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Abstract. In this paper, using the affine curve shortening flow, we prove the following inequality:
if C is a smooth closed and convex curve with affine perimeter L and enclosed area A , then

μmax � L

2A
,

where μmax is the maximum affine curvature of C .

1. Introduction

Let γ be a smooth Jordan curve in R
2 . Pestov and Ionin [11] showed the following

interesting inequality,

κmax �
√

π
A

, (1)

where κmax and A are the maximum curvature and the enclosed area of γ . Equality
holds in (1) if and only if γ is a circle.

Various proofs and generalizations of inequality (1) arousedmuch interest. Howard
and Treibergs [7] gave a proof of (1) by analytical methods. Pankrashkin [9] obtained
another proof of (1) through the curve shortening flow (see Gage-Hamilton [2] and
Grayson [4]). For a smooth simple closed curve on surfaces, Yang and Fang [15] got an
analog of (1) by the curve shortening flow on surfaces (see Gage [3] and Grayson [5]).
Other aspects of this topic can be found in Ferone-Nitsch-Trombetti [1], Pankrashkin-
Popoff [10] and Ritoré-Sinestrari [12].

Following the work on the curve shortening flow in the plane (see Gage-Hamilton
[2], Grayson [4]), Sapiro and Tannenbaum [13] studied the affine curve shortening
problem. Inspired by the idea of Pankrashkin [9], Yang [14] showed an inequality for
the minimum affine curvature through the affine curve shortening flow. In this short
paper, we get the affine analog of (1) through the affine curve shortening flow.
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THEOREM 1. If C is a smooth closed and convex curve in R
2 , then

μmax � L

2A
, (2)

and equality holds if and only if C is an ellipse, where μmax and L are the maximum
affine curvature and the affine perimeter of C , and A is its enclosed area.

2. A maximum curvature inequality

Let C : S1 →R
2 be a smooth embedded curve with parameter p (where S1 denotes

the unit circumference). A reparametrization of C(p) to a new parameter s can be
performed such that,

[Cs,Css] = 1, (3)

where [X ,Y ] stands for the determinant of the 2× 2 matrix whose columns are given
by the vectors X ,Y ∈ R

2 , where Cs and Css are the first and the second derivative
of C with respect to s . Furthermore, Cs is called the affine tangent vector and Css

the affine normal vector of the curve C . The relation is invariant under proper affine
transformations, and the parameter s is called the affine arc-length. Denoting by

g(p) = [Cp,Cpp]
1
3 ,

the parameter s is explicitly given by

s(p) =
∫ p

0
g(ξ )dξ .

The affine perimeter of C is given by

L =
∫
C

ds.

By differentiating (3), one has

[Cs,Csss] = 0,

which implies that Cs and Csss are linearly dependent and thus, there exists μ ∈R such
that

Csss + μCs = 0.

Combining with (3) yields
μ = [Css,Csss],

and μ is called the affine curvature of C . A more comprehensive exposition of various
aspects of the Affine Differential Geometry can be found in [13].

Let C(p, t) : S1 × [0,ω) → R
2 be a family of smooth closed and convex curves

where t parameterizes the family and p parameterizes each curve, and ω is the maxi-
mal time that the family of curves exists. Inspired by the curve shortening flow, Sapiro
and Tannenbaum [13] composed the affine curve shortening flow:{

∂C(p,t)
∂ t = Css(p,t),

C(·,0) = C0(·),
(4)
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where s := s(p) =
∫
[Cp,Cpp]

1
3 dp and C0(·) denotes a smooth, closed and convex

curve. Under the affine curve shortening flow (4), they showed that the affine curvature
μ(·,t) is always positive and the limit shape (i.e., the curve obtained when t → ω ) is
an “elliptical point”, with convergence in C∞ norm.

Next, we will apply the affine curve shortening flow (4) to deal with Theorem 1.
First, we give two lemmas which will be used in the rest of this paper.

LEMMA 1. ([13]) The evolution equations of the affine perimeter L (t) , the en-
closed area A (t) and the affine curvature μ with respect to the evolving curves C(·, t)
are

Lt = −2
3

∮
μ(s,t)ds, (5)

At = −L (t), (6)

∂ μ(s,t)
∂ t

=
1
3

μss(s,t)+
4
3

μ2(s,t). (7)

LEMMA 2. ([13]) If C is a smooth closed and convex curve, then the affine
isoperimetric inequality

2
∮

μ(s,t)ds � L 2(t)
A (t)

(8)

holds, with equality if and only if C is an ellipse.

Proof of Theorem 1. Set Q(s,t) = μ2(s,t) and Qmax(t) = max{Q(s, t) | s ∈
[0,L ]} . Then

∂Q(s, t)
∂ t

= 2μ(s,t)
∂ μ(s,t)

∂ t
,

∂Q(s,t)
∂ s

= 2μ(s,t)
∂ μ(s, t)

∂ s
,

∂ 2Q(s,t)
∂ s2 = 2

(
∂ μ(s,t)

∂ s

)2

+2μ(s,t)
∂ 2μ(s,t)

∂ s2 ,

which together with (7) yields

∂Q(s, t)
∂ t

=
2
3

μ(s,t)
∂ 2μ(s,t)

∂ s2 +
8
3

μ3(s,t)

=
1
3

∂ 2Q(s,t)
∂ s2 − 1

6Q(s,t)

(
∂Q(s,t)

∂ s

)2

+
8
3
Q

3
2 (s,t).

Since Qmax(t) is Lipschitz continuous, it is differentiable almost everywhere. Let s∗
be the point such that Q(s∗,t) = Qmax(t) . From Hamilton’s technique of the maximum
principle [6, p. 159], it follows that

(Qmax(t))t � ∂Q
∂ t

(s∗,t)

=
1
3

∂ 2Q
∂ s2 (s∗,t)− 1

6Q(s∗,t)

(
∂Q
∂ s

(s∗,t)
)2

+
8
3
Q

3
2 (s∗, t)
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and at the point (s∗, t) ,

∂ 2Q
∂ s2 (s∗,t) � 0,

∂Q
∂ s

(s∗,t) = 0.

Hence,

(Qmax(t))t � 8
3
Q

3
2
max(t), (9)

which implies that (
Qmax(t)−

1
2

)
t
� −4

3
.

Let ω be the maximal existence time. Integrating the above expression on [t,ω) (where
ω is finite [8, p. 1190] ) and that Qmax(t) → ∞ when t → ω (see [13, Theorem 15.1]),
one gets

1√
Qmax(t)

� 4
3
(ω − t). (10)

It follows from (5), (6) and (8) that(
A (t)
L (t)

)
t
=

L (t)At −A (t)Lt

L 2(t)
= −1+

A (t)
L 2(t)

(
2
3

∮
μ(s, t)ds

)

� −1+
A (t)
L 2(t)

L 2(t)
3A (t)

= −2
3
, (11)

which implies that
A (ω)
L (ω)

− A (t)
L (t)

� −2
3
(ω − t).

Since A (t) is an infinitesimal of order higher than L (t) as t → ω , A (t)
L (t) → 0 as

t → ω , hence

ω − t � 3
2

A (t)
L (t)

. (12)

From (10), (12) and μmax(t) = Q
1
2
max(t) , (2) follows and equality holds in (2) only

when the equalities hold in (9) and (11). By the affine isoperimetric inequality (8), the
equality holds in (11) only when the evolving curve is an ellipse. �

REMARK 1. Since the affine inequality (8) plays a significant role in the proof of
Theorem 1, the condition on the curve C cannot be reduced to being a smooth Jordan
curve by using this method.
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