SIMPLE ACCURATE BALANCED ASYMPTOTIC APPROXIMATION OF WALLIS’ RATIO USING EULER-BOOLE ALTERNATING SUMMATION

Vito Lampret

(Communicated by N. Elezović)

Abstract. For integers $m \geqslant 1$ and $q \geqslant 2$, the Wallis ratio $w_{m}:=\prod_{k=1}^{m} \frac{2 k-1}{2 k}$ is estimated as

$$
\left|w_{m}-\frac{1}{\sqrt{m \pi}} \exp \left(-\sum_{i=1}^{\lfloor q / 2\rfloor} \frac{\left(1-4^{-i}\right) B_{2 i}}{i(2 i-1) \cdot m^{2 i-1}}\right)\right|<\frac{1}{2} \exp \left(\rho_{q}^{*}(m)\right) \cdot \rho_{q}^{*}(m),
$$

where B_{k} are the Bernoulli coefficients and

$$
\left|\rho_{q}^{*}(m)\right|<\frac{\pi(q-2)!}{3(2 m \pi)^{q-1}}<\frac{\pi}{3} \sqrt{\frac{2 \pi}{q-1}} \cdot\left(\frac{q-1}{2 m e \pi}\right)^{q-1} \exp \left(\frac{1}{12(q-1)}\right) .
$$

Some accurate asymptotic estimates of π in terms of w_{m} are also given.

1. Introduction

In connection with the Wallis sequence $n \mapsto W_{n}:=\prod_{k=1}^{n} \frac{4 k^{2}}{4 k^{2}-1}$ is the sequence of the Wallis ${ }^{1}$ ratios w_{n} defined in the literature as

$$
\begin{equation*}
w_{n}:=\prod_{k=1}^{n} \frac{2 k-1}{2 k} \equiv \frac{(2 n-1)!!}{(2 n)!!} . \tag{1}
\end{equation*}
$$

Both sequences, $\left(W_{n}\right)_{n \geqslant 1}$ being strictly increasing and $\left(w_{n}\right)_{n \geqslant 1}$ strictly decreasing, were studied for a long period of time. The Wallis ratio, i.e. the sequence $n \mapsto w_{n}$, was investigated by many authors, see for example the papers $[2,3,8,9,10,12,16,17$, $18,19,20,21,23,24]$. Perhaps the Wallis ratio additionally attracts mathematicians also because of its direct connections with Catalan numbers $c_{n}:=\frac{1}{n+1}\binom{2 n}{n}$, for pure and applied mathematics important objects [11]. Naturally, during the long period a great amount of papers concerning the Wallis ratio have been published. In [24] was presented aesthetically pleasing double inequality

$$
\begin{equation*}
Z_{1}(n)<w_{n} \leqslant Z_{2}(n) \tag{2}
\end{equation*}
$$

Mathematics subject classification (2020): 26D20, 41A60, 65B99.
Keywords and phrases: Approximation, estimate, inequality, π, rate of convergence, Wallis' ratio.
${ }^{1}$ John Wallis, 1616 - 1703
true for all $n \in \mathbb{N}$ with

$$
Z_{1}(n):=\frac{1}{\sqrt{e \pi n}}\left(1+\frac{1}{2 n}\right)^{n-\frac{1}{12 n}} \text { and } \quad Z_{2}(n):=\frac{1}{\sqrt{e \pi n}}\left(1+\frac{1}{2 n}\right)^{n-\frac{1}{12 n+16}}
$$

In [8] was demonstrated the double inequality

$$
\begin{equation*}
G X Q_{1}(n)<w_{n} \leqslant G X Q_{2}(n), \tag{3}
\end{equation*}
$$

true for $n \geqslant 2$ with

$$
\begin{aligned}
G X Q_{1}(n) & :=\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n} \\
G X Q_{2}(n) & :=\frac{4}{3}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n} .
\end{aligned}
$$

Recently, in [9] was derived the estimates

$$
\begin{equation*}
G F B_{1}(n):=\left(\frac{2}{3}\right)^{3 / 2}\left(1-\frac{1}{2 n}\right)^{n+1 / 2}\left(n-\frac{3}{2}\right)^{-1 / 2} \leqslant w_{n} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{n}<G F B_{2}(n):=\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n+1 / 2}\left(n-\frac{3}{2}\right)^{-1 / 2} \tag{5}
\end{equation*}
$$

both valid for $n \geqslant 2$. At the same time, in [21, Theorems 4.2 and 5.2] were presented the estimates

$$
\begin{equation*}
w_{n}>Q M_{1}^{*}(n):=\sqrt{\frac{e}{\pi n}}\left(1-\frac{1}{2 n}\right)^{n} \exp \left(\frac{1}{24 n^{2}}+\frac{1}{48 n^{3}}+\frac{1}{160 n^{4}}+\frac{1}{960 n^{5}}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
Q M_{1}(n):=\sqrt{\frac{e}{\pi n}}\left(1-\frac{1}{2(n+1 / 3)}\right)^{n+1 / 3}<w_{n} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{m}<Q M_{2}(m):=\sqrt{\frac{e}{\pi n}}\left(1-\frac{1}{2(n+1 / 3)}\right)^{n+1 / 3} \exp \left(\frac{1}{144 n^{3}}\right) \tag{8}
\end{equation*}
$$

all true for $n \geqslant 1$.
Recently, several additional new results were also presented in [4, 5, 19]. For these articles the important reference is thirty years old paper [22], where the author accurately estimates the function $x \mapsto \Gamma(x+1) / \Gamma\left(x+\frac{1}{2}\right) \equiv 1 /\left(w_{n} \sqrt{\pi}\right)$ using its integral representation. Recently was found in [14] an approach, via Stirling's factorial formula, giving more accurate, asymptotic approximation of Wallis' ratio. In our contribution we shall show that similar, accurate and balanced - aesthetically appealing results can be easily obtained using the Euler-Boole alternating summation formula [13].

2. Approximating w_{n} accurately and aesthetically pleasing

Walli's sequence and the sequence of Wallis' ratios are closely connected. Namely, for every $m \in \mathbb{N}$ we have

$$
\begin{aligned}
W_{m} & =\frac{\prod_{k=1}^{m} 4 k^{2}}{\prod_{k=1}^{m}(2 k-1) \prod_{k=1}^{n}(2 k+1)}=\frac{1}{2 m+1}\left(\prod_{k=1}^{m} \frac{2 k}{2 k-1}\right)^{2} \\
& =\frac{1}{2 m+1} \cdot \frac{1}{w_{m}^{2}}
\end{aligned}
$$

Hence, for all $m \in \mathbb{N}$ we obtain

$$
\begin{equation*}
w_{m}=\frac{1}{\sqrt{(2 m+1) W_{m}}} \tag{9}
\end{equation*}
$$

Now, we should use several known estimates of the Wallis sequence, for example [6, Theorem 4.1]

$$
\begin{aligned}
& W_{m}>\frac{\pi}{2}\left(1-\frac{\frac{1}{4}}{m+\frac{5}{8}}+\frac{\frac{3}{256}}{\left(m+\frac{5}{8}\right)^{3}}+\frac{\frac{3}{2048}}{\left(m+\frac{5}{8}\right)^{4}}-\frac{\frac{51}{16384}}{\left(m+\frac{5}{8}\right)^{5}}-\frac{\frac{75}{65536}}{\left(m+\frac{5}{8}\right)^{6}}\right) \\
& W_{m}<\frac{\pi}{2}\left(1-\frac{\frac{1}{4}}{m+\frac{5}{8}}+\frac{\frac{3}{256}}{\left(m+\frac{5}{8}\right)^{3}}+\frac{\frac{3}{2048}}{\left(m+\frac{5}{8}\right)^{4}}\right)
\end{aligned}
$$

true for integer $m \geqslant 1$. But, these estimates are less appropriate when using (9). Fortunately, we are in the position to use [13, Theorem 1, Remark 1], since there is given a nice approximation of Wallis' sequence. Hence, the key to our approach is the next lemma.

Lemma 1. ([13], Theorem $1 \&$ Remark 1) For integers $m \geqslant 1$ and $q \geqslant 2$ we have

$$
\begin{equation*}
W_{m}=\frac{m \pi}{2 m+1} \exp \left(2 \sigma_{q}(m)\right) \cdot \exp \left(r_{q}(m)\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{q}(x) \equiv \sum_{i=1}^{\lfloor q / 2\rfloor} \frac{\left(1-4^{-i}\right) B_{2 i}}{i(2 i-1) \cdot x^{2 i-1}} \quad\left(B_{k} \text { are the Bernoulli coefficients }\right), \tag{11}
\end{equation*}
$$

and where

$$
\begin{align*}
\left|r_{q}(m)\right|<r_{q}^{*}(m) & :=\frac{2 \pi(q-2)!}{3(2 m \pi)^{q-1}} \tag{12}\\
& <\frac{2 \pi}{3} \sqrt{\frac{2 \pi}{q-1}} \cdot \exp \left(\frac{1}{12(q-1)}\right) \cdot\left(\frac{q-1}{2 m e \pi}\right)^{q-1} \tag{13}
\end{align*}
$$

Using this lemma and the expression (9), we obtain very accurate approximations of Wallis' ratios given in the next theorem.

THEOREM 1. For integers $m \geqslant 1$ and $q \geqslant 2$ there holds the equality

$$
\begin{equation*}
w_{m}=w_{q}^{*}(m) \cdot \exp \left(\rho_{q}(m)\right), \tag{14}
\end{equation*}
$$

where (see (11))

$$
\begin{equation*}
w_{q}^{*}(m):=\frac{1}{\sqrt{m \pi}} \exp \left(-\sigma_{q}(m)\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
\left|\rho_{q}(m)\right| & <\rho_{q}^{*}(m):=\frac{1}{2} r_{q}^{*}(m)=\frac{\pi(q-2)!}{3(2 m \pi)^{q-1}} \tag{16}\\
& <\frac{\pi}{3} \sqrt{\frac{2 \pi}{q-1}} \cdot \exp \left(\frac{1}{12(q-1)}\right) \cdot\left(\frac{q-1}{2 m e \pi}\right)^{q-1} \tag{17}
\end{align*}
$$

Remark 1. The estimate (16) is rather rough as is illustrated on Figure 1 and Figure 2, where are plotted the graphs of the sequences $m \mapsto \rho_{q}^{*}(m) /\left|\rho_{q}(m)\right|$ with $\rho_{q}(m) \equiv \ln \left(w_{m}\right)+\frac{1}{2} \ln (m \pi)+\sigma_{q}(m)$ for several values of q.

Figure 1: The graphs of the sequences $m \mapsto \rho_{q}^{*}(m) /\left|\rho_{q}(m)\right|$, for $q \in\{2,3\}$.

Figure 2: The graphs of the sequences $m \mapsto \rho_{q}^{*}(m) /\left|\rho_{q}(m)\right|$, for $q \in\{4,5\}$.

Corollary 1. (asymptotic expansion) For $m \in \mathbb{N}$,

$$
\ln \left(w_{m}\right) \sim \ln \left(\frac{1}{\sqrt{\pi m}}\right)-\sum_{i=1}^{\infty} \frac{\left(1-4^{-i}\right) B_{2 i}}{i(2 i-1) m^{2 i-1}} \quad \text { as } m \rightarrow \infty .
$$

REMARK 2. Rather extensive study of the asymptotic expansions of the Wallis ratio and related topics can be found in [6] and [7].

Directly from Theorem 1 we get, using the finite increment theorem, the next corollary.

COROLLARY 2. The approximation $w_{m} \approx w_{q}^{*}(m)$ has the relative error $\varepsilon_{q}(m):=$ $\left(w_{m}-w_{q}^{*}(m)\right) / w_{m}$ fulfilled, for any $m \in \mathbb{N}$ and $q \geqslant 2$, the following inequalities (see (16)-(17)):

$$
\left|\varepsilon_{q}(m)\right|=\left|1-\exp \left(-\rho_{q}(m)\right)\right|<\exp \left(\rho_{q}^{*}(m)\right) \cdot \rho_{q}^{*}(m)
$$

Setting $q=2,3,4$ in Theorem 1, we get the next corollary.
Corollary 3. For every $m \in \mathbb{N}$ we have the following double asymptotic inequalities:

$$
\begin{aligned}
a(m):=\frac{1}{\sqrt{m \pi}} \exp \left(-\frac{7}{24 m}\right) & <w_{m}<\frac{1}{\sqrt{m \pi}} \exp \left(\frac{1}{24 m}\right)=: b(m) \\
\frac{1}{\sqrt{m \pi}} \exp \left(-\frac{1}{8 m}-\frac{1}{24 m^{2} \pi}\right) & <w_{m}<\frac{1}{\sqrt{m \pi}} \exp \left(-\frac{1}{8 m}+\frac{1}{24 m^{2} \pi}\right) \\
\frac{1}{\sqrt{m \pi}} \exp \left(\frac{1}{192 m^{3}}-\frac{1}{8 m}-\frac{1}{12 m^{3} \pi^{2}}\right) & <w_{m}<\frac{1}{\sqrt{m \pi}} \exp \left(\frac{1}{192 m^{3}}-\frac{1}{8 m}+\frac{1}{12 m^{3} \pi^{2}}\right)
\end{aligned}
$$

In Figure 3 are depicted the graphs of the lower/upper bounds (continuous lines) of the estimates in Corollary 3, together with the graph of the sequence of Wallis' ratios: The left picture is relating to the first line of the inequalities (obtained using $q=2$) and the right image to the second one $(q=3)$.

Figure 3: The graphs of the lower/upper bounds (continuous lines) of the estimates in Corollary 3, together with the graph of the sequence of Wallis' ratios: The left picture is relating to the first line of the estimates and the right image to the second line.

Putting $q=7$ in Theorem 1, we obtain the following corollary.

Corollary 4. For any $m \in \mathbb{N}$ we have the following inequalities:

$$
\begin{equation*}
A(m):=\frac{1}{\sqrt{m \pi}} \exp \left(\frac{1}{192 m^{3}}-\frac{1}{8 m}-\frac{1}{640 m^{5}}-\frac{5}{8 m^{6} \pi^{5}}\right)<w_{m} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{m}<B(m):=\frac{1}{\sqrt{m \pi}} \exp \left(\frac{1}{192 m^{3}}-\frac{1}{8 m}-\frac{1}{640 m^{5}}+\frac{5}{8 m^{6} \pi^{5}}\right) \tag{19}
\end{equation*}
$$

Setting $q=11$ in Theorem 1, we get the following corollary.

Corollary 5. For any $m \in \mathbb{N}$ we estimate w_{m} in the following way:

$$
\frac{1}{\sqrt{m \pi}} \exp \left(\frac{1}{192 m^{3}}-\frac{1}{8 m}-\frac{1}{640 m^{5}}+\frac{17}{14336 m^{7}}-\frac{31}{18432 m^{9}}-\frac{945}{8 m^{10} \pi^{9}}\right)<w_{m}
$$

and

$$
w_{m}<\frac{1}{\sqrt{m \pi}} \exp \left(\frac{1}{192 m^{3}}-\frac{1}{8 m}-\frac{1}{640 m^{5}}+\frac{17}{14336 m^{7}}-\frac{31}{18432 m^{9}}+\frac{945}{8 m^{10} \pi^{9}}\right) .
$$

Corollary 6. For integers $m \geqslant 1$ and $q \geqslant 2$ such that $\rho_{q}^{*}(m)<1$ (see (16)), we have

$$
\left|w_{m}-w_{q}^{*}(m)\right|<\frac{\pi}{6} \sqrt{\frac{2 \pi}{q-1}} \cdot \exp \left(\frac{1}{12(q-1)}\right) \cdot\left(\frac{q-1}{2 m e \pi}\right)^{q-1}
$$

Proof. Referring to the finite increment theorem we have $\left|e^{x}-1\right|=e^{\vartheta x}|x| \leqslant$ $e^{|x|}|x|$, for any $x \in \mathbb{R}$ and some $\vartheta \in(0,1)$. Therefore, invoking Theorem 1 and supposing that $\rho_{q}^{*}(m)<1$, we obtain,

$$
\begin{aligned}
\left|w_{m}-w_{q}^{*}(m)\right| & =\left|w_{m}-w_{m} \exp \left(-\rho_{q}(m)\right)\right|=w_{m}\left|1-\exp \left(-\rho_{q}(m)\right)\right| \\
& \leqslant w_{1} \cdot \exp \left(\left|\rho_{q}(m)\right|\right) \cdot\left|\rho_{q}(m)\right|<\frac{1}{2} \cdot \exp \left(\rho_{q}^{*}(m)\right) \cdot \rho_{q}^{*}(m) \\
& <\frac{1}{2} \cdot e \cdot \rho_{q}^{*}(m)
\end{aligned}
$$

where we consider (13).
From Corollary 6 follows the next corollary.

Corollary 7. For all integers $m \geqslant 1$ the following estimates hold:

$$
\begin{aligned}
\left|w_{m}-w_{2}^{*}(m)\right| & <\frac{1}{5 m} \\
\left|w_{m}-w_{8}^{*}(m)\right| & <\frac{1}{500 m^{7}} \\
\left|w_{m}-w_{11}^{*}(m)\right| & <\frac{1}{250 m^{10}} \\
\left|w_{m}-w_{18}^{*}(m)\right| & <\frac{1}{m^{17}}
\end{aligned}
$$

3. Approximating π using Wallis' sequence

From Theorem 1 we read the next theorem.

THEOREM 2. For integers $m \geqslant 1$ and $q \geqslant 2$ we have

$$
\begin{equation*}
\pi=\pi_{q}^{*}(m) \cdot \exp \left(-2 \rho_{q}(m)\right) \tag{20}
\end{equation*}
$$

with

$$
\begin{equation*}
\pi_{q}^{*}(m):=\frac{1}{m \cdot w_{m}^{2}} \cdot \exp \left(-2 \sigma_{q}(m)\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|2 \rho_{q}(m)\right|<\frac{2 \pi(q-2)!}{3(2 m \pi)^{q-1}} \tag{22}
\end{equation*}
$$

From Corollary 5 we read the next corollary.

Corollary 8. For every $m \in \mathbb{N}$ there hold the following inequalities:

$$
\begin{aligned}
\pi & >\frac{1}{m \cdot w_{m}^{2}} \exp \left(\frac{1}{96 m^{3}}-\frac{1}{4 m}-\frac{1}{320 m^{5}}+\frac{17}{7168 m^{7}}-\frac{31}{9216 m^{9}}-\frac{945}{4 m^{10} \pi^{9}}\right) \\
& =: \lambda_{1}(m)
\end{aligned}
$$

and

$$
\begin{aligned}
\pi & <\frac{1}{m \cdot w_{m}^{2}} \exp \left(\frac{1}{96 m^{3}}-\frac{1}{4 m}-\frac{1}{320 m^{5}}+\frac{17}{7168 m^{7}}-\frac{31}{9216 m^{9}}+\frac{945}{4 m^{10} \pi^{9}}\right) \\
& =: \lambda_{2}(m)
\end{aligned}
$$

Putting $m=100$ in the inequalities of Corollary 8 and using Mathematica [25], we obtain the estimate

$$
3.141592653589793238462391 \ldots<\pi<3.141592653589793238462889 \ldots
$$

This way we find $\pi=3.141592653589793238462 \ldots$.

REMARK 3. Mortici [15, Th. 2, p. 2617] provided the double inequality

$$
M_{1}(m)<\pi<M_{2}(m)
$$

where

$$
M_{1}(m):=\left(\frac{m+1 / 4}{m^{2}+m / 2+3 / 32}+\frac{9}{2048 m^{5}}-\frac{45}{8192 m^{6}}\right)\left(\frac{(2 m)!!}{(2 m-1)!!}\right)^{2}
$$

and

$$
M_{2}(m):=\left(\frac{m+1 / 4}{m^{2}+m / 2+3 / 32}+\frac{9}{2048 m^{5}}\right)\left(\frac{(2 m)!!}{(2 m-1)!!}\right)^{2}
$$

We have $\lambda_{1}(1)<M_{1}(1)$, but $\lambda_{1}(m)>M_{1}(m)$ for $m \in\{2,3,4, \ldots, 100\}$ because for the quotients $q_{1}(m):=\lambda_{1}(m) / M_{1}(m)$, using Mathematica [25], we get $q_{1}(1)<1$ and $q_{1}(m)>1$, for $m \in\{2,3,4, \ldots, 100\}$. Similarly we find $\lambda_{2}(m)<M_{2}(m)$ for $m \in$ $\{2,3,4, \ldots, 100\}$.

4. Conclusion: A comparison with some previous results

Approximations provided by Theorem 1, surpass the estimates (2)-(8) stated in the Introduction, in terms of both accuracy and aesthetics. For an illustration we give several examples.

In Figure 4 is depicted, on both sides, the graph of the sequence of Wallis ratios together with the graphs of the bounds $a(m)$ and $b(m)$ (continuous lines) from the Corollary 3. On the left are plotted also the graphs of the bounds $G X Q_{1}(m)$ and $G X Q_{2}(m)$ and on the right are added the graphs of the bounds (see (3)-(5)) GFB $B_{1}(m)$ and $G F B_{2}(m)$ (dashed lines). The estimates (3)-(5) are evidently not balanced.

Figure 4: The comparison of the accuracy of the first double inequality of Corollary 3 (continuous lines) with the estimates (3), on the left, and with the inequalities (4)-(5), on the right (dashed lines).

Figure 5 shows, on the left (see (7), (8) and Corollary 4), the graphs of the functions $m \mapsto m^{4}\left(Q M_{1}(m)-A(m)\right)$ (dashed line) and $m \mapsto m^{6}\left(Q M_{2}(m)-B(m)\right)$ (contin-
uous line) and on the right the graph of the function $m \mapsto m^{10}\left(Q M_{1}^{*}(m)-w_{11}^{*}(m) \exp \right.$ $\left.\left(-\rho_{11}^{*}(m)\right)\right)$, illustrating that the lower bound in Corollary 5 is greater ${ }^{2}$ than $Q M_{1}^{*}(m)$.

-0.2
-0.4
-0.6
-1.0
-1.2

Figure 5: On the left are the graphs of the functions $m \mapsto m^{4}\left(Q M_{1}(m)-A(m)\right)$ (dashed line) and $m \mapsto m^{6}\left(Q M_{2}(m)-B(m)\right)$ (continuous line) and on the right is the graph of the function $m \mapsto m^{10}\left(Q M_{1}^{*}(m)-w_{11}^{*}(m) \exp \left(-\rho_{11}^{*}(m)\right)\right)$, illustrating that the lower bound in Corollary 5 is greater than $Q M_{1}^{*}(m)$.

Zhang's estimates (2) are quite accurate and also balanced as is shown on Figure 6, where are plotted, on the left, the graphs of the functions $Z_{1}(m)$ and $Z_{2}(m)$, together with the graph of the sequence $m \mapsto w_{m}$. On the right of this figure are plotted the graphs of the functions $m \mapsto m^{5}\left(Z_{1}(m)-A(m)\right)$ and $m \mapsto m^{5}\left(Z_{2}(m)-B(m)\right)$ (see (2) and Corollary 4).

Figure 6: Left: Accurate Zhang's estimates (2) is illustrated by the graphs of the functions $Z_{1}(m)$ and $Z_{2}(m)$ together with the graph of the sequence $m \mapsto w_{m}$. Right: The graphs of the functions $m \mapsto m^{5}\left(Z_{1}(m)-A(m)\right)$ and $m \mapsto m^{5}\left(Z_{2}(m)-B(m)\right)$ (see (2) and Corollary 4).

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th edn, Dover Publications, New York, (1974).
[2] T. Burić, Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions, J. Comput. Appl. Math. 235 (2011), 3315-3331.
[3] C.-P. Chen and F. Qi, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc. 133 (2005), 397-401.
[4] V. G. Cristea, A direct approach for proving Wallis' ratio estimates and an improvement of Zhang-Xu-Situ inequality, Studia Univ. Babeş-Bolyai Math. 60 (2015), 201-209.

[^0][5] S. Dumitrescu, Estimates for the ratio of gamma functions using higher order roots, Studia Univ. Babeş-Bolyai Math. 60 (2015), 173-181.
[6] N. ELEZOVIĆ, L. Lin AND L. V UKšić, Inequalities and asymptotic expansions of the Wallis sequence and the sum of the Wallis ratio, J. Math. Inequal. 7 (2013), no. 4, 679-695.
[7] N. ELEZOVIĆ, Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means, J. Math. Inequal. 9 (2015), no. 4, 1001-1054.
[8] S. Guo, J.-G. Xu and F. Qi, Some exact constants for the approximation of the quantity in the Wallis' formula, J. Inequal. Appl. (2013), 2013:67.
[9] S. Guo, Q. Feng, Y.-Q. Bi and Q.-M. Luo, A sharp two-sided inequality for bounding the Wallis ratio, J. Inequal. Appl. (2015), 2015:43.
[10] D. K. KaZarinoff, On Wallis' formula, Edinburgh Math. Notes 40 (1956), 19-21.
[11] T. Koshy, Catalan numbers with applications, Oxford University Press, 2009; Oxford, NY.
[12] A. Laforgia and P. Natalini, On the asymptotic expansion of a ratio of gamma functions, J. Math. Anal. Appl. 389 (2012), 833-837.
[13] V. Lampret, Wallis' sequence estimated accurately using an alternating series, J. Number. Theory. 172 (2017), 256-269.
[14] V. Lampret, A Simple Asymptotic Estimate of Wallis' Ratio Using Stirling's Factorial Formula, Bull. Malays. Math. Sci. Soc. 42 (2019), 3213-3221.
[15] C. Mortici, Refinements of Gurland's formula for pi, Comput. Math. Appl. 62 (2011), 2616-2620.
[16] C. Mortici, Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Math. Soc. Simon Stevin 17 (2010), 929-936.
[17] C. Mortici, New approximation formulas for evaluating the ratio of gamma functions, Math. Comput. Modelling 52 (2010), 425-433.
[18] C. Mortici, A new method for establishing and proving new bounds for the Wallis ratio, Math. Inequal. Appl. 13 (2010), 803-815.
[19] C. Mortici and V. G. Cristea, Estimates for Wallis' ratio and related functions, Indian J. Pure Appl. Math. 47 (2016), 437-447.
[20] C. Mortici, Completely monotone functions and the Wallis ratio, Appl. Math. Lett. 25 (2012), 717722.
[21] F. Qi and C. Mortici, Some best approximation formulas and the inequalities for the Wallis ratio, Appl. Math. Comput. 253 (2015), 363-368.
[22] D. V. Slavić, On inequalities for $\Gamma(x+1) / \Gamma(x+1 / 2)$, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., 498-541 (1975), 17-20.
[23] J.-S. Sun And C.-M. Qu, Alternative proof of the best bounds of Wallis' inequality, Commun. Math. Anal. 2 (2007), 23-27.
[24] X.-M. Zhang, T. Q. Xu and L. B. Situ, Geometric convexity of a function involving gamma function and application to inequality theory, J. Inequal. Pure Appl. Math. 8 (2007) 1, art. 17, 9 p.
[25] S. Wolfram, Mathematica, version 7.0, Wolfram Research, Inc., 1988-2009.
(Received November 22, 2016)

[^1]
[^0]: ${ }^{2}$ Even for $q=8$ we get the similar result: $Q M_{1}^{*}(m)<w_{8}^{*}(m) \exp \left(-\rho_{8}^{*}(m)\right)$, for $m \in\{1, \ldots, 20\}$.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

