’

we deduce that £, < (I+J )% , Where
! / pt
1= -ty [ L eyt otang
D1 —az
and

J= ( |a‘ ) |f( ) ( )|P(l . |Z|2)p72+.v+%t7.vldA(Z).

2,
D —gg0t
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2 2
Since % = (1 —|0u(z)[?), by the assumption that £ —sA > 0, we have

q

Jus ‘f/(z)|17 I, NI Ly §
I=(-1a?)¥ [ S22 (- )
D1 —az| e

S [ @I =12t (1= o)) TaA)

S [ 1@ =122t (1= o) A G)
1 / —2+s

S sup oz [ QPO =P aA)

~ P

Making the change of variable w = 0,(z), by Lemma 3 and the assumption that %’ +

sA > s and %’ —sA >0 we obtain
_ P
J= (1 _ ‘a|2)%t ‘f(Z) fz(fl)| (1 _ ‘Z|2)p72+.\'+%t7sldA(Z)
D |1 —qgld P
—2+s plfsl 2\s—sA
(L= PP 2= (1= Jay
= [ 1fo0utn) = o) T dA(w)

s+ 2 —sA

1_|W|2)217 24s+ 4 (1_‘a|2)s s
!/ p(

< [1roes/ ) = dA(w) (Lemma 3)

(L= [wP)" > (1 — a2y

= [ 17/t~ ou(w) ) o dA(w)

) Pt_gp _
=/ PP oy Llo@P) T (1 —JaP)y ™ (1~ a2
D ' |1 _ aaa(z)|p+2.\'72sl ‘1 _ CYZ“‘

o 2p—2+4s+ L2 —sA
(1—[aP) (1|2 2+
- [irar o E dA()
—az

S L1701y (1~ o)) TdAG)
< [IF@Pa—P)r 21~ o, ()P dAC)

Hence, E, < || f Hg% e Therefore,

1
sup o [ 7)) S 71, .

1cop 1" Js()

which implies the desired result. The proof is complete. []
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THEOREMZ. Let 0<s<1,0<A<1<p<q<oo, 0<t< oo such that %f+
sA>s and 2 —s) > 0. Let U be a positive Borel measure on D such that point
evaluation is a bounded functional in T (). Then the identity operator 1d Bl( ) —

T, (u) is compact if and only if W is a vanishing (¢ + q‘( )) Carleson measure.

Proof. First, we suppose that Id : B; (s) — T,7(u) is compact. Let {I,} be a
sequence arcs with lim |I,| = 0. Set b, = (1 —|1,|)&,, where &, is the midpoint of I,.
Take

1— |b,|?
(@) = ——azy €D
(1=byz)~ 7

We know that f, € B; (s) and {f,} converges to 0 uniformly on every compact subset
of D when n — oo. Then we have

ﬁ#w;h/ (@) dp(z) =0 (1 — <o),

which implies that y is a vanishing (¢ + q\( #U=4))_Carleson measure.

Conversely, suppose that p is a Vamshmg (t+ qs( )) -Carleson measure. From
[16] we get

Hnu ,ur”CM 1 as(1-24) —0,r—1

Here p,(z) = u(z) for |z < r and p,(z) =0 for r < |z| < 1. Let f,, € B’L (s) such that
Il £l Bi(s) < 1 and {fu} converge to 0 uniformly on compact subsets of D Then
A (s

1
= i iy QN7 an )
1
1 1
- @1 @) + —r [ 1l — 1))
Bl = R hu
1 q
P i gy Q@) = ellen_ iy Il
1 T r
1
e i g 1)+l Bl
1

Letting n — o and then r — 1, we have limy . || ful|74(,) = 0. Therefore /d : B; (s) —
T,7(u) is compact. The proof is complete. [J
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4. An application

In this section, by using Theorem 1, we completely characterize the boundedness,
compactness and essential norm of the operator 7y, : B%( )— F(q,qg—2+ qs(l A) ,).

THEOREM 3. Let g€ H(D), 0<s<1,0<A<I<p<g<e, 0<t <1 such
that pt—f—s?t > s and ——s?L > 0. Then Tg:B%(s) —>F(q,q—2+@,t) is bounded

ifand only if g € F(q ,61—2,t+ @)'

Proof. Assume that Ty : Bl’l (s) — F(q,q—2+ w,t) is bounded. For any
1 C 9D, let & be the midpointof 7 and a = (1—1])&. Set f,(z) = i7 zeD.

s(I=A)+p
(1-az) P

Then f, € B?; (s) and ||fa||3117 < 1. Thus,

1Tefall g 24 0ll-2) o S Tellll fally ) < 1Tell-
‘We have

o > ||Tf1/lHq 2+qr(l A) )

-Jw/|¢z|m—m>

21 oy (0) P dA()

2 [ 1@ @I (1~ 1"

1 .
NW/S(I) £~ DI dAG),
1

e IGa(Z)Iz)’dA(Z)

which implies that g € F(q,q — 2, + qs( )) by Proposition 1(take A = 1).

Conversely, suppose that g € F(q,q — 2,1+ q‘( )) From [36] and Proposition
1 we obtain

_ gs(s—A)
8120y = 390 1@ = PY 20 = lafe) 7 aAG)
1 / q 2 t+q( )Jrq 2
zmm—ﬁfﬂfwﬂmu ) aA()
1coD ||+ S(D)
L (S0
sup B(A) *
1coD |1 |f+

which means that y, is a (z + q‘( #(-2)) _Carleson measure, where 11, = |g'(2)[7(1 —
s(1-A
o2y

*4724A(z). By Theorem 1, the identity operator Id : Bi(s) — T(u) is
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bounded. Let f € B?; (s). We deduce that

)

12 s,y =508 [ V@I @I D) 720 oA

A g2,

s 1 2\t
—sup [ @l @ - i =2 U aa

1
msup—/ F(@)|%dug(z
sup - [ 110 @)
—_fle < fd q
11 S W1 Bl

2, Jrqv(l l)) < oo

Therefore Ty : Bl’l (s) = F(q,q—2+ w,t) is bounded. The proof is complete. [J

Next, we give an estimation for the essential norm of T, . First, we recall some
relevant definitions. The essential norm of 7' : X — Y is defined by

I Tlex—y = iréf{HT—KHX_y : K is a compact operator from X to Y },

where (X,]|-||x) and (Y,]| - ||y) are Banach spaces and T : X — Y is a bounded linear
operator. It is clear that 7 : X — Y is compact if and only if |||, x—y = 0. For some
results about the essential norm of operator 7, and some related ones see, for example,
[5, 8, 11, 15, 24, 27, 28, 29, 30, 31, 35].

For a closed subspaces A of X, given f € X, the distance from f to A denoted
by distx(f,A), is defined by distx (f,A) = infeeq || f — gl/x-

Let Fy(p,q,s) denote the space of all f € F(p,q,s) such that

liml/ 1f'@)[P(1—[z*)9(1 — |oa(z)|*) dA(z) = 0.
—1.JD

la|

We need the following lemma, which can be found in [20].
LEMMA 4. Let 1 <g<oo, 0 <t <oo. If g€ F(q,q—2,0), then

distp(g.4—2,0) (g Fo(q,q —2,00)) = limsup || — &/l p(g.9-2.0)
r—1-
1

~ liElliL}p (/D lg'(2)]7(1 — |z)*)972(1 — Ga(Z)|2)adA(Z))

Here g,(z) =g(rz), 0<r<1, zeD.

LEMMAS. Let 0<s<1,0<A<1l<p<g<ooand 0<t<oo. IfO<r<1
and g € F(q,q— 2t+q\( Ay, then Ty, B’%)—>F(q,q—2+@,t) is compact.

Proof. Let {f,} C B; (s) such that {f,} converges to zero uniformly on every
compact subset of D and sup, || /| Bi(s) < 1. By Proposition 2 and the fact that
A (.
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F(g.q— 2,1+ 24 M) C A, we have

17 an B2

+q—2.t)

as(1=2)
=sup Ifn(Z)Iqlg’r(Z)lq(l—\le) R

(1~ |ou(2) ) dA(z)

g [ R@E - DT oo dAG)

g2+ 200,

as(1-1)
ey RGP

q
HgHF(q.q_z’t_‘rqs(lfl)

; ) 3
N (1—r2)a : ”fn”Z%(S)/D(l — |2)%)72dA(z).

T24A(2)

By the dominated convergence theorem, we get the desired result. The proof is com-
plete. O

THEOREM 4. Let g€ HD), 0<s<1,0<A<I<p<g<e, 0<t <1 such
that %’—Fs?t > s and %’—sl >0. Ing:Bl’l(s) —>F(q,q—2+@,z) is bounded,
then

i gs(1-2)
|| g”eB)L (s)—F(q.q— 2+qv(l A) )NdISt Flag 2t+qr )(87F0<6176] 2t+T>>

Proof. Let {I,} C 9D and lim,_..|I,| = 0. Suppose ¢!% is the center of I, and
. 2

cn = (1 —|L|)e® . For each n, let f,(z) = % Then {f,} is bounded in
(I=cnz) P

B?; (s) and {f,} converges to zero uniformly on every compact subsets of ID. Given a

compact operator K : B} (s) — F(q,q—2+ qs( %) ). Using Lemma 2.10 in [32], we

have lim, . [[K fal| . Flgg-24 802 )—0 So

1T, = K| Z limsup|[(T — K) ]|

n—o0

F(q7q*2+MJ)
Zlimsu < T, s Y )
n_mp | gfn” ,2+q( —| an g—24+20=4) 1 ) 1)

=limsup || 7 /||
n—oo

F(q’q—2+M )
1

a2 |oc,,<z>|2>fdA<z>)"

1

. 1 as(
Zimsup | ——r [ 1€ Haa@) |

n—oo t+——" as

Zlimsup</ fa(2)]7]8'( )Iq(l—|Z|)

n—oo

1]
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which implies that

I T,

e.B} (5)—F (q.q—2+ 202 )

= limsup

n—o0

1 o as(1-4)
= [, [E@Ea—R 2 aa
In| T n

By Lemma 4 and the arbitrariness of n, we have

1T,

(1-2)
=)

e.B) (5) = F(q.g—2+ LU=A) 4y < R disty Ry G )(g’F°<qq 2.+

On the other hand, by Lemma 5, we see that Ty, : B; (s) — F(q,q—2+ w,t)
is compact. Then

I T,

ST =T,

= H T'*A’r

e.BY (s)—F (q.g—2+ L2
~|lg _gr||F(q,q—2,t+M)'
Using Lemma 4 again, we obtain

1T,

e BA(5)F(gq-2+ #0215 Slimsupllg =gl - 24 BA))

r—1-
)(g,Fo<q q—2,t+ %))

~ dlst Flag-2. t+qr

The proof is complete. []

The following result can be deduced by Theorem 4 directly.

COROLLARY 1. Let g HD), 0<s<1, 0<A<1l<p<g<e, 0<r<1
such that %’—Fsl > s and %’—sl > 0. Then the operator YL,:B;(S) —F(q,q—2+

@,I) is compact if and only if g € Fo(q,q— 2,1+ @)
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