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Abstract. For integers m � 1 and q � 2 , the Wallis ratio wm :=
m
∏
k=1

2k−1
2k is estimated as

∣∣∣∣∣wm − 1√
mπ

exp

(
−

�q/2�
∑
i=1

(
1−4−i

)
B2i

i(2i−1) ·m2i−1

)∣∣∣∣∣< 1
2

exp
(
ρ∗

q (m)
) ·ρ∗

q (m),

where Bk are the Bernoulli coefficients and

∣∣ρ∗
q (m)

∣∣< π(q−2)!
3(2mπ)q−1 <

π
3

√
2π

q−1
·
(

q−1
2meπ

)q−1

exp

(
1

12(q−1)

)
.

Some accurate asymptotic estimates of π in terms of wm are also given.

1. Introduction

In connection with the Wallis sequence n �→Wn := ∏n
k=1

4k2

4k2−1
is the sequence of

the Wallis1 ratios wn defined in the literature as

wn :=
n

∏
k=1

2k−1
2k

≡ (2n−1)!!
(2n)!!

. (1)

Both sequences,
(
Wn
)
n�1 being strictly increasing and

(
wn
)
n�1 strictly decreas-

ing, were studied for a long period of time. The Wallis ratio, i.e. the sequence n �→ wn ,
was investigated by many authors, see for example the papers [2, 3, 8, 9, 10, 12, 16, 17,
18, 19, 20, 21, 23, 24]. Perhaps the Wallis ratio additionally attracts mathematicians
also because of its direct connections with Catalan numbers cn := 1

n+1

(2n
n

)
, for pure

and applied mathematics important objects [11]. Naturally, during the long period a
great amount of papers concerning the Wallis ratio have been published. In [24] was
presented aesthetically pleasing double inequality

Z1(n) < wn � Z2(n) (2)
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true for all n ∈ N with

Z1(n) :=
1√
eπn

(
1+

1
2n

)n− 1
12n

and Z2(n) :=
1√
eπn

(
1+

1
2n

)n− 1
12n+16

.

In [8] was demonstrated the double inequality

GXQ1(n) < wn � GXQ2(n), (3)

true for n � 2 with

GXQ1(n) :=
√

e
π

(
1− 1

2n

)n √n−1
n

GXQ2(n) :=
4
3

(
1− 1

2n

)n √n−1
n

.

Recently, in [9] was derived the estimates

GFB1(n) :=
(

2
3

)3/2(
1− 1

2n

)n+1/2(
n− 3

2

)−1/2

� wn (4)

and

wn < GFB2(n) :=
√

e
π

(
1− 1

2n

)n+1/2(
n− 3

2

)−1/2

, (5)

both valid for n � 2. At the same time, in [21, Theorems 4.2 and 5.2] were presented
the estimates

wn > QM∗
1(n) :=

√
e

πn

(
1− 1

2n

)n

exp

(
1

24n2 +
1

48n3 +
1

160n4 +
1

960n5

)
, (6)

and

QM1(n) :=
√

e
πn

(
1− 1

2(n+1/3)

)n+1/3

< wn (7)

and

wm < QM2(m) :=
√

e
πn

(
1− 1

2(n+1/3)

)n+1/3

exp

(
1

144n3

)
, (8)

all true for n � 1.
Recently, several additional new results were also presented in [4, 5, 19]. For

these articles the important reference is thirty years old paper [22], where the author
accurately estimates the function x �→Γ(x+1)/Γ(x+ 1

2 )≡ 1/(wn
√

π) using its integral
representation. Recently was found in [14] an approach, via Stirling’s factorial formula,
giving more accurate, asymptotic approximation of Wallis’ ratio. In our contribution
we shall show that similar, accurate and balanced – aesthetically appealing results can
be easily obtained using the Euler-Boole alternating summation formula [13].
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2. Approximating wn accurately and aesthetically pleasing

Walli’s sequence and the sequence of Wallis’ ratios are closely connected. Namely,
for every m ∈ N we have

Wm =
∏m

k=1 4k2

∏m
k=1(2k−1)∏n

k=1(2k+1)
=

1
2m+1

(
m

∏
k=1

2k
2k−1

)2

=
1

2m+1
· 1
w2

m
.

Hence, for all m ∈ N we obtain

wm =
1√

(2m+1)Wm
. (9)

Now, we should use several known estimates of the Wallis sequence, for example
[6, Theorem 4.1]

Wm >
π
2

(
1−

1
4

m+ 5
8

+
3

256

(m+ 5
8 )3

+
3

2048

(m+ 5
8 )4

−
51

16384

(m+ 5
8)5

−
75

65536

(m+ 5
8)6

)

Wm <
π
2

(
1−

1
4

m+ 5
8

+
3

256

(m+ 5
8 )3

+
3

2048

(m+ 5
8 )4

)
,

true for integer m � 1. But, these estimates are less appropriate when using (9). For-
tunately, we are in the position to use [13, Theorem 1, Remark 1], since there is given
a nice approximation of Wallis’ sequence. Hence, the key to our approach is the next
lemma.

LEMMA 1. ([13], Theorem 1 & Remark 1) For integers m � 1 and q � 2 we
have

Wm =
mπ

2m+1
exp
(
2σq(m)

) · exp
(
rq(m)

)
, (10)

where

σq(x) ≡
�q/2�
∑
i=1

(
1−4−i

)
B2i

i(2i−1) · x2i−1 (Bk are the Bernoulli coefficients), (11)

and where

∣∣rq(m)
∣∣< r∗q(m) :=

2π(q−2)!
3(2mπ)q−1 (12)

<
2π
3

√
2π

q−1
· exp

(
1

12(q−1)

)
·
(

q−1
2meπ

)q−1

. (13)
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Using this lemma and the expression (9), we obtain very accurate approximations
of Wallis’ ratios given in the next theorem.

THEOREM 1. For integers m � 1 and q � 2 there holds the equality

wm = w∗
q(m) · exp

(
ρq(m)

)
, (14)

where (see (11))

w∗
q(m) :=

1√
mπ

exp
(−σq(m)

)
, (15)

and

|ρq(m)| < ρ∗
q (m) :=

1
2

r∗q(m) =
π(q−2)!

3(2mπ)q−1 (16)

<
π
3

√
2π

q−1
· exp

(
1

12(q−1)

)
·
(

q−1
2meπ

)q−1

. (17)

REMARK 1. The estimate (16) is rather rough as is illustrated on Figure 1 and
Figure 2, where are plotted the graphs of the sequences m �→ ρ∗

q (m)/
∣∣ρq(m)

∣∣ with

ρq(m) ≡ ln(wm)+ 1
2 ln(mπ)+ σq(m) for several values of q .
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Figure 1: The graphs of the sequences m �→ ρ∗
q (m)/

∣∣ρq(m)
∣∣ , for q ∈ {2,3} .
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Figure 2: The graphs of the sequences m �→ ρ∗
q (m)/

∣∣ρq(m)
∣∣ , for q ∈ {4,5} .
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COROLLARY 1. (asymptotic expansion) For m ∈ N ,

ln
(
wm
)∼ ln

(
1√
π m

)
−

∞

∑
i=1

(1−4−i)B2i

i(2i−1)m2i−1 as m → ∞.

REMARK 2. Rather extensive study of the asymptotic expansions of the Wallis
ratio and related topics can be found in [6] and [7].

Directly from Theorem 1 we get, using the finite increment theorem, the next
corollary.

COROLLARY 2. The approximation wm ≈ w∗
q(m) has the relative error εq(m) :=(

wm −w∗
q(m)

)
/wm fulfilled, for any m ∈ N and q � 2 , the following inequalities (see

(16)–(17)): ∣∣εq(m)
∣∣= ∣∣1− exp

(−ρq(m)
)∣∣< exp

(
ρ∗

q (m)
) ·ρ∗

q (m).

Setting q = 2,3,4 in Theorem 1, we get the next corollary.

COROLLARY 3. For every m ∈ N we have the following double asymptotic in-
equalities:

a(m) :=
1√
mπ

exp

(
− 7

24m

)
< wm <

1√
mπ

exp

(
1

24m

)
=: b(m)

1√
mπ

exp

(
− 1

8m
− 1

24m2π

)
< wm <

1√
mπ

exp

(
− 1

8m
+

1
24m2π

)
1√
mπ

exp

(
1

192m3 −
1

8m
− 1

12m3π2

)
< wm <

1√
mπ

exp

(
1

192m3 −
1

8m
+

1
12m3π2

)

In Figure 3 are depicted the graphs of the lower/upper bounds (continuous lines) of
the estimates in Corollary 3, together with the graph of the sequence of Wallis’ ratios:
The left picture is relating to the first line of the inequalities (obtained using q = 2) and
the right image to the second one (q = 3).
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Figure 3: The graphs of the lower/upper bounds (continuous lines) of the estimates in Corol-
lary 3, together with the graph of the sequence of Wallis’ ratios: The left picture is relating to the
first line of the estimates and the right image to the second line.

Putting q = 7 in Theorem 1, we obtain the following corollary.
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COROLLARY 4. For any m ∈ N we have the following inequalities:

A(m) :=
1√
mπ

exp

(
1

192m3 −
1

8m
− 1

640m5 −
5

8m6π5

)
< wm (18)

and

wm < B(m) :=
1√
mπ

exp

(
1

192m3 −
1

8m
− 1

640m5 +
5

8m6π5

)
. (19)

Setting q = 11 in Theorem 1, we get the following corollary.

COROLLARY 5. For any m ∈ N we estimate wm in the following way:

1√
mπ

exp

(
1

192m3 −
1

8m
− 1

640m5 +
17

14336m7 −
31

18432m9 −
945

8m10π9

)
< wm

and

wm <
1√
mπ

exp

(
1

192m3 −
1

8m
− 1

640m5 +
17

14336m7 −
31

18432m9 +
945

8m10π9

)
.

COROLLARY 6. For integers m � 1 and q � 2 such that ρ∗
q (m) < 1 (see (16)),

we have

∣∣∣wm −w∗
q(m)

∣∣∣< π
6

√
2π

q−1
· exp

(
1

12(q−1)

)
·
(

q−1
2meπ

)q−1

.

Proof. Referring to the finite increment theorem we have
∣∣ex − 1

∣∣ = eϑx|x| �
e|x||x| , for any x ∈ R and some ϑ ∈ (0,1) . Therefore, invoking Theorem 1 and sup-
posing that ρ∗

q (m) < 1, we obtain,

∣∣wm −w∗
q(m)

∣∣= ∣∣∣wm −wm exp
(−ρq(m)

)∣∣∣= wm

∣∣∣1− exp
(−ρq(m)

)∣∣∣
� w1 · exp

(∣∣ρq(m)
∣∣) · ∣∣ρq(m)

∣∣< 1
2
· exp

(
ρ∗

q (m)
) ·ρ∗

q (m)

<
1
2
· e ·ρ∗

q(m),

where we consider (13). �

From Corollary 6 follows the next corollary.
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COROLLARY 7. For all integers m � 1 the following estimates hold:

∣∣wm −w∗
2(m)

∣∣< 1
5m∣∣wm −w∗

8(m)
∣∣< 1

500m7∣∣wm −w∗
11(m)

∣∣< 1
250m10∣∣wm −w∗

18(m)
∣∣< 1

m17 .

3. Approximating π using Wallis’ sequence

From Theorem 1 we read the next theorem.

THEOREM 2. For integers m � 1 and q � 2 we have

π = π∗
q (m) · exp

(−2ρq(m)
)

(20)

with

π∗
q (m) :=

1
m ·w2

m
· exp

(−2σq(m)
)

(21)

and ∣∣2ρq(m)
∣∣< 2π(q−2)!

3(2mπ)q−1 . (22)

From Corollary 5 we read the next corollary.

COROLLARY 8. For every m ∈ N there hold the following inequalities:

π >
1

m ·w2
m

exp

(
1

96m3 −
1

4m
− 1

320m5 +
17

7168m7 −
31

9216m9 −
945

4m10π9

)
=: λ1(m)

and

π <
1

m ·w2
m

exp

(
1

96m3 −
1

4m
− 1

320m5 +
17

7168m7 −
31

9216m9 +
945

4m10π9

)
=: λ2(m)

Putting m = 100 in the inequalities of Corollary 8 and using Mathematica [25],
we obtain the estimate

3.141592653589793238462391 . . .< π < 3.141592653589793238462889 . . ..

This way we find π = 3.141592653589793238462 . . ..
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REMARK 3. Mortici [15, Th. 2, p. 2617] provided the double inequality

M1(m) < π < M2(m),

where

M1(m) :=
(

m+1/4
m2 +m/2+3/32

+
9

2048m5 −
45

8192m6

)(
(2m)!!

(2m−1)!!

)2

and

M2(m) :=
(

m+1/4
m2 +m/2+3/32

+
9

2048m5

)(
(2m)!!

(2m−1)!!

)2

.

We have λ1(1) < M1(1) , but λ1(m) > M1(m) for m ∈ {2,3,4, . . . ,100} because
for the quotients q1(m) := λ1(m)/M1(m) , using Mathematica [25], we get q1(1) < 1
and q1(m) > 1, for m ∈ {2,3,4, . . . ,100} . Similarly we find λ2(m) < M2(m) for m ∈
{2,3,4, . . . ,100} .

4. Conclusion: A comparison with some previous results

Approximations provided by Theorem 1, surpass the estimates (2)–(8) stated in
the Introduction, in terms of both accuracy and aesthetics. For an illustration we give
several examples.

In Figure 4 is depicted, on both sides, the graph of the sequence of Wallis ra-
tios together with the graphs of the bounds a(m) and b(m) (continuous lines) from
the Corollary 3. On the left are plotted also the graphs of the bounds GXQ1(m) and
GXQ2(m) and on the right are added the graphs of the bounds (see (3)–(5)) GFB1(m)
and GFB2(m) (dashed lines). The estimates (3)–(5) are evidently not balanced.

0 5 10 15 20

0.1

0.2

0.3

0.4

m�3: GXQ1�m��a�m�� wm �b�m��GXQ2�m�

0 5 10 15 20

0.1

0.2

0.3

0.4

m�3: GFB1�m��a�m�� wm �b�m��GFB2�m�

Figure 4: The comparison of the accuracy of the first double inequality of Corollary 3 (con-
tinuous lines) with the estimates (3), on the left, and with the inequalities (4)–(5), on the right
(dashed lines).

Figure 5 shows, on the left (see (7), (8) and Corollary 4), the graphs of the func-
tions m �→m4

(
QM1(m)−A(m)

)
(dashed line) and m �→m6

(
QM2(m)−B(m)) (contin-
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uous line) and on the right the graph of the function m �→ m10
(
QM∗

1(m)−w∗
11(m)exp(−ρ∗

11(m)
))

, illustrating that the lower bound in Corollary 5 is greater2 than QM∗
1 (m) .
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�0.015
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�0.005

0.005

m�2: QM1�m� � A�m�

m�2: QM2�m� � B�m� 5 10 15 20

�1.2

�1.0

�0.8

�0.6

�0.4

�0.2

m�2: QM1
��m� � w11

� �m� exp��Ρ11
� �m��

Figure 5: On the left are the graphs of the functions m �→ m4
(
QM1(m)−A(m)

)
(dashed line)

and m �→ m6
(
QM2(m)−B(m)) (continuous line) and on the right is the graph of the function

m �→ m10
(
QM∗

1 (m)−w∗
11(m)exp

(−ρ∗
11(m)

))
, illustrating that the lower bound in Corollary 5

is greater than QM∗
1 (m) .

Zhang’s estimates (2) are quite accurate and also balanced as is shown on Figure 6,
where are plotted, on the left, the graphs of the functions Z1(m) and Z2(m) , together
with the graph of the sequence m �→ wm . On the right of this figure are plotted the
graphs of the functions m �→ m5

(
Z1(m)−A(m)

)
and m �→ m5

(
Z2(m)−B(m)

)
(see (2)

and Corollary 4).

1 2 3 4 5
0.0
0.1
0.2
0.3
0.4
0.5
0.6

m�1: Z1�m�� wm � Z2�m�

5 10 15 20 25 30
�1

1

2
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4

m�1: Z1�m�� A�m�

m�1: Z2�m�� B�m�

Figure 6: Left: Accurate Zhang’s estimates (2) is illustrated by the graphs of the functions
Z1(m) and Z2(m) together with the graph of the sequence m �→ wm . Right: The graphs of the
functions m �→ m5

(
Z1(m)−A(m)

)
and m �→ m5

(
Z2(m)−B(m)

)
(see (2) and Corollary 4).
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