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QUANTITATIVE WEIGHTED ESTIMATES AND WEIGHTED

COMPACTNESS FOR VARIATION OF APPROXIMATE IDENTITIES

YONGMING WEN, QUANQING FANG AND XIANMING HOU ∗

(Communicated by J. Pečarić)

Abstract. In this paper, we give the quantitative weighted BMO estimates and Cq estimates
for variation of approximate identities. Meanwhile, we also give a new characterization of
CMO(Rn) via the compactness of the variation operators associated with commutators of ap-
proximate identities in weighted Lebesgue spaces.

1. Introduction and main results

The intension of this paper is to establish the quantitative weighted L∞ -BMO esti-
mates, quantitative Cq estimate and the compactness for variation operators associated
with commutators of approximate identities. Before we state our main results, let us
recall some backgrounds.

The well known extrapolation theorem established by Rubio de Francia [42] sho-
wed that if T is an operator bounded on Lp0(ω) for some p0 ∈ (1,∞) and each
ω ∈ Ap0 , then T is bounded on Lp(ω) for each ω ∈ Ap with p ∈ (1,∞) . The con-
clusion also holds true if the hypothesis is assumed that T maps L1(ω) into L1,∞(ω)
for any ω ∈ A1 . While for p0 = ∞ , Harboure et al. [28] then established the following
extrapolation theorem:

THEOREM 1. Let T be a sublinear operator defined on C∞
c (Rn) , assume that T

satisfies

|Q|−1
∫

Q
|T f −〈T f 〉Q| � ‖ f/ω‖L∞ ess inf

Q
ω (1)

for any cube Q ⊂ Rn and ω ∈ A1 , where 〈T f 〉Q := |Q|−1 ∫
Q T f and the implicit con-

stant depends on T and ω . Then T is bounded on Lp(ω) for any p ∈ (1,∞) and
ω ∈ Ap .
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If T is the Hilbert transform and satisfies (1), Muckenhoupt and Whedeen [41]
earlier showed (1) holds if and only if ω ∈A1 . This result and the extrapolation theorem
perhaps are the source of inspiration for Theorem 1. One may wonder how does the
implicit constant in (1) depend on ω . Recently, Criado, Pérez and Rivera-Rı́os [19]
answered this question, they gave a quantitative extension of Theorem 1 and extended
the Muckenhoupt-Whedeen’s result to Calderón-Zygmund operator.

On the other hand, the other way to obtain the boundedness result of an operator
is that one can seek a suitable maximal operator to control it. A classical example of
this principle is the following famous Coifman-Feferman inequality [15]:

‖T ∗ f‖Lp(ω) � cn,p,ω‖M f‖Lp(ω), (2)

where T ∗ and M are the maximal Calderón-Zygmund operator and Hardy-Littlewood
maximal operator, respecctively, 0 < p < ∞ and ω ∈A∞ . For the necessity condition of
(2), Muckenhoupt [40] showed that ω ∈Cp (a larger class than the class of A∞ ) is the
appropriate condition other than ω ∈ A∞ . Later on, Sawyer [43] proved that (2) holds
for 1 < p < ∞ , p < q and ω ∈ Cq . However, it is still an open problem that whether
ω ∈Cp is the sufficient condition. Recently, Canto et al. [7] provided the quantitative
Cq estimates for singular integral operators. Also, we refer readers to see [35] for the
recent development of this topic.

Recall that given a locally integral function b and a linear or nonlinear operator
T , the commutator [b,T ] is defined by

[b,T ] f (x) := T
(
(b(x)−b(·)) f

)
(x).

And we say that b belongs to BMO(Rn) spaces if

‖b‖BMO := sup
Q

1
|Q|

∫
Q
|b(x)−〈b〉Q|dx < ∞.

Coifman, Rochberg and Weiss [16] showed that the commutator of Riesz transform is
bounded on Lp(Rn) if and only if the function b is in BMO(Rn) . The compactness of
commutators has been started to receive attention with the development of the bound-
edness of commutators. Uchiyama [44] pointed out that the Lp -boundedness result
in [16] could be refined to a compactness one if the space BMO(Rn) is replaced by
CMO(Rn) , which is defined to be the closure of C∞

c (Rn) in the BMO norm. After-
wards, the works on compactness of commutators have been blossomed, for example,
[9, 13, 26, 45] et al. However, most of the scholars concerned with the compactness
of linear operators, the literature is far from enough regarding the compactness of non-
linear operators, we refer readers to [10, 21] for the commutators of Littlewood-Paley
operators and the maximal truncated commutators for singular integrals, etc.

Let ρ > 2 and F (x) = {Ft(x)}t>0 be a family of Lebesgue measurable function,
the ρ -variation function Vρ(F ) of the family F is defined by

Vρ(F )(x) = ‖{Ft(x)}t>0‖Vρ := sup
tk↓0

( ∞

∑
k=1

|Ftk(x)−Ftk+1(x)|ρ
)1/ρ

,
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where the supremum is taken over all sequences {tk} decreasing to zero. By anal-
ogy to the definition of ρ -variation function, assume that T = {Tt}t>0 is a family of
operators, then the ρ -variation operator is defined by

Vρ(T f )(x) = ‖{Tt( f )(x)}t>0‖Vρ .

In this paper, we study the variation operators associated with approximate identities.
Let φ ∈ S (Rn) satisfy

∫
Rn φ(x)dx = 1, where S (Rn) is the space of Schwartz func-

tions. We consider the following familiy of approximate identities

Φ� f (x) := {φt ∗ f (x)}t>0, (3)

where φt(x) := t−nφ(x/t) . Let b ∈ L1
loc(R

n) , we will also take into account the corre-
sponding familiy of commutators of approximate identities

(Φ� f )b(x) := {b(x)φt ∗ f (x)−φt ∗ b f (x)}t>0, (4)

where

b(x)φt ∗ f (x)−φt ∗ b f (x) =
∫

Rn

1
tn

φ
(x− y

t

)
(b(x)−b(y)) f (y)dy.

The variation for martingales and several families of operators have been investi-
gated by numerous mathematicians on various fields, such as probability, ergodic the-
ory, and harmonic analysis et al., one may consult [3, 31, 32, 33, 34] for earlier results.
Particularly, for ρ > 2, the classical work of ρ -variation operators for singular integrals
was given in [5], in which the authors gave the Lp -bounds and weak type (1,1) bounds
for ρ -variation operators of truncated Hilbert transform and then extended to higher
dimensional in [6]. The first quantitative weighted estimates for variation operators
were given by Hytönen et al. [29], in which the authors studied variation operators of
smooth truncations of singular integrals. Almost at the same time, Ma, Torrea and Xu
[39] established the boundedness of ρ -variation operators of Calderón-Zygmund oper-
ators, additionally, they proved the variation operators of Calderón-Zygmund operators
are bounded from L∞(Rn) to BMO(Rn) , which generalized the result of Crescimbeni
et al. [17]. We refer readers to [11, 20, 22] for results of rough kernels and weighted
cases. For the variation operators of heat semigroups, Crescimbeni et al. [18] gave the
weighed Lp -bounds and weak type (1,1) bounds by using the vector-valued Calderón-
Zygmund theory. Liu [38] established the boundedness of variation operators associ-
ated with approximate identities on Lebesgue spaces, which covers the results of [18]
in the unweighted cases.

On the other hand, the variational inequalities for the commutators of singular
integrals also have been intensively studied. In 2013, Betancor et al. [1] studied the
mapping property of variation operators for the commutators of Riesz transforms in
Euclidean and Schrödinger setting. Few years later, Liu and Wu [37] obtained the
weighted Lp -boundedness for variation operators of commutators of truncated singular
integrals with the Calderón-Zygmund kernels. Recently, variation operators of com-
mutators with rough kernels were also obtained in [12]. While, for the compactness of
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variation operators of commutators, the result is rare, in 2019, Guo et al. [24] first gave
a characterization of CMO(Rn) via the compactness of variation operators of commu-
tators of singular integrals. Recently, Guo et al. [25] gave a new characterization of
BMO(Rn) via the boundedness of variation operators associated with commutators of
approximate identities.

From the previous known facts about variation inequalities, none of the quanti-
tative weighted estimates of endpoint case p = ∞ for variation operators have been
considered before. Inspired by the work of [25], one may wonder whether a new char-
acterization of CMO(Rn) can be established. In this paper, we settle these problems as
follows. Firstly, we give the quantitative weighted L∞ -BMO bounds for variation op-
erators associated with convolutions with approximation of identities. As applications,
we give a simper proof of the Lp -boundedness of variation operators associated with
convolutions with approximation of identities than in [38] and extend it to weighted
cases. Secondly, we obtain the quantitative Cq estimates for variation operators, which
has never been considered before for variation operators. Thirdly, we give a new char-
acterization of CMO(Rn) . We state our results as follows.

THEOREM 2. Let Φ� f be given by (3), ω be a weight (see its definition in Sec-
tion 2.1 ) and ρ > 2 . Assume that f ∈ Lp(Rn) for some p � 1 and | f | � ω almost
everywhere. Then for all cubes Q ⊂ R

n and all 1 < r < ∞ ,

1
|Q|

∫
Q
|Vρ(Φ� f )−〈Vρ(Φ� f )〉Q| � r′‖ f/ω‖L∞ ess inf

Q
Mrω , (5)

where ω ∈ Lr
loc such that the right-hand side is finite, 1/r + 1/r′ = 1 and Mr( f ) :=

(M(| f |r))1/r . Specially, if ω ∈ A∞ ,

1
|Q|

∫
Q
|Vρ(Φ� f )−〈Vρ(Φ� f )〉Q| � [ω ]A∞‖ f/ω‖L∞ ess inf

Q
Mω . (6)

Moreover, if ω ∈ A1 ,

1
|Q|

∫
Q
|Vρ(Φ� f )−〈Vρ(Φ� f )〉Q| � [ω ]A1 [ω ]A∞‖ f/ω‖L∞ ess inf

Q
ω . (7)

REMARK 1. We can restate (5)–(7) as the following norm forms:

∥∥∥M�(Vρ(Φ� f ))
Mrω

∥∥∥
L∞

� r′‖ f/ω‖L∞ ;

∥∥∥M�(Vρ(Φ� f ))
Mω

∥∥∥
L∞

� [ω ]A∞‖ f/ω‖L∞ ;

∥∥∥M�(Vρ(Φ� f ))
ω

∥∥∥
L∞

� [ω ]A1 [ω ]A∞‖ f/ω‖L∞ .
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The weighted BMO(Rn) space BMOω(Rn) , which was first introduced in [41]
and developed by Bloom [2], is the set of all locally integrable functions f on Rn with
‖ f‖BMOω < ∞ , where ‖ f‖BMOω := ω(Q)−1 ∫

Q | f (x)−〈 f 〉Q|dx < ∞ and ω ∈ A∞ . By
(7), we have the following corollary.

COROLLARY 1. Under the same assumptions as in Theorem 2, then for ρ > 2
and ω ∈ A1 ,

‖Vρ(Φ� f )‖BMOω � [ω ]A1 [ω ]A∞‖ f/ω‖L∞(Rn).

By Theorem 1 and Theorem 2, we obtain the weighted Lp -boundedness of varia-
tion operators associated with approximate identities.

COROLLARY 2. Let ρ > 2 , 1 < p < ∞ and ω ∈ Ap ,

‖Vρ(Φ� f )‖Lp(ω) � ‖ f‖Lp(ω).

REMARK 2. Corollary 2 extends the result in [38] to the weighted, providing a
simpler proof.

THEOREM 3. Let Φ � f be given by (3) and ω be a weight. Assume that f ∈
Lp(Rn) for some p � 1 and | f | � ω almost everywhere. Then for all cubes Q ⊂ R

n

and any ε ∈ (0,1) ,

inf
c∈C

( 1
|Q|

∫
Q
|Vρ(Φ� f )(x)− c|εdy

)1/ε
� C‖ f/ω‖L∞ ess inf

Q
Mω , (8)

where C depends on ε and ‖Vρ‖L1→L1,∞ . Moreover,

∥∥∥M�
ε(Vρ(Φ� f ))

Mω

∥∥∥
L∞

� C‖ f/ω‖L∞ . (9)

Specially, if ω ∈ A1 ,

∥∥∥M�
ε(Vρ(Φ� f ))

ω

∥∥∥
L∞

� C[ω ]A1‖ f/ω‖L∞ . (10)

REMARK 3. Theorem 3 is an improved version of Theorem 2 in the sense that a
better dependence on the A1 –A∞ constant is given.

THEOREM 4. Under the same assumptions as in Theorem 3, then for ρ > 2 ,

∥∥∥M�
ε(Vρ(Φ� f ))

ν

∥∥∥
L∞

� C[(μ ,ν)]A1‖ f/μ‖L∞ . (11)

Moreover, if μ ∈ A∞ , then

∥∥∥M�(Vρ(Φ� f ))
ν

∥∥∥
L∞

� C[μ ]A∞ [(μ ,ν)]A1‖ f/μ‖L∞ , (12)

where the definition of [(μ ,ν)]A1 is given in Section 2 .
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THEOREM 5. Let 1 < p < q < ∞ and ρ > 2 , then for some δ ∈ (p/q,1) and any
ω ∈Cq , we have

‖Vρ(Φ� f )‖Lp(ω) �
( pq

δq− p
max{1, [ω ]Cq log+[ω ]Cq}

)1/δ‖M f‖Lp(ω).

THEOREM 6. Let (Φ� f )b be given by (4) and 1 < p < ∞ . Then for ρ > 2 and
ω ∈ Ap , Vρ((Φ� f )b) is compact on Lp(ω) if and only if b ∈CMO(Rn) .

REMARK 4. We point out that all the results above also hold for variation of heat
semigroups and Poisson semigroups. Thus, we extend main results in [18].

We organize the rest of the paper as follows. We give preliminaries in Section 2.
Section 3 is devoted to proving Theorems 2, 3, 4 and 5. In Section 4, we give the proof
of Theorem 6.

We make some conventions at the end of this section. In this paper, we omit the
constant which is independent of the main parameters. We denote f � g , f ∼ g if
f �Cg and f � g � f , respectively. For any ball Q⊂Rn , 〈 f 〉Q means the mean value
of f over Q , χQ represents the characteristic function of Q and cQ denotes the center
of the cube Q .

2. Preliminaries

2.1. Weights

A weight ω is a nonnegative and locally integrable function on Rn . Given a
weight ω , we say that w ∈ Ap (1 < p < ∞) , if for all cubes Q ⊂ Rn ,

[ω ]Ap := sup
Q

( 1
|Q|

∫
Q

w(y)dy
)( 1

|Q|
∫

Q
w(y)1−p′dy

)p−1
< ∞.

When p = 1, we say that ω ∈ A1 if

[ω ]A1 := ‖Mω/ω‖L∞ < ∞.

When p = ∞ , we define A∞ := ∪1�p<∞Ap , and the constant of A∞ is defined by

[ω ]A∞ := sup
Q

1
ω(Q)

∫
Q

M(ωχQ)(x)dx < ∞.

The doubling property of weight will be used in this paper: for λ > 1, and all cubes Q ,
if ω ∈ Ap , we have ω(λQ) � λ np[ω ]Apω(Q) . For two weights μ ,ν , we say (μ ,ν) ∈
A1 if

[(μ ,ν)]A1 := ‖Mμ/ν‖L∞ < ∞.

The following lemma is the well known reverse Hölder inequality.
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LEMMA 1. (cf. [30]) Let ω ∈ A∞ , there is a positive constant τn such that for
each δ ∈ [0,1/(τn[ω ]A∞)] and each cube Q ⊂ Rn ,

( 1
|Q|

∫
Q

ω(x)1+δ dx
)1/(1+δ )

� 2
|Q|

∫
Q

ω(x)dx.

Next we introduce the Cp class of weights. Recall that a weight ω ∈Cp , if there
are C,ε > 0 such that for each cube Q and each measurable E ⊂ Q ,

ω(E) � C
( |E|
|Q|

)ε ∫
Rn

M(χQ)(x)pω(x)dx.

And the Cp constant [ω ]Cp is defined in [7] by

[ω ]Cp := sup
Q

∫
Q M(ωχQ)(x)dx∫

Rn M(χQ)(x)pω(x)dx
.

From the definitions above, one can see that the Cp class of weights is larger than the
A∞ class of weights. In [8], the authors gave the following lemma that concerned with
the quantitative Cq estimates for Hardy-Littlewood maximal function.

LEMMA 2. (cf. [8]) Let 1 < p < q < ∞ and ω ∈Cq . Then for any f ∈ L∞
c (Rn) ,

we have

‖M f‖Lp(ω) � cn
pq

q− p
max{1, [ω ]Cq log+[ω ]Cq}‖M� f‖Lp(ω).

2.2. Sharp maximal functions

Let Q ⊂ Rn be a cube with sides parallel to the axes. The sharp maximal function
is defined by

M�( f )(x) := sup
Q�x

1
|Q|

∫
Q
| f (y)−〈 f 〉Q|dy ∼ sup

Q�x
inf
c∈C

1
|Q|

∫
Q
| f (y)− c|dy.

For ε ∈ (0,1) , we also define the modified sharp maximal function by

M�
ε( f )(x) := (M�(| f |ε )(x))1/ε .

3. Quantitative weighted estimates for variation operators

In this section, we give the proof of Theorems 2, 3, 4 and 5. Before we prove
Theorem 2, we need to establish the following lemma.

LEMMA 3. Let ρ > 2 , then for any 1 < p < ∞ ,

‖Vρ(Φ� f )‖Lp(Rn) � pp′‖ f‖Lp(Rn),

where the implicit constant is independent of p, p′ .
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Proof. This conclusion was proved in [38], here, we track the constant that de-
pends on p and p′ for our convenience. By using the result in [25, Lemma 2.3] and the
standard steps in [36, Theorem 1.1], we can prove that for any 1 < p < ∞ ,

‖Vρ(Φ� f )‖Lp(Rn) � p‖M f‖Lp(Rn),

where the implicit constant is independent of p, p′ . Then the result follows by

‖M f‖Lp(Rn) � p′‖ f‖Lp(Rn). �

Proof of Theorem 2. Let f be given as Theorem 2, given a cube Q , write f =
g+h , where g := f χ2Q . We first prove (5).

For y ∈ (2Q)c , x ∈ Q , by Minkowski’s inequality, we have

|Vρ(Φ� h)(x)−Vρ(Φ� h)(cQ)| (13)

� ‖{φt ∗ h(x)−φt ∗ h(cQ)}t>0‖Vρ

= sup
tk↓0

(
∑
k

∣∣∣
∫

Rn\2Q
{[φtk (x− y)−φtk+1(x− y)]

− [φtk(cQ − y)−φtk+1(cQ − y)]} f (y)dy
∣∣∣ρ)1/ρ

�
∫

Rn\2Q
| f (y)|‖{φt(x− y)−φt(cQ − y)}t>0‖Vρ dy.

For y ∈ (2Q)c , x ∈ Q , using the mean value theorem, we deduce that

‖{φt(x− y)−φt(cQ − y)}t>0‖Vρ (14)

� sup
tk↓0

(
∑
k

∣∣∣[φtk (x− y)−φtk+1(x− y)]− [φtk(cQ − y)−φtk+1(cQ − y)]
∣∣∣
)

= sup
tk↓0

(
∑
k

∣∣∣
∫ tk

tk+1

∂
∂ t

(φt(x− y)−φt(cQ − y))dt
∣∣∣
)

�
∫ ∞

0

∣∣∣ ∂
∂ t

(φt(x− y)−φt(cQ − y))
∣∣∣dt

� |x− cQ|
∫ ∞

0

1
tn+2

(
1+

|y− cQ|
t

)−(n+2)
dt

=
|x− cQ|

|y− cQ|n+1

∫ ∞

0

tn

(t +1)n+2 dt ∼ |x− cQ|
|y− cQ|n+1 .

From the assumption on f and the Lp -boundedness of Vρ(Φ� h) (see [38]), we know
that 〈Vρ(Φ� h)〉Q < ∞ . Hence, from (13) and (14), we obtain

∫
Q
|Vρ(Φ� h)(x)−〈Vρ(Φ� h)〉Q|dx (15)

=
∫

Q
|Vρ(Φ� h)(x)−Vρ(Φ� h)(cQ)+Vρ(Φ� h)(cQ)−〈Vρ(Φ� h)〉Q|dx
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� 2
∫

Q
|Vρ(Φ� h)(x)−Vρ(Φ� h)(cQ)|dx

�
∫

Q

∫
Rn\2Q

|x− cQ|
|y− cQ|n+1 | f (y)|dydx

� ‖ f/ω‖L∞

∫
Q

∞

∑
j=1

∫
2 j+1Q\2 jQ

√
nlQ

(2 j−1lQ)n+1 ω(y)dydx

� ‖ f/ω‖L∞

∫
Q

∞

∑
j=1

2− j 1
|2 j+1Q|

∫
2 j+1Q

ω(y)dydx

� ‖ f/ω‖L∞ |Q|ess inf
x∈Q

Mrω(x).

On the other hand, by Lemma 3, we have

1
|Q|

∫
Q

Vρ(Φ� g)(x)dx �
( 1
|Q|

∫
Q

Vρ(Φ� g)(x)rdx
)1/r

(16)

� rr′
( 1
|2Q|

∫
2Q

| f (y)|rdy
)1/r

� rr′‖ f/ω‖L∞

( 1
|2Q|

∫
2Q

|ω(y)|rdy
)1/r

� rr′‖ f/ω‖L∞ ess inf
x∈Q

Mrω(x).

Now observe that

1
|Q|

∫
Q
|Vρ(Φ� f )(x)−〈Vρ(Φ� f )〉Q|dx

=
1
|Q|

∫
Q
|Vρ(Φ� f )(x)−Vρ(Φ� h)(x)+Vρ(Φ� h)(x)−〈Vρ(Φ� h)〉Q

+ 〈Vρ(Φ� h)〉Q −〈Vρ(Φ� f )〉Q|dx

� 1
|Q|

∫
Q
|Vρ(Φ� h)(x)−〈Vρ(Φ� h)〉Q|dx+

2
|Q|

∫
Q

Vρ(Φ� g)(x)dx

Hence, (5) follows by (15) and (16).
Next, we turn to prove (6). Choose r = 1 + 1/(τn[ω ]A∞) , then r′ ∼ [ω ]A∞ and

r ∼ c . Since ω ∈ A∞ , applying Lemma 1, we get (6).
Finally, (7) is a consequence of (6) and the definition of A1 . Theorem 2 is

proved. �

Proof of Theorem 3. We first prove (8). Fix a cube Q , write f = g + h with
g := f χ2Q . Then for ε ∈ (0,1) , one can see that

inf
c∈C

1
|Q|

∫
Q
|Vρ(Φ� f )(x)− c|εdx

� 1
|Q|

∫
Q
|Vρ(Φ� f )(x)−〈Vρ(Φ� h)〉Q|εdx
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� 1
|Q|

∫
Q
|Vρ(Φ� f )(x)−Vρ(Φ� h)(x)|εdx

+
1
|Q|

∫
Q
|Vρ(Φ� h)(x)−〈Vρ(Φ� h)〉Q|εdx

� 1
|Q|

∫
Q
|Vρ(Φ� g)(x)|εdx+

1
|Q|

∫
Q
|Vρ(Φ� h)(x)−〈Vρ(Φ� h)〉Q|εdx

=: I + II.

For II , by (15) and Jesen’s inequality, we have

II1/ε � 1
|Q|

∫
Q
|Vρ(Φ� h)(x)−〈Vρ(Φ� h)〉Q|dx

� ‖ f/ω‖L∞ ess inf
x∈Q

Mω(x).

To estimate I , we use the Kolmogorov inequality and the weak type (1,1) of
Vρ(Φ� g) (see [38]), then

I1/ε =
( 1
|Q|

∫
Q

Vρ(Φ� g)(x)εdx
)1/ε

�
( 1

1− ε

)1/ε‖ f/ω‖L∞‖Vρ(Φ)‖L1→L1,∞
1
|Q|

∫
2Q

ω(y)dy

�
( 1

1− ε

)1/ε‖ f/ω‖L∞‖Vρ(Φ)‖L1→L1,∞ ess inf
x∈Q

Mω(x).

Hence, by the estimate of I1/ε and II1/ε , we get the desired results.
To prove (9), we use

∣∣|a|ε −|b|ε∣∣ � |a−b|ε for ε ∈ (0,1) , then

inf
c∈C

1
|Q|

∫
Q
|Vρ(Φ� f )(x)ε − cε |dx

� 1
|Q|

∫
Q
|Vρ(Φ� f )(x)ε −〈Vρ(Φ� h)〉ε

Q|dx

� 1
|Q|

∫
Q
|Vρ(Φ� f )(x)−〈Vρ(Φ� h)〉Q|εdx,

from the definition of M�
ε(Vρ(Φ� f )) , we find that (9) can be proved by following the

steps of the proof (8).
Finally, (10) follows by (9) and the definition of A1 . Theorem 3 is proved. �

Proof of Theorem 4. Take ω = μ in (9) and use Mμ � [(μ ,ν)]A1ν , we get (11).
Take ω = μ in the second norm inequality in Remark 1 and again use Mμ � [(μ ,ν)]A1ν ,
we get (12). This completes the proof of Theorem 4. �

Proof of Theorem 5. By a minor modification of the proof of Theorem 3, we can
prove that for any ε ∈ (0,1) ,

M�
ε(Vρ(Φ� f ))(x) � cn,ε,Vρ (Φ)M f (x).
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Since p/δ < q , from Lemma 2, we obtain

‖Vρ(Φ� f )‖Lp(ω) � ‖Mδ (Vρ(Φ� f ))‖Lp(ω) = ‖M((Vρ(Φ� f ))δ )‖1/δ
Lp/δ (ω)

�
( pq

δq− p
max{1, [ω ]Cq log+[ω ]Cq}

)1/δ‖M�((Vρ(Φ� f ))δ )‖1/δ
Lp/δ (ω)

=
( pq

δq− p
max{1, [ω ]Cq log+[ω ]Cq}

)1/δ‖M�
δ ((Vρ(Φ� f )))‖Lp(ω)

�
( pq

δq− p
max{1, [ω ]Cq log+[ω ]Cq}

)1/δ‖M f‖Lp(ω),

where in the third inequality, we used the following result proved by [46]:

‖M f‖Lp(ω) � ‖M� f‖Lp(ω), 1 < p < q < ∞, ω ∈Cq.

This completes the proof of Theorem 5. �

4. The characterization of CMO(Rn)

This section is devoted to proving Theorem 6. We first recall the following defini-
tions.

DEFINITION 1. For a complex-valued measurable function f , the local mean os-
cillation of f over a cube Q is defined by

aλ ( f ;Q) := inf
c∈C

(( f − c)χQ)∗(λ |Q|) (0 < λ < 1),

where f ∗ denotes the non-increasing rearrangement of f .

DEFINITION 2. By a median value of a real-valued measurable function f over a
measure set E of positive finite measure, we mean a possibly non-unique, real number
mf (E) such that

max(|{x ∈ E : f (x) > mf (E)}|, |{x ∈ E : f (x) < mf (E)}|) � |E|/2.

To prove our theorem, we need the following lemmas. To be more precise, we use
Lemma 4 and Lemma 6 to prove the sufficiency of Theorem 6, and Lemmas 5–8 are
applied to prove the necessity of Theorem 6.

LEMMA 4. (cf. [27]) Let p ∈ (0,∞) and ω be a weight, a subset E of Lp(Rn)
is precompact (or totally bounded) if the following statements hold:

(a) E is uniformly bounded, i.e., sup f∈E ‖ f‖Lp(ω) � 1 ;
(b) E uniformly vanishes at infinity, that is,

lim
N→∞

∫
|x|>N

| f (x)|pω(x)dx = 0,
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uniformly for all f ∈ E ;
(c) E is uniformly equicontinuous, that is,

lim
ρ→0

sup
y∈B(0,ρ)

∫
Rn

| f (x+ y)− f (x)|pω(x)dx = 0,

uniformly for all f ∈ E .

LEMMA 5. (cf. [26]) Let b ∈ BMO(Rn) . Then b ∈CMO(Rn) if and only if the
following three conditions hold:

(1) limd→0 sup
|Q|=d

aλ (b;Q) = 0 ,

(2) limd→+∞ sup
|Q|=d

aλ (b;Q) = 0 ,

(3) limd→+∞ sup
|Q|∩[−d,d]n= /0

aλ (b;Q) = 0 .

LEMMA 6. (cf. [25]) Let φ ∈ S (Rn) with
∫
Rn φ(x)dx = 1 , 1 < p < ∞ , ω ∈ Ap .

Then for ρ > 2 , Vρ((Φ� f )b) is bounded on Lp(ω) if and only if b ∈ BMO(Rn) .

LEMMA 7. Let ω ∈Ap and b be a real-valuedmeasurable function. Given a cube

Q, there exist sets E and F associated with Q such that for f =
(∫

F ω(x)dx
)−1/pχF

and any measurable set B with |B| � λ/8|Q| ,

‖Vρ((Φ� f )b)‖Lp(E\B,ω) � aλ (b;Q),

where the implicit constant is independent of Q.

Proof. Without loss of generality, we may assume that b and φ are real valued,
φ(z) � 1, where z ∈ B(z0,δ ) with |z0|= 1 and δ > 0 is a small constant. For any cube
Q , denote by

P := Q−10
√

nδ−1lQz0

the cube associated with Q . By the definition of aλ ( f ;Q) , there exists a subset Q̃ of
Q , such that |Q̃| = λ |Q| , and according to the definition of mb(P) , there exist subsets
E ⊂ Q̃ and F ⊂ P such that

|E| = |Q̃|/2 = λ |Q|/2, |F | = |P|/2 = |Q|/2.

By the Hölder inequality, we have

∫
E\B

Vρ((Φ� f )b)(x)dx �
(∫

E\B
Vρ((Φ� f )b)(x)pω(x)dx

)1/p(∫
Q

ω(x)−p′/p
)1/p′

.

(17)
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On the other hand, for x ∈ E , it was proved in [25] that

Vρ((Φ� f )b)(x) � aλ (b;Q)
(∫

F
ω(x)dx

)−1/p
,

then
∫

E\B
Vρ((Φ� f )b)(x)dx � |E \B|

(∫
P

ω(x)dx
)−1/p

aλ (b;Q) (18)

� 3λ/8|Q|
(∫

P
ω(x)dx

)−1/p
aλ (b;Q).

Hence, by (17) and (18), we deduce that

(∫
E\B

Vρ((Φ� f )b)(x)pω(x)dx
)1/p

�
(∫

Q
ω(x)−p′/pdx

)−1/p′(∫
E\B

Vρ((Φ� f )b)(x)dx
)

�
(∫

Q
ω(x)−p′/pdx

)−1/p′(∫
P

ω(x)dx
)−1/p

aλ (b;Q)|Q| � aλ (b;Q),

where we use the definition of Ap and P ⊂ KQ for some K > 0 in the last inequality.
This is the desired result. �

LEMMA 8. Let ω ∈ Ap and b ∈ BMO(Rn) . Given a cube Q, let P, E , F be the

sets associated with Q mentioned in Lemma 7. Set f =
(∫

F ω(x)dx
)−1/p

χF . Then

there is a δ > 0 such that

‖Vρ((Φ� f )b)‖Lp(2d+1Q\2dQ,ω) � 2−δdn/pd,

for d large enough, where the implicit constant is independent of d and Q.

Proof. Note that

‖{φt(x− y)}t>0‖Vρ � ‖{φt(x− y)}t>0‖V1 (19)

= sup
{tk}↓0

(
∑
k

∣∣∣
∫ tk

tk+1

∂
∂ t

(φt(x− y))dt
∣∣∣
)

�
∫ ∞

0

1

tn+1(1+ |x−y|
t )n+1

dt +
∫ ∞

0

|x− y|
tn+2(1+ |x−y|

t )n+2
dt

=
1

|x− y|n
(∫ ∞

0

tn−1

(1+ t)n+1dt +
∫ ∞

0

tn

(1+ t)n+2 dt
)

∼ |x− y|−n,
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and observe that the set F can be chosen so that

f (x) �
(∫

P
ω(x)dx

)−1/p
χP(x).

Then by Minkowski’s inequality,

Vρ((Φ� f )b)(x) �
∫

P
|b(x)−b(y)|‖{φt(x− y)}t>0‖Vρ dy

(∫
P

ω(x)dx
)−1/p

(20)

�
∫

P
|b(x)−b(y)||x− y|−ndy

(∫
P

ω(x)dx
)−1/p

�
∫

P
|〈b〉P −b(y)||x− y|−ndy

(∫
P

ω(x)dx
)−1/p

+ |b(x)−〈b〉P|
∫

P
|x− y|−ndy

(∫
P

ω(x)dx
)−1/p

.

For x ∈ 2d+1Q\ 2dQ and y ∈ P , since |x− y| ∼ 2dlQ and |Q| = |P| , we have
∫

P
|b(y)−〈b〉P||x− y|−ndy (21)

∼ 1
2dn|P|

∫
P
|b(y)−〈b〉P|dy � 2−dn‖b‖BMO(Rn).

To estimate ‖b(·)−〈b〉P‖Lp(2d+1Q\2dQ,ω) , let v be a positive constant independent of
Q satisfy 2Q ⊂ 2vP , by the Hölder inequality and reverse Hölder inequality, one can
compute that

(∫
2d+1Q\2dQ

|b(x)−〈b〉P|pω(x)dx
)1/p

(22)

�
(∫

2d+vP
|b(x)−〈b〉P|pω(x)dx

)1/p

� |2d+vP|1/p
( 1
|2d+vP|

∫
2d+vP

|b(x)−〈b〉P|p(1+ε)′
) 1

p(1+ε)′

×
( 1
|2d+vP|

∫
2d+vP

ω(x)1+εdx
) 1

p(1+ε)

� |2d+vP|1/p(d +‖b‖BMO(Rn))
( 1
|2d+vP|

∫
2d+vP

ω(x)dx
)1/p

� |2d+vP|1/pd
( 1
|2d+vP|

∫
2d+vP

ω(x)dx
)1/p

.

Therefore, by (20)–(22), we have

‖Vρ((Φ� f )b)‖Lp(2d+1Q\2dQ,ω)

� 2dn(1/p−1)d
( 1
|2d+vP|

∫
2d+vP

ω(x)dx
)1/p( 1

|P|
∫

P
ω(x)dx

)−1/p
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Since ω ∈ Ap , there is a δ > 0 such that ω ∈ Ap−δ . Then the doubling property of
Ap−δ yields that

( 1
|P|

∫
P

ω(x)dx
)−1/p

� 2−dn/p2dn(1−δ/p)
( 1
|2d+vP|

∫
2d+vP

ω(x)dx
)−1/p

.

We immediately have

‖Vρ((Φ� f )b)‖Lp(2d+1Q\2dQ,ω) � 2−δdn/pd. �

Now, we are in the position to prove Theorem 6.

Proof of Theorem 6. Assume that b ∈CMO(Rn) , we first show that Vρ((Φ� f )b)
is compact on Lp(ω) . According the definition of compact operator, we need to check
that

A(Vρ((Φ� f )b)) := {Vρ((Φ� f )b) : ‖ f‖Lp(ω) � 1}
is precompact. By Lemma 6, it suffices to verify A(Vρ((Φ � f )b)) is precompact for
b ∈ C∞

c (Rn) . Without loss of generality, we assume that b is supported in a cube Q
centered at the origin. Now, let us proceed a further reduction. Choose ϕ ∈ C∞

c (Rn)
supported on B(0,1) such that ϕ = 1 on B(0,1/2) and 0 � ϕ � 1, denote ϕδ (x) =
ϕ(x/δ ) with δ > 0. Define

V δ
ρ ((Φ� f )b)(x) = sup

{tk}↓0

(
∑
k

∣∣∣
∫

Rn
(φtk (x− y)−φtk+1(x− y))(1−ϕδ(x− y))

× (b(x)−b(y)) f (y)dy
∣∣∣ρ

)1/ρ
.

We claim that it suffices to check that

A(V δ
ρ ((Φ� f )b)) := {V δ

ρ ((Φ� f )b) : ‖ f‖Lp(ω) � 1}
is precompact.

Indeed, the sublinearity of variation operator, the Minkowski inequality, b∈C∞
c (Rn)

and (19) yield that

|Vρ((Φ� f )b)(x)−V δ
ρ ((Φ� f )b)(x)|

� sup
{tk}↓0

(
∑
k

∣∣∣
∫

Rn
(φtk (x− y)−φtk+1(x− y))ϕδ (x− y)(b(x)−b(y)) f (y)dy

∣∣∣ρ
)1/ρ

�
∫

Rn
‖{φt(x− y)}t>0‖Vρ |ϕδ (x− y)||b(x)−b(y)|| f (y)|dy

�
∫
|x−y|�δ

| f (y)|
|x− y|n−1 dy �

∞

∑
j=0

∫
2− j−1δ<|x−y|�2− jδ

| f (y)|
|x− y|n−1 dy � δM f (x).

Hence, by the Lp(ω)-boundedness of M ,

‖Vρ((Φ� f )b)−V δ
ρ ((Φ� f )b)‖Lp(ω)→Lp(ω) � δ ,
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which implies the claim by letting δ → 0.

Now, in the following, we prove that A(V δ
ρ ((Φ� f )b)) is a precompact set. Invok-

ing Lemma 4, we need to check that conditions (a)− (c) of Lemma 4 for A(Vρ((Φ �
f )b)) . It is easy to see that (a) of Lemma 4 holds by Lemma 6 and the Lp(ω)-
boundedness of M .

For x ∈ (2Q)c , recall that suppb ⊂ Q , make use of Minkowski’s inequality, (19)
and b ∈C∞

c (Rn) , we have

Vρ((Φ� f )b)(x)

= sup
{tk}↓0

(
∑
k

∣∣∣
∫

Rn
(φtk (x− y)−φtk+1(x− y))b(y)(1−ϕδ(x− y)) f (y)dy

∣∣∣ρ)1/ρ

� ‖b‖L∞(Rn)

∫
Q

| f (y)|
|x− y|n dy � |x|−n

∫
Q
| f (y)|dy

� |x|−n‖ f‖Lp(ω)

(∫
Q

ω(x)−p′/pdx
)1/p′

.

Choose N > 2, since ω ∈ Ap−ε for some ε > 0, using the doubling property of Ap−ε
and the definition of Ap , we have

(∫
(2NQ)c

Vρ((Φ� f )b)(x)pω(x)dx
)1/p

�
(∫

(2NQ)c
ω(x)|x|−npdx

)1/p(∫
Q

ω(x)−p′/pdx
)1/p′

�
( ∞

∑
d=N

∫
2d+1Q\2dQ

ω(x)|x|−npdx
)1/p(∫

Q
ω(x)−p′/pdx

)1/p′

�
( ∞

∑
d=N

ω(2d+1Q)2−dnp|Q|−p
)1/p(∫

Q
ω(x)−p′/pdx

)1/p′

�
( ∞

∑
d=N

2(d+1)(p−ε)n2−dnp
)1/p( 1

|Q|
∫

Q
ω(x)dx

)1/p( 1
|Q|

∫
Q

ω(x)−p′/pdx
)1/p′

� (2−Nnε)1/p,

which tends to 0 as N → ∞ . Hence, condition (b) of Lemma 4 holds.

Finally, let us check condition (c) of Lemma 4 holds. For |z| � δ/8, a careful
computation shows that

|Vρ((Φ� f )b)(x+ z)−Vρ((Φ� f )b)(x)| (23)

� sup
{tk}↓0

(
∑
k

∣∣∣
∫

Rn

[
(φtk (x+ z− y)−φtk+1(x+ z− y))(1−ϕδ(x+ z− y))

− (φtk(x− y)−φtk+1(x− y))(1−ϕδ(x− y))
]
(b(x+ z)−b(y)) f (y)dy

∣∣∣ρ
)1/ρ
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+ sup
{tk}↓0

(
∑
k

∣∣∣
∫

Rn
(φtk (x− y)−φtk+1(x− y))(1−ϕδ(x− y))

× (b(x+ z)−b(x)) f (y)dy
∣∣∣ρ

)1/ρ

=: I + II.

We first consider I . Note that

I � sup
{tk}↓0

(
∑
k

∣∣∣
∫

Rn

(∫ tk

tk+1

∂
∂ t

(φt (x+ z− y)−φt(x− y))dt
)
(1−ϕδ (x+ z− y))

× (b(x+ z)−b(y)) f (y)dy
∣∣∣ρ

)1/ρ

+ sup
{tk}↓0

(
∑
k

∣∣∣
∫

Rn

(∫ tk

tk+1

∂
∂ t

(φt (x− y))dt
)
(ϕδ (x− y)−ϕδ(x+ z− y))

× (b(x+ z)−b(y)) f (y)dy
∣∣∣ρ

)1/ρ

=: I1 + I2.

Observe that 1−ϕδ (x + z− y) vanishes when |x− y| � 3δ/8, thus, by b ∈ C∞
c (Rn) ,

Minkowski’s inequality, (14) and the mean value theorem with θ ∈ (0,1) , we deduce
that

I1 � ‖b‖L∞(Rn)

∫
|x−y|>3δ/8

‖{φt(x+ z− y)−φt(x− y)}t>0‖Vρ | f (y)|dy

�
∫
|x−y|>3δ/8

|z|
|(x− y)+ zθ |n+1 | f (y)|dy

� |z|
∫
|x−y|>3δ/8

| f (y)|
|x− y|n+1 | f (y)|dy

� |z|
∞

∑
j=0

1
(2 j3δ/8)n+1

∫
2 j3δ/8<|x−y|�2 j+13δ/8

| f (y)|dy � |z|
δ

M f (x).

For I2 , note that |ϕδ (x−y)−ϕδ (x+ z−y)| vanishes when |x−y|� 3δ/8 or |x−y|>
9δ/8. And by mean value theorem, for some θ ∈ (0,1) , we have

|ϕδ (x− y)−ϕδ(x+ z− y)|� |z|
δ

∣∣∣∇ϕ
((1−θ )x+ θ (x+ z)− y

δ

)∣∣∣.
Since

|∇ϕ(x)| � χ1/2�|x|�1(x)

and when 3δ/8 < |x− y|� 9δ/8 and |z| < δ/8,

|(1−θ )x+ θ (x+ z)− y|∼ |x− y|.
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It follows that

|ϕδ (x− y)−ϕδ(x+ z− y)|� |z|
|x− y| .

From this, again by b ∈C∞
c (Rn) , Minkowski’s inequality and (19), we get that

I2 � |z|
∫

3δ/8<|x−y|�9δ/8
‖{φt(x− y)}t>0‖Vρ |x− y|−1‖| f (y)|dy

� |z|
δ

∫
3δ/8<|x−y|�9δ/8

| f (y)|
|x− y|n dy � M f (x)

δ
.

Hence, we obtain

‖I‖Lp(ω) � ‖I1‖Lp(ω) +‖I2‖Lp(ω) � |z|
δ

. (24)

In the following, we deal with II . One can see that

II � |z| sup
δ>0

∥∥∥{
∫
|x−y|>δ

φt(x− y) f (y)dy}t>0

∥∥∥
Vρ

+ |z|
∫

δ/2<|x−y|�δ
‖{φt(x− y)}t>0‖Vρ | f (y)|dy

=: II1 + II2.

Now, we consider the operator:

T : L2(Rn) → L2
Vρ (Rn)

f → T f (x) :=
∫

Rn
φt (x− y) f (y)dy.

From Corollary 2, we know that T is bounded from L2(Rn) into L2
Vρ

(Rn) . Enjoy the
same estimate as (19) and (14), we can prove that

‖{φt(x− y)}t>0‖Vρ � |x− y|−n, x,y ∈ R
n,x �= y;

∥∥∥
{ ∂

∂x
(φt (x− y))

}
t>0

∥∥∥
Vρ

+
∥∥∥
{ ∂

∂y
(φt (x− y))

}
t>0

∥∥∥
Vρ

� |x− y|−n−1, x,y ∈ R
n, x �= y;

Hence, applying the vector-valued Calderón-Zygmund theory, we obtain that T is
bounded from Lp(ω) into Lp

Vρ
(ω) for ω ∈ Ap . Denote

T ∗ f (x) := sup
η>0

∥∥∥
{∫

|x−y|>η
φt(x− y) f (y)dy

}
t>0

∥∥∥
Vρ

,

then for any r > 1 and x ∈ Rn , T ∗ f (x) � M(‖T f (·)‖r
Vρ

)(x)1/r + M f (x) (see [14]),

which yields that T ∗ is bounded from Lp(ω) to Lp(ω) provided that ω ∈ Ap . Hence,

‖II1‖Lp(ω) � |z|.
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For II2 , by (19), we have

II2 � |z|
∫

δ/2<|x−y|�δ
|x− y|−n| f (y)|dy � |z|M f (x).

Combining with the estimate of II1 and II2 , we conclude that

‖II‖Lp(ω) � ‖II1‖Lp(ω) +‖II2‖Lp(ω) � |z|. (25)

Hence, by (24) and (25), we obtain

‖V δ
ρ ((Φ� f )b)(·+ z)−V δ

ρ ((Φ� f )b)(·)‖Lp(ω) → 0,

as |z| → 0, uniformly for all f with ‖ f‖Lp(ω) � 1. This completes the proof of the
sufficiency of Theorem 6. �

While to prove the necessity of Theorem 6, we use Lemmas 5–8, then the con-
clusion follows by the standard steps in [26, Theorem 1.4], we omit the details. This
completes th proof of Theorem 6. �
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[30] T. P. HYTÖNEN AND C. PÉREZ, Sharp weighted bounds involving A∞ , Anal. PDE, 6, 4 (2013),
777–818.

[31] R. L. JONES, Ergodic theory and connections with analysis and probability, New York J. Math., 3A
(1997), 31–67.

[32] R. L. JONES, Variation inequalities for singular integrals and related operators, Contemp. Math.,
411, (2006), 89–122.

[33] R. L. JONES AND K. REINHOLD, Oscillation and variation inequalities for convolution powers, Er-
godic Theory Dynam. Systems., 21, 6 (2001), 1809–1829.
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163–171.

[45] H. WU AND D. YANG, Charcterizations of weighted compactness of commutators via CMO(Rn) ,
Proc. Amer. Math. Soc., 146, 10 (2018), 4239–4254.

[46] K. YABUTA, Sharp maximal function and Cp condition, Arch. Math., 55, (1990), 151–155.

(Received October 5, 2020) Yongming Wen
School of Mathematics and Statistics

Minnan Normal University
Zhangzhou 363000, P. R. China

e-mail: wenyongmingxmu@163.com

Quanqing Fang
Department of Mathematics

Putian University
Putian 361005, P. R. China

e-mail: quanqingfang@163.com

Xianming Hou
School of Mathematics and Statistics

LinYi University
LinYi 276005, P. R. China

e-mail: houxianming37@163.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


