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ON THE HARDY PROPERTY OF MIXED MEANS

PAWEŁ PASTECZKA

(Communicated by C. P. Niculescu)

Abstract. Hardy property of means has been extensively studied by Páles and Pasteczka since
2016. The core of this research is based on few of their properties: concavity, symmetry, mono-
tonicity, repetition invariance and homogeneity (last axiom was recently omitted using some
homogenizations techniques). In the present paper we deliver a study of possible omitting mono-
tonicity and replacing repetition invariance by a weaker axiom.

These results are then used to establish the Hardy constant for certain types of mixed
means.

1. Introduction

The notion of Hardy means was formally introduced by Páles-Persson in 2004
[19], however its origin goes back to 1920s/30s when there appear a series of papers
by, among others, Hardy [6], Landau [13], Knopp [10], and Carleman [2]. In order to
present their results in an appropriate setup recall that for p ∈ R the p th power mean
of the positive numbers x1, . . . ,xn equals

Pp(x1, . . . ,xn) :=

⎧⎨
⎩
(xp

1 + · · ·+ xp
n

n

) 1
p

if p �= 0,

n
√

x1 · · ·xn if p = 0.

(1.1)

Then all early results mentioned above can be expressed in a compact form

∞

∑
n=1

Pp(x1, . . . ,xn) � γp

∞

∑
n=1

xn for all (xn)∞
n=1 ∈ �1(R+),

where p ∈ (−∞,1) and

γp :=

⎧⎨
⎩
(
1− p

)− 1
p if p ∈ (−∞,1)\ {0},

e if p = 0.

Moreover all these constants are sharp, i.e. they cannot be diminished.
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As the matter of fact this area has been active ever since that period. Detailed
history is presented in papers Pečarić–Stolarsky [15], Duncan–McGregor [5], and the
book of Kufner–Maligranda–Persson [12]. There are a number of generalizations and
related results, however we are especially interest in two of them. First, following Páles
and Persson [19], mean M :

⋃∞
n=1 In → I (here and in the sequel I ⊆ R is a nondegen-

erated interval with inf I = 0) is called a Hardy mean (or has a Hardy property) if there
exists a constant C ∈ [1,+∞) such that

∞

∑
n=1

M (x1, . . . ,xn) � C
∞

∑
n=1

xn for all (xn)∞
n=1 ∈ �1(I). (1.2)

To clarify this definition recall that a mean (on I ) is an arbitrary function M :
⋃∞

n=1 In →
I with min � M � max.

Now, due to Páles and Pasteczka [16] we define the Hardy constant of M as the
smallest extended real number C satisfying property (1.2) and denote it as H (M ) .
In this manner a mean admit the Hardy property if and only if it has a finite Hardy
constant. Furthermore H (Pp) = γp for all p ∈ (−∞,1) .

In a finite form, following [16], for n ∈ N , we define Hn(M ) to be the smallest
nonnegative number such that

M (x1)+ . . .+M (x1, . . . ,xn) � Hn(M )(x1 + · · ·+ xn) (1.3)

holds for all (x1, . . . ,xn) ∈ In . The sequence
(
Hn(M )

)∞
n=1 will be called the Hardy

sequence of M . Due to the mean value property, we easily obtain the inequality 1 �
Hn(M ) � n . This sequence was of some interest among the years. For example
Kaluza and Szegő [8] proved Hn(Pp) � 1

n(exp(1/n)−1) · γp for p ∈ [0,1) and n ∈ N .

Furthermore it is known [7, p. 267] that Hn(P0) � (1+ 1
n )n for all n ∈ N . There are

also a number of other results like [21] where the approximate values of (Hn(P0))12
n=1

was given. We are not going to recall them in details as they are outside the scope of
this paper.

Hardy sequences have an interesting limit behavior. Let us put this as a proposition
since we are going to refer to it further.

PROPOSITION 1. ([16], Proposition 3.1) For every mean M :
⋃∞

n=1 In → I , its
Hardy sequence is nondecreasing and converges to H (M ) .

There appear a natural question how to obtain the Hardy constant for a given mean.
The first important step was to find the lower bound of H (M ) . The idea was to use
the Stolz-Cesàro theorem to the series ∑xn and ∑M (x1, . . . ,xn) . This lead us to the
next proposition.

PROPOSITION 2. ([16], Theorem 3.3) Let M :
⋃∞

n=1 In → I be a mean. Then, for
all sequences (xn)∞

n=1 in I that does not belong to �1 ,

liminf
n→∞

x−1
n M (x1, . . . ,xn) � H (M ).
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If we apply this proposition to the family of harmonic sequences {( y
n)∞

n=1 : y ∈ I}
we obtain the following lower estimation of H (M ) .

PROPOSITION 3. Let M :
⋃∞

n=1 In → I be a mean. Then H (M ) � C (M ) ,
where

C (M ) := sup
y∈I

liminf
n→∞

n
y
·M

( y
1
,
y
2
, . . . ,

y
n

)
. (1.4)

The problem of calculating C (M ) seams to be significantly easier than the Hardy
constant. Nevertheless some results contained in [16] shown that these two constants
are closely related to each other in a broad class of means (see Proposition 4 below).

Let us emphasize that a number of results in [16] which refers to Hardy property
claim so-called repetition invariance of mean. We aim to relax this assumption to rep-
etition superinvariace (which is a new definition). Later we show some examples of
repetition superinvariant means which are not repetition invariant and establish their
Hardy constant.

Just for technical reason, using some recent results concerning homogenizations
[17], we restrict our consideration to I = R+ (without any loss of generality) which
provide us some additional properties. Later, we reproved few results from [16] in this
more general (superinvariant) setting and, finally, establish Hardy properties among two
broad families of mixed power means.

2. Properties of means

Let us now introduce some important properties of means. We begin with few
conventions which help us to avoid misunderstandings. Let N := {1,2, . . .} and for
n ∈ N define Nn := {1, . . . ,n} , as it is handy.

A mean M on I is said to be symmetric, if for all n ∈ N , x ∈ In , and a permu-
tatuion σ : Nn → Nn , the equality M (x) = M (x ◦σ) is valid. We call a mean M
to be Jensen concave if, for all n ∈ N , its restriction M |In is Jensen concave. We can
introduce Jensen convexity in a similar manner. Note that, since M is locally bounded,
the Bernstein–Doetsch Theorem [1] implies that its Jensen concavity (convexity) is in
fact equivalent to concavity (convexity). A mean M is said to be monotone (or non-
decreasing) if for all n ∈ N , the restriction M |In is nondecreasing in each of its entry.
Assuming that I = R+ , we call a mean M homogeneous, if for all t > 0, n ∈ N and
x ∈ R

n
+ , we have M (tx) = tM (x) . Mean M is called repetition invariant if, for all

n,m ∈ N and (x1, . . . ,xn) ∈ In , the following identity is satisfied

M (x1, . . . ,x1︸ ︷︷ ︸
m-times

, . . . ,xn, . . . ,xn︸ ︷︷ ︸
m-times

) = M (x1, . . . ,xn).

Finally a symmetric mean M is associative if for all n,m ∈ N , and a pair of
vectors (x1, . . . ,xn) ∈ In and y = (y1, . . . ,ym) ∈ Im we have

M (x1, . . . ,xn,y1, . . . ,ym) = M (x1, . . . ,xn,μ , . . . ,μ︸ ︷︷ ︸
m-times

), where μ := M (y).
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This axiom is very characteristic for quasiarithmetic means (see [11]). Furthermore it
is easy to show that every associative mean is repetition invariant.

To conclude this section let us go back to the Hardy property. As it was already
mentioned, due to [16] the Hardy constant is linked to C (M ) defined by (1.4). To
clarify this link we recall the important result binding them even stronger than Propo-
sition 3.

PROPOSITION 4. ([16], Theorem 3.4) Let M :
⋃∞

n=1 R
n
+ →R+ be an increasing,

symmetric, repetition invariant, and Jensen concave mean. Then H (M ) = C (M ) .

2.1. Homogenizations

We also use the notion of homogenization from [17]. The idea was to associate
the homogeneous mean to a given one. Indeed, according to [17], for a mean M on
an interval I (recall that we claim inf I = 0) we introduce the (local) homogenizations
M#,M

# :
⋃∞

n=1 R
n
+ → R+ by

M#(x) := liminf
t→0

1
t M (tx) and M #(x) := limsup

t→0

1
t M (tx) .

In the case when M is Jensen concave these two means coincide with each other,
which can be expressed formally in the following statement.

PROPOSITION 5. ([17], Theorem 2.1) Let M be a Jensen concave mean on I .
Then M# = M # and these means are also Jensen concave.

In addition, M � M# = M # on the domain of M .

Let us now recall a property binding the Hardy constant of the mean and its ho-
mogenizations.

PROPOSITION 6. ([18], Theorem 3.3) For every mean M on I we have H (M#)
� H (M ) .

Moreover, if M is Jensen concave then H (M#) = H (M #) = H (M ) .

2.2. Auxiliary results

As we are going to generalize consideration enclosed in [16], we need to go inside
the proof of the main theorem contained therein – more precisely [16, proof of Theo-
rem 2.1]. It was based on the result by Kedlaya [9]. The key tool was the existence of a
family of matrices with some specific properties. Since we need to use them in the new
setting let us isolate this combinatorial fact.

LEMMA 1. For all n ∈ N there exists a matrix K ∈ Nn
n!×n! such that:
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(i) for all s ∈ Nn and p ∈ Nn! the number of appearance of the value s in the p-th
row of K equals

αp(s) :=

{
n!� p

(n−1)!	−1 if s � � p
(n−1)!	,

0 otherwise;

(ii) for all s ∈ Nn and q ∈ Nn! the number of appearance of the value s in the q-th
column of K equals αq(s) .

Remarkably, this lemma does not involve means in its wording. It is very important
for us since it has no superfluous assumptions. Lemma 1 in a similar form was already
used in [4]. It was also used in proving a sort of Kelaya’s inequality for concave means
in both [9] and [16].

Before we present next statement let us introduce a handy, sum-type notion. For a
mean M on I , a vector of entries x ∈ In and a nonzero vector of nonnegative integers
λ ∈ (N∪{0})n \ {(0, . . . ,0)} we denote briefly

n

M
i=1

(xi,λi) := M (x1, . . . ,x1︸ ︷︷ ︸
λi-times

, . . . ,xn, . . . ,xn︸ ︷︷ ︸
λn-times

).

Using this notion we formulate and proof a variation on [16, Theorem 2.1]. In the
original result there was an additional assumption (repetition invariance of M ).

PROPOSITION 7. Let M be a symmetric and Jensen-concave mean on I . Then
for all n ∈ N and x ∈ In we have

n

∑
i=1

i

M
j=1

(
x j,

n!
i

)
� n

n

M
i=1

(x1 + . . .+ xi

i
,(n−1)!

)
.

Proof. Fix n ∈ N and x ∈ In arbitrarily. Let K ∈ Nn
n!×n! be the matrix from

Lemma 1. Define the matrix A = (ap,q) ∈ In!×n! by ap,q := xKp,q . Then since M is
Jensen-concave we obtain

A
(
M
(
ap,q : q ∈ Nn!

)
: p ∈ Nn!

)
� M

(
A
(
ap,q : p ∈ Nn!

)
: q ∈ Nn!

)
. (2.1)

Now using the property (i) in Lemma 1, since M is symmetric we have

M
(
ap,q : q ∈ Nn!

)
= M

(
xKp,q : q ∈ Nn!

)
=

n

M
j=1

(x j,αp( j)) for all p ∈ Nn!.

Thus, using the definition of αp we can omit all terms with zero entries to obtain

M
(
ap,q : q ∈ Nn!

)
=

� p
(n−1)! 	

M
j=1

(
x j,

n!
� p

(n−1)!	
)

for all p ∈ Nn!.



878 P. PASTECZKA

Now we can sum-up the above equality over p∈Nn! . Then the right hand side naturally
splits into n blocks of cardinality (n− 1)! and, after dividing by n! side-by-side, we
arrive at

A
(
M
(
ap,q : q ∈ Nn!

)
: p ∈ Nn!

)
=

1
n

n

∑
i=1

i

M
j=1

(
x j,

n!
i

)
. (2.2)

If we interchange M with A , and reapply above consideration to the matrix AT , we
get

M
(
A
(
ap,q : p ∈ Nn!

)
: q ∈ Nn!

)
=

n

M
i=1

(x1 + . . .+ xi

i
,(n−1)!

)
. (2.3)

Finally, binding (2.2), (2.1), and (2.3) we obtain

1
n

n

∑
i=1

i

M
j=1

(
x j,

n!
i

)
= A

(
M
(
ap,q : q ∈ Nn!

)
: p ∈ Nn!

)
� M

(
A
(
ap,q : p ∈ Nn!

)
: q ∈ Nn!

)
=

n

M
i=1

(x1 + . . .+ xi

i
,(n−1)!

)
,

which is trivially equivalent to our assertion. �

Let us conclude this section with a general property of Jensen-concave means
defined on a positive half-line.

LEMMA 2. Every Jensen-concave mean on an interval I with sup I = +∞ is
monotone.

Proof. Let M :
⋃∞

n=1 In → I be a Jensen-concave mean. Assume to the contrary
that there exist n∈N , and vectors v∈ In , w∈ R

n
+ such that δ := M (v)−M (v+w) >

0. Then, since M is concave, we have

M (v+w) � nM (v)+M (v+(n+1)w)
n+1

for all n ∈ N.

Thus, by mean property we obtain

min(v) � M (v+(n+1)w)
� (n+1)M (v+w)−nM (v)
= M (v+w)−nδ for all n ∈ N.

In the limit case as n → ∞ we obtain min(v) = −∞ contradicting the choice of v . �
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3. Main results

We are now heading towards the main result of this paper. In order to provide
the proper setting we introduce a weaker form of repetition invariance. Namely, the
mean M :

⋃∞
n=1 In → I is called repetition superinvariant if, for all n,m ∈ N and

(x1, . . . ,xn) ∈ In , the following inequality is valid

M (x1, . . . ,x1︸ ︷︷ ︸
m-times

, . . . ,xn, . . . ,xn︸ ︷︷ ︸
m-times

) � M (x1, . . . ,xn).

Obviously every repetition invariant mean is also repetition superinvariant, however the
converse implication is not true in general. Now binding Propositions 5 and 7 we obtain
the next lemma.

LEMMA 3. Let M be a symmetric and Jensen-concave mean on I . Then for all
n ∈ N and x ∈ In we have

n

∑
i=1

i

M
j=1

(
x j,

n!
i

)
� n

n

M#
i=1

( x1 + . . .+ xi

i(x1 + . . .+ xn)
,(n−1)!

)
· (x1 + . . .+ xn).

However, in view of Proposition 5, M# is a Jensen-concave mean of R+ . Thus
by Lemma 2 it is monotone. Therefore we obtain the easy-to-see estimation which we
formulate as a corollary.

COROLLARY 1. Let M be a symmetric and Jensen-concave mean on I . Then
for all n ∈ N and x ∈ In we have

n

∑
i=1

i

M
j=1

(
x j,

n!
i

)
� n

n

M#
i=1

(1
i
,(n−1)!

)
· (x1 + . . .+ xn).

The right hand side of this inequality is close to the one which appears in (1.3). To
adjust the left hand side we need to add an additional assumption (superinvariace).

THEOREM 1. Let M be a symmetric, Jensen-concave, and repetition superin-
variant mean on I . Then

Hn(M ) � n
n

M#
i=1

(1
i
,(n−1)!

)
. (3.1)

In particular

H (M ) � liminf
n→∞

n
n

M#
i=1

(1
i
,(n−1)!

)
.
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Proof. Indeed, since M is repetition superinvariant for each sequence x = (x1,x2,
. . . ,xn) by Corollary 1 we get

n

∑
i=1

M (x1, . . . ,xi) �
n

∑
i=1

i

M
j=1

(
x j,

n!
i

)

� n
n

M#
i=1

(1
i
,(n−1)!

)
· (x1 + . . .+ xn).

which easily yields (3.1). Using this statement, in view of Proposition 1, we obtain the
second part. �

It is important to note that this theorem alone does not provide us a method to
establish the Hardy constant, only its upper bound. Nevertheless, by virtue of Proposi-
tions 2 and 3, establishing a lower bound of H (M ) is way easier.

4. Application to mixed means

The idea of mixed means starts with a paper Carlson-Meany-Nelson [3]. The idea
was to take the arithmetic mean of all k -element subsequences of (x1, . . . ,xn) and then
calculate the geometric mean of the so-obtained vector of length

(n
k

)
. Obviously we

can replace arithmetic and geometric means be two others. This idea was developed
in a quasiarithmetic setting by Sadikova [20]. Such kind of means are well-defined if
and only if n � k (possibly fulfilled by n = 1 since the value of a mean is trivial in this
case). It cause some technical problems with regards to the Hardy property (cf. [14]).
For this reason we restrict our consideration to the case k = 2 only. We also consider
slight modification of this idea which takes into account all pairs of elements, that is a
vector of length n2 (see definition below for details).

It turns out that it does not affect the Hardy constant for a vast family of mixed
power means. We conjecture that it is a general property.

For a symmetric mean M :
⋃∞

n=1 In → I and N : I2 → I let us set two means
M ◦N :

⋃∞
n=1 In → I and M � N :

⋃∞
n=1 In → I by

M ◦N (x1, . . . ,xn) :=

{
x1 for n = 1,

M
(
N (xi,x j) : 1 � i < j � n

)
for n � 2;

M � N (x1, . . . ,xn) := M
(
N (xi,x j) : i, j ∈ Nn

)
.

Let us start with few easy-to-see properties.

REMARK 1. Let M :
⋃∞

n=1 In → I be a symmetric mean and N : I2 → I . If both
M and N are monotone (resp. homogeneous, concave or convex) then so are M ◦N
and M � N .

Furthermore M � N is symmetric and if, additionally, N is symmetric then so
is M ◦N .

Next properties are just a bit more complicated.
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LEMMA 4. Let M :
⋃∞

n=1 In → I be a symmetric mean, N : I2 → I , and L,U :⋃∞
n=1 In → I be two monotone, associative means with L � M � U and L � N � U .

Then L � M ◦N � U and L � M � N � U .

Indeed, we have M ◦N � U ◦N � U ◦U = U . The remaining inequalities are
analogous.

LEMMA 5. Let M :
⋃∞

n=1 In → I be a symmetric and repetition (super)invariant
mean and N : I2 → I be a bivariate mean. Then M � N is a symmetric and repeti-
tion (super)invariant mean.

Proof. Applying Remark 1 we know that M � N is symmetric. Now set n,m ∈
N and x ∈ In . Let y ∈ Inm be a vector x repeated m times, i.e.

ynk+l := xl where k ∈ {0, . . . ,m−1} and l ∈ Nn.

For i, j ∈ Nnm denote briefly νi, j := N (yi,y j) . Obviously νi+n, j = νi, j for all (i, j) ∈
N(n−1)m×Nnm and νi, j = νi, j+n for all (i, j) ∈ Nnm×Nn(m−1) . Whence the vector

w := (ν1,1, . . . ,ν1,nm,ν2,1, . . . ,ν2,nm, . . . ,νnm,1, . . . ,νnm,nm) ∈ I(nm)2

contains each element of (νi, j)i, j∈Nn exactly m2 times. Thus, since M is symmetric
and repetition superinvariant, we get

M � N (y) = M (w) � M
(
(νi, j)i, j∈Nn

)
= M � N (y1, . . . ,yn) = M � N (x),

which shows that M � N is a superinvariant mean, too.
To obtain the repetition invariant counterpart of this result we can simply replace

the inequality sign above by the equality. �

4.1. Mixed power means

In the narrow case when both M and N are power means these operators admit
a number of additional properties. Hardy means among this family was studied by the
author in the paper [14]. In particular it was proved (cf. Corollary 1 therein) that

1. Pp ◦Pq is a Hardy mean whenever p < 1 or ( p = 1 and q � 0);

2. Pp ◦Pq is not a Hardy mean whenever p � 2 or ( p � 1 and q > 0).

The Hardy property of Pp ◦Pq in the remaining case, that is (p,q) ∈ (1,2)× (−∞,0]
remains the open problem. We deliver some estimations of the Hardy constant for these
means and establish its precise value in the case q < p � 1.

LEMMA 6. Let p,q ∈ R . Then, for all n ∈ N with n � 2 and v ∈ R
n
+ , we get

Pp ◦Pq(v) =

⎧⎪⎨
⎪⎩
(

n
n−1(Pp � Pq(v))p − 1

n−1(Pp(v))p
)1/p

for p �= 0;(
(P0 � Pq(v))n(P0(v))−1

)1/(n−1)
for p = 0.
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Proof of this lemma is just a straightforward calculations. Due to this fact, in view
of Lemma 4 we obtain our next result.

LEMMA 7. Let p,q∈R with p > q. Then Pp◦Pq is a repetition superinvariant
mean. Moreover for all n ∈ N and v ∈ R

n
+ we get

Pp ◦Pq(v1, . . . ,vn) � lim
m→∞

Pp ◦Pq(v1, . . . ,vn, . . . ,v1, . . . ,vn︸ ︷︷ ︸
vector v repeated m times

)

= Pp � Pq(v1, . . . ,vn).

Its proof is clear in view of repetition invariance of Pp � Pq , Lemma 6 and the
equality Pp � Pq � Pp . In what follows we provide the lower estimation of the
Hardy constant of Pp � Pq and Pp ◦Pq .

LEMMA 8. For all p,q ∈ R we have C (Pp � Pq) = ρp,q , where

ρp,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∫∫
[0,1]2

( x−q+y−q

2

) p
q dx dy

) 1
p

if pq �= 0;

exp
(

1
q

∫∫
[0,1]2 ln

( x−q+y−q

2

)
dx dy

)
if p = 0,q �= 0;(∫ 1

0 x−
p
2 dx

) 2
p

if p �= 0,q = 0;

e if p = q = 0.

(4.1)

In particular this value is finite if and only if the corresponding integral on the right
hand side is finite.

Moreover C (Pp ◦Pq) = ρp,q for all p ∈ (−∞,1) and q ∈ R .

Proof. In the case pq �= 0, since power means are homogeneous we have

C (Pp � Pq) = lim
n→∞

nPp � Pq
(
1, 1

2 , . . . , 1
n

)
= lim

n→∞
Pp
(
Pq
(

n
i ,

n
j

)
: i, j ∈ Nn

)
= lim

n→∞

(
1
n2 ∑

i, j∈Nn

((
n
i

)q +
(

n
i

)q
2

) p
q
) 1

p

= lim
n→∞

(
1
n2 ∑

i, j∈Nn

((
i
n

)−q +
(

i
n

)−q

2

) p
q
) 1

p

=
(∫∫

[0,1]2

(x−q + y−q

2

) p
q
dx dy

) 1
p

.
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In the second case when p = 0 and q �= 0 one gets

C (P0 � Pq) = lim
n→∞

nP0 � Pq
(
1, 1

2 , . . . , 1
n

)
= lim

n→∞
P0
(
Pq
(

n
i ,

n
j

)
: i, j ∈ Nn

)
= lim

n→∞
exp

(
1
n2 ∑

i, j∈Nn

1
q

ln

((
n
i

)q +
(

n
i

)q
2

))

= lim
n→∞

exp

(
1

qn2 ∑
i, j∈Nn

ln

((
i
n

)−q +
(

i
n

)−q

2

))

= exp

(
1
q

∫∫
[0,1]2

ln

(
x−q + y−q

2

)
dx dy

)
.

In the third case p �= 0 and q = 0 we obtain

C (Pp � P0) = lim
n→∞

nPp � P0
(
1, 1

2 , . . . , 1
n

)
= lim

n→∞
Pp
(
P0
(

n
i ,

n
j

)
: i, j ∈ Nn

)
= lim

n→∞

(
1
n2 ∑

i, j∈Nn

(√
n
i · n

j

)p
) 1

p

= lim
n→∞

(
1
n ∑

i∈Nn

(
n
i

) p
2 · 1

n ∑
j∈Nn

(
n
j

) p
2

) 1
p

= lim
n→∞

(
1
n

n

∑
i=1

(
n
i

) p
2

) 2
p

=
(

lim
n→∞

1
n

n

∑
i=1

(
i
n

)− p
2

) 2
p

=
(∫ 1

0
x−

p
2 dx

) 2
p

.

Finally in case p = q = 0 we get P0 � P0 = P0 . Thus using the well-known result
for the geometric mean we obtain C (P0 � P0) = C (P0) = e , and the proof of the
first part is complete.

Now we proceed to the moreover part. First fix p ∈ (−∞,1) \ {0} and q ∈ R .
Under this assumption by Lemma 6 we obtain

C (Pp ◦Pq) = lim
n→∞

Pp ◦Pq
(
n, n

2 , . . . , n
n

)
= lim

n→∞

(
n

n−1(Pp � Pq(n, n
2 , . . . , n

n))p − 1
n−1(Pp(n, n

2 , . . . , n
n ))p

)1/p

But sequences (Pp � Pq(n, n
2 , . . . , n

n ))∞
n=1 and (Pp(n, n

2 , . . . , n
n))∞

n=1 are convergent to
C (Pp � Pq) and C (Pp) , respectively (in particular the second limit is finite). Now
we can pass to the limit termwise to obtain the equality C (Pp ◦Pq) = C (Pp � Pq) .
To prove this equality for p = 0 we need to use the second alternative in Lemma 6. �

THEOREM 2. For all p,q ∈ (−∞,1] the equality H (Pp � Pq) = ρp,q holds,
where the value of ρp,q is defined by (4.1).

If, additionally, p > q then we also have H (Pp ◦Pq) = ρp,q .

Proof. Let p,q ∈ (−∞,1] . Then both Pp and Pq are monotone, symmetric
and concave. Thus, by Remark 1, so is Pp � Pq . Moreover, by Lemma 5, it is also
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repetition invariant. Whence, by Proposition 4 and Lemma 8, we have H (Pp � Pq) =
C (Pp � Pq) = ρp,q .

Furthermore for all q < p � 1 by Lemma 7 we get Pp ◦Pq � Pp � Pq . Now
using Proposition 3 we can reapply Lemma 8 to obtain

ρp,q = C (Pp ◦Pq) � H (Pp ◦Pq) � H (Pp � Pq) = ρp,q,

which completes our proof. �
We now show a simple application of this result.

EXAMPLE 1. The following inequalities are valid for all x ∈ �1(R+) :

∞

∑
n=1

n2

√
n

∏
i=1

n

∏
j=1

xi + x j

2
� 2

√
e

∞

∑
n=1

xn;

x1 +
∞

∑
n=2

(n2)

√
∏

1�i< j�n

2xix j

xi + x j
� e3/2

2

∞

∑
n=1

xn;

∞

∑
n=1

n2

√
n

∏
i=1

n

∏
j=1

2xix j

xi + x j
� e3/2

2

∞

∑
n=1

xn.

Moreover all constants on the right hand sides are sharp.

Proof. Using the notion of mixed means and Hardy property we can rewrite the
latter inequalities in a brief form

H (P0 � P1) = 2
√

e and H (P0 ◦P−1) = H (P0 � P−1) =
e3/2

2
.

By Theorem 2 we shall calculate ρ0,−1 and ρ0,1 given by (4.1). To this end, let us start
with the integral part of the first value∫∫

[0,1]2
ln
( x+y

2

)
dx dy =

∫ 2

0
(1−|1− t|) ln(t)dt− ln2

=
∫ 1

0
t ln(t)dt +

∫ 2

1
(2− t) ln(t)dt− ln2

= − 1
4 + ln4− 5

4 − ln2 = ln2− 3
2 .

Then, by (4.1), we have

ρ0,−1 = exp
(
−
∫∫

[0,1]2
ln
( x+y

2

)
dx dy

)
= exp( 3

2 − ln2) =
e3/2

2
.

In the second step we evaluate the product ρ0,1 ·ρ0,−1 . However, by virtue of (4.1),
it equals

ρ0,1 ·ρ0,−1 = exp
(∫∫

[0,1]2
ln
(x−1 + y−1

2

)− ln
(x+ y

2

)
dx dy

)
= exp

(
−
∫∫

[0,1]2
ln(xy)dxdy

)
= exp

(
−2

∫ 1

0
lnx dx

)
= e2.
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Finally we have

ρ0,1 =
e2

ρ0,−1
= e2 · 2

e3/2
= 2

√
e,

which ends our proof. �
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