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INHOMOGENEOUS LIPSCHITZ SPACES ASSOCIATED WITH

FLAG SINGULAR INTEGRALS AND THEIR APPLICATIONS

SHAOYONG HE ∗ AND JIECHENG CHEN

(Communicated by J. Soria)

Abstract. This note is motivated by Müller, Ricci and Stein’s work in [29]. We introduce a new
class of inhomogeneous Lipschitz spaces associated with flag singular integrals and characterize
these spaces via the Littlewood-Paley theory. We prove that inhomogeneous flag singular integral
operators are bounded on these Lipschitz spaces.

1. Introduction

The classical singular integral operators are extension of the Hilbert transform,
which have singularity at the origin only. The nature of this singularity leads to the
invariance of these singular integral operators under the classical dilations on Rn given
by δx = (δx1, . . . ,δxn) for δ > 0. On the other hand, the Calderón-Zygmund product
theory of singular integral operators on Rn is concerned with those singular integral
operators which are invariant under the n -fold dilations: δx = (δ1x1,δ2x2, . . . ,δnxn) ,
δ j > 0 for 1 � j � n . The product theory of Rn began with the strong maximal function
studied by Zygmund, then continued with the Marcinkiewicz multiplier theorem, and
more recently has been studied in a variety of directions, for instance, product singular
integrals and Hardy and BMO spaces studied by Chang, R. Fefferman, Gundy, Journé,
Pipher and Stein et al. (see [1, 2, 3, 7, 8, 9, 11, 15, 16, 27, 34] among others).

To be more precise, R. Fefferman and Stein [11] proved the Lp(Rn+m) bound-
edness of the product convolution operators for 1 < p < ∞ . Chang and R. Fefferman
[1, 2, 3] developed a nice theory of multi-parameter Hardy spaces initially introduced
by Gundy and Stein [15], including the atomic decompositions and their dual spaces,
namely the product Carleson measure spaces. Subsequently, Jourńe [27] introduced
product non-convolution operators and showed an L2(Rn+m) boundedness criterion,
the T1 theorem, for the product non-convolution operators, and many works on the
Lp , 1 < p < ∞ , boundedness and Hp boundedness for operators in Journé’s class were
investigated [9, 19, 34]. By the atomic decomposition of Hp(Rn ×Rm) and a geomet-
ric covering lemma in [27], R. Fefferman in [9] proved the Hp(Rn×Rm) to Lp(Rn+m)
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boundedness of Journé product singular integrals. As mentioned by Journé, this method
of R. Fefferman in two parameter case breaks down in the setting of three or more pa-
rameters. To this end, Pipher [34] proved a Journé type covering lemma in higher
dimensions and demonstrated the Hp(Rn1 ×·· ·Rnk) to Lp(Rn1 ×·· ·Rnk) boundedness
for singular integral operators in Journé class by considering directly their actions on
the atoms supported in arbitrary open sets. In addition, Han et al. [19] obtained the nec-
essary and sufficient conditions for the Hp(Rn×Rm) boundedness of Journé’s product
singular integrals. We would like to mention that Ricci and Stein also considered the
product theory associated with the Zygmund dilations in [35] and see also [10, 20].

A new extension of the multi-parameter analysis came to light with the proof by
Müller, Ricci and Stein [29, 30] for the Lp boundedness, 1 < p < ∞ , of Marcinkiewicz
multipliers on the Heisenberg group Hn . This is surprising since these multipliers are
invariant under a two parameter group of dilations on Cn ×R , which do not reflect
any two-parameter group of automorphic dilations on Hn . Moreover, they proved that
the Marcinkiewicz multipliers can be characterized by the convolution operator of the
form f ∗K , where K is a flag convolution kernel. See Nagel, Ricci and Stein [31] for
flag singular integrals on the Euclidean space and applications on certain quadratic CR
submanifolds of Cn . Nagel, Ricci, Stein and Wainger [32, 33] generalized the theory
of singular integrals with flag kernels to a more general setting, namely, homogeneous
group. They proved that on a homogeneous group singular integral operators with flag
kernels are bounded on Lp , 1 < p < ∞ , and form an algebra.

At the extreme values of p , p = 1,∞, it is natural to hope that certain Hardy space
and BMO bounds are available. However, the flag singular integrals are not invariant
under the n -fold dilations mentioned above, but satisfy instead an implicit multiparam-
eter structure. In [22] Han, Lu and Sawyer developed a theory of the flag Hardy spaces
Hp

f lag (0 < p � 1) on the Heisenberg group Hn via the discrete Littlewood-Paley
square function, and proved that singular integrals with flag kernels, which include
the aforementioned Marcinkiewicz multipliers, are bounded on Hp

f lag(H
n) , as well as

from Hp
f lag(H

n) to Lp(Hn) . More recently, Han, Lee and Li et al. [18] developed var-
ious characterizations of the Hardy spaces in the multi-parameter flag setting. At the
endpoint case of p = ∞, Han, Han, Li and Tan [17] constructed flag Lipschitz spaces on
Heisenberg groups and prove that Marcinkiewicz multipliers are bounded on them. For
other results associated with flag kernels, we refer the reader to [4, 6, 21, 24, 26, 38],
among others.

On the other hand, it is well-known that for the one-parameter setting, the classical
Hardy spaces Hp(Rn) (0 < p � 1) are well suited for the applications to PDEs with
constant coefficients. However, the Hardy spaces Hp(Rn) (0 < p � 1) are not stable
under multiplication by test functions and thus it is not well played when it comes to
PDEs with variable coefficients. To overcome those drawbacks, Goldberg [14] intro-
duced the class of inhomogeneous Hardy spaces hp(Rn) for 0 < p � 1, namely, local
Hardy spaces. Moreover, he showed that a class of inhomogeneous Calderón-Zygmund
operators with a mild additional size condition are bounded on them.

Motivated by those works, in this article, we first introduced a class of inhomoge-
neous flag singular integral kernel K(x,y) on Rn1 ×Rn2 . Similar to [29], these flag ker-
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nels can be obtained trough a projection of a inhomogeneous product kernel K�(x,y,z)
on Rn1+n2 ×Rn2 . To do this, we begin with recalling the definitions of a class of in-
homogeneous distributions on Euclidean space RN . Following closely from [31], a
k -normalized bump function on a space RN is a Ck function supported on the unit ball
with Ck norm bounded by 1. However, the definitions given below are independent of
the choice of k � 1, and thus we usually speak of normalized bump functions rather
than k -normalized bump functions.

For the sake of simplicity of presentations, we will restrict our considerations to
the case RN := Rn1+n2 ×Rn2 .

DEFINITION 1. A inhomogeneous product kernel on RN is a distribution K on
RN which coincides with a C∞ function away from the coordinate subspace x j = 0 for
j = 1,2,3 and which satisfies:

(1) (Differential Inequalities) For each multi-indices α = (α1, · · · ,αn1) , β = (β1,
· · · ,βn2),γ = (γ1, · · · ,γn2) , there exists a δ > 0 such that

|K (x1,x2,x3)| � Cmin
{
(|x1|+ |x2|)−n1−n2 ,(|x1|+ |x2|)−n1−n2−δ }
min

{|x3|−n2 , |x3|−n2−δ }
;

|∂ α
x1

∂ β
x2

K (x1,x2,x3)| � C(|x1|+ |x2|)−n1−n2−|α |−|β |min
{|x3|−n2 , |x3|−n2−δ}

;

|∂ γ
x3

K (x1,x2,x3)| � Cmin
{
(|x1|+ |x2|)−n1−n2 ,(|x1|+ |x2|)−n1−n2−δ }|x3|−n2−|γ|;

|∂ α
x1

∂ β
x2

∂ γ
x3

K (x1,x2,x3)| � C(|x1|+ |x2|)−n1−n2−|α |−|β ||x3|−n2−|γ|. (1)

(2) (Cancellation Condition)
(i) For each multi-indices α , β and any given normalized bump function ϕ on

Rn2 and any r > 0, there exists a δ > 0 so that

|
∫

Rn
2

K (x1,x2,x3)ϕ(rx3)dx3| �Cmin
{
(|x1|+ |x2|)−n1−n2 ,(|x1|+ |x2|)−n1−n2−δ}

(2)

and

|
∫

Rn
2

∂ α
x1

∂ β
x2

K (x1,x2,x3)ϕ(rx3)dx3| � C(|x1|+ |x2|)−n1−n2−|α |−|β |. (3)

(ii) For each multi-index γ and any given normalized bump function ϕ on Rn1+n2

and any r > 0, there exists a δ > 0 so that

|
∫

Rn1+n2
K (x1,x2,x3)ϕ(rx1,rx2)dx1dx2| � Cmin

{|x3|−n2 , |x3|−n2−δ }
(4)

and

|
∫

Rn1+n2
∂ γ

x3
K (x1,x2,x3)ϕ(rx1,rx2)dx1dx2| � C|x3|−m−|γ|. (5)

(iii) For any given normalized bump function ϕ on Rn1+n2 ×Rn2 and any r1,r2 >
0, we have

|
∫

Rn1+n2×Rn2
K (x1,x2,x3)ϕ(r1x1,r1x2,r2x3)dx1dx2dx3| � C. (6)
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Moreover, the corresponding constants that appear in these differential inequalities are
independent of the scaling parameters and depend only on α,β ,γ and δ .

We will rephrase Definition 2.3.2 in [31] of a flag kernel in the inhomogeneous case as
follows.

DEFINITION 2. A inhomogeneous flag kernel on Rn1 ×Rn2 is a distribution K
on Rn1+n2 which coincides with a C∞ function away from the coordinate subspace
x1 = 0 and which satisfies:

(1) (Differential Inequalities) For each multi-indices α = (α1, · · · ,αn1) , β = (β1,
· · · ,βn2), there exists a regularity exponent δ > 0 such that

|K (x1,x2)| � Cmin
{|x1|−n1 , |x1|−n1−δ }

min
{
(|x1|+ |x2|)−n2 ,(|x1|+ |x2|)−n2−δ }

;

|∂ α
x1

K (x1,x2)| � C|x1|−n1−|α |min
{
(|x1|+ |x2|)−n2 ,(|x1|+ |x2|)−n2−δ }

;

|∂ β
x2

K (x1,x2)| � Cmin
{|x1|−n1 , |x1|−n1−δ }

(|x1|+ |x2|)−n2−|β |;

|∂ α
x1

∂ β
x2

K (x1,x2,x3)| � C|x1|−n1−|α |(|x1|+ |x2|)−n2−|β |. (7)

(2) (Cancellation Condition)
(i) For every multi-index α and any given normalized bump function ϕ on Rm

and any r > 0, there exists a δ > 0 such that

|
∫

Rn2
K (x1,x2)ϕ(rx2)dx2| � Cmin

{|x1|−n1 , |x1|−n1−δ }
(8)

and
|
∫

Rn2
∂ α

x1
K (x1,x2)ϕ(rx2)dx2| � C|x1|−n1−|α |. (9)

(ii) For every multi-index β and any given normalized bump function ϕ on Rn

and any r > 0, there exists a δ > 0 such that

|
∫

Rn1
K (x1,x2)ϕ(rx1)dx1| � Cmin

{|x2|−n2 , |x2|−n2−δ }
(10)

and
|
∫

Rn1
∂ β

x2
K (x1,x2)ϕ(rx1)dx1| � C|x2|−n2−|β |. (11)

(iii) For any given normalized bump function ϕ on Rn1+n2 and any r1,r2 > 0, we
have

|
∫

Rn1+n2
K (x1,x2)ϕ(r1x1,r2x2)dx1dx2| � C. (12)

As mentioned by Nagel, Ricci, and Stein in [31], the bump functions in Definitions 1
and 2 (2)-(iii) can be replaced by the tensor product of normalized bump functions on
Rn1+n2 and Rn2 .

The following theorem is similar to Proposition 3.2 and Lemma 4.5 in [29], which
reveals the relation between the inhomogeneous product kernel and the inhomogeneous
flag kernel.
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THEOREM 1. Let K � be an integrable function on Rn1+n2 ×Rn2 and which is a
inhomogeneous product kernel as in Definition 1. Then the function

K (x1,x2) =
∫

Rn2
K �(x1,x2 − x3,x3)dx3 (13)

satisfies (7)–(12) with constants that depend only the constants in (1)–(6) and not on
the L1 -norm of K � .

Conversely, given K ∈ L1(Rn1+n2) satisfies (7)–(12), define

K �(x1,x2,x3) =
1

|x1|n2
χ

(
x2

|x1|
)

K (x1,x2 + x3),

where χ is a non-negative smooth function supported on [1/2,1]n2 such that
∫

χ = 1 .
Then K � is an integrable function on Rn+m ×Rn2 such that (13) holds and satisfies
(1)–(6).

Note that convolution with a inhomogeneous flag singular kernel is a special case
of product singular kernel. As a consequence, the Lp , 1 < p < ∞ , boundedness of
inhomogeneous flag singular integrals follows directly from the product theory on
Rn1 ×Rn2 . A basic question arises: Can one establish the endpoint estimates of in-
homogeneous flag singular integral operators on Lipschitz spaces? The goal of this
note is address this question. To be more precise, we will establish a theory of the inho-
mogeneous flag Lipschitz spaces on Rn1 ×Rn2 , that is, in a sense, intermediate between
those of the classical Lipschitz spaces on Rn1+n2 and the product Lipschitz spaces on
Rn1 ×Rn2 . For more about the classical Lipschitz spaces and multi-parameter Lipschitz
spaces, see [5, 17, 23, 25, 37, 39].

We will characterize the inhomogeneous flag Lipschitz spaces via the Littlewood-
Paley theory and prove that the inhomogeneous flag singular integral operators are
bounded on these Lipschitz spaces.

Now we introduce the following notation:

Δ1
(u,v) f (x1,x2) = f (x1 −u,x2− v)− f (x1,x2),

Δ1,Z
(u,v) f (x1,x2) = f (x1 +u,x2 + v)−2 f (x1,x2)+ f (x1−u,x2− v),

and

Δ2
w f (x1,x2) = f (x1,x2−w)− f (x1,x2),

Δ2,Z
w f (x1,x2) = f (x1,x2 +w)−2 f (x1,x2)+ f (x1,x2−w).

The inhomogeneous flag Lipschitz space is defined as follows.

DEFINITION 3. Let α = (α1,α2) with α1,α2 > 0. The inhomogeneousflag Lips-
chitz space Lipα

flag is defined to be the set of all bounded continuous functions f defined
on Rn1+n2 such that
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(i) when 0 < α1,α2 < 1,

‖ f‖Lipα
flag

:= ‖ f‖∞ + sup
(u,v) �=0

|Δ1
(u,v) f |

|(u,v)|α1
+ sup

w �=0

|Δ2
w f |

|w|α2
+ sup

(u,v),w �=0

|Δ2
wΔ1

(u,v) f |
|(u,v)|α1 |w|α2

< ∞,

where |(u,v)|2 = (|u|2 + |v|2) 1
2 .

(ii) when α1 = 1,0 < α2 < 1,

‖ f‖Lipα
flag

:= ‖ f‖∞ + sup
(u,v) �=0

|Δ1,Z
(u,v) f |

|(u,v)| + sup
w �=0

|Δ2
w f |

|w|α2
+ sup

(u,v),w �=0

|Δ2
wΔ1,Z

(u,v) f |
|(u,v)||w|α2

< ∞;

(iii) when 0 < α1 < 1,α2 = 1,

‖ f‖Lipα
flag

:= ‖ f‖∞ + sup
(u,v) �=0

|Δ1
(u,v) f |

|(u,v)|α1
+ sup

w �=0

|Δ2,Z
w f |
|w| + sup

(u,v),w �=0

|Δ2,Z
w Δ1

(u,v) f |
|(u,v)|α1 |w| ;

(iv) when α1 = α2 = 1,

‖ f‖Lipα
flag

:= ‖ f‖∞ + sup
(u,v) �=0

|Δ1,Z
(u,v) f |

|(u,v)| + sup
w �=0

|Δ2,Z
w f |
|w| + sup

(u,v),w �=0

|Δ2,Z
w Δ1,Z

(u,v) f |
|(u,v)||w| .

When α = (α1,α2) with α1,α2 > 1, we write α1 = m1 + r1 and α2 = m2 + r2

where m1,m2 are integers and 0 < r1,r2 � 1 . Then f ∈ Lipα
flag means that all partial

derivatives ∂ β1
x1 ∂ β2

x2 f (x1,x2) with |β1| = m1 , |β2| = m2 , such that ∂ β1
x1 ∂ β2

x2 f belongs to
Lipr

flag with r = (r1,r2) and

‖ f‖Lipα
flag(α1,α2) := ∑

|β1|=m1,|β2|=m2

‖∂ β1
x1

∂ β2
x2

f‖Lipr
flag

.

In order to establish the boundedness of inhomogeneousflag singular integral operators
on the inhomogeneous flag Lipschitz space Lipα

flag , we will characterize Lipα
flag via the

Littlewood-Paley theory. For this purpose, we adapt some notations. Given a function
ϕ on Rn , denote

Mϕ = max{N ∈ N :
∫

Rn
ϕ(x)xαdx = 0, |α| � N},

where N denotes the class of all natural integrals, that is, N = {0,1,2, · · ·}. In what fol-
lows, we use D(Rn) to denote the set of all smooth functions with compact support on
Rn. We begin by recalling the standard local Calderón reproducing formula on Rn1+n2 .

THEOREM A. ([36]) Let a radial function ϕ(1)
0 ∈ D(Rn1+n2) satisfy

∫
ϕ(1)

0 = 1 ,

and let ϕ(1)(x) = ϕ(1)
0 (x)−2−(n1+n2)ϕ(1)

0 ( x
2). Then for any given integer M � 0 there

exist two real even functions ψ(1)
0 , ψ(1) ∈ D(Rn1+n2) with Mψ(1) � M, such that

f (x) =
∞

∑
j=0

ψ(1)
j ∗ϕ(1)

j ∗ f (x), (14)



INHOMOGENEOUS LIPSCHITZ SPACES 971

where ψ(1)
j (x) = 2 j(n1+n2)ψ(1)(2 jx) , ϕ(1)

j (x) = 2 j(n1+n2)ϕ(1)(2 jx) for j � 1 , and the

series converges in L2(Rn1+n2) , S (Rn1+n2) and S ′(Rn1+n2).

It was pointed by Rychkov [36] that for any positive integer m , the function ϕ(1)

in Theorem A can be chosen so that Mϕ(1) � m. We now hope to extend this formula

to encompass the flag structure. Let a radial function ϕ(2)
0 ∈ D(Rn2) satisfy

∫
ϕ(2)

0 = 1

and let ϕ(2)(x2) = ϕ(1)
0 (x2)−2−n2ϕ(2)

0 ( x2
2 ) . Then for any M � 0 there exist two even

functions ψ(2)
0 , ψ(2) ∈ D(Rn2) such that Mψ(2) � M, and

ϕ(2)
0 (ξ2)ψ

(2)
0 (ξ2)+

∞

∑
k=1

ϕ(2)(2−kξ2)ψ(2)(2−kξ2) = 1.

Thus, we have the following local Calderón reproducing formula on L2(Rn1+n2) : for
f ∈ L2(Rn1+n2) ,

f (x) =
∞

∑
j,k=0

ψ j,k ∗ϕ j,k ∗ f (x), f ∈ L2(Rn1+n2),

where the functions ψ j,k are given by the partial convolution ∗2 in the second variable
only,

ψ j,k(x1,x2) =
∫

Rn2
ψ(1)

j (x1,x2− v)ψ(2)
k (v)dv,

where ψ j is ψ0 if j = 0, otherwise the dilations of ψ . ϕ j,k is constructed similarly.
Observe that the series converges in L2(Rn1+n2) . Indeed,

ψ j,k ∗ϕ j,k ∗ f (x) = (ψ(1)
j ∗2 ψ(2)

k )∗ (ϕ(1)
j ∗2 ϕ(2)

k )∗ f (x)

= (ψ(1)
j ∗ϕ(1)

j )∗ (
(ψ(2)

k ∗ϕ(2)
k )∗2 f (x)

)
implies (15) upon invoking the standard local Calderón reproducing formula on Rn2

and then Theorem A on Rn1+n2 .
Noting that ϕ j,k = ϕ(1)

j ∗2 ϕ(2)
k ∈S (Rn1+n2) , we will prove that the local Calderón

reproducing formula (15) also converges in both test function spaces S (Rn1+n2) and
distribution space S ′(Rn1+n2) as follows.

THEOREM 2. Assume that the functions ψ j,k and ϕ j,k are defined above. Then

f (x) =
∞

∑
j,k=0

ψ j,k ∗ϕ j,k ∗ f (x), (15)

where the series converges in S (Rn1+n2) and S ′(Rn1+n2) .

We characterize the inhomogeneousflag Lipschitz space by the following theorem.
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THEOREM 3. f ∈Lipα
flag with α = (α1,α2) , α1,α2 > 0 if and only if f ∈S ′(Rn1+n2)

and

‖ϕ j,k ∗ f‖L∞(Rn1×Rn2 ) � C2− jα12−kα2 .

Moreover,

‖ f‖Lipα
flag

≈ sup
j,k�0

2 jα12kα2‖ϕ j,k ∗ f‖L∞(Rn1×Rn2 ).

It was well known that in the classical one-parameter case, the space BMO, as
the dual of H1 , can be characterized by the Carleson measure. Moreover, Chang
and Fefferman in [1] proved that the dual of the product H1 is characterized by the
product Carleson measure. The generalized Carleson measure space CMOp

f lag associ-
ated with the flag singular integrals was first introduced by Han, Lu and Sawyer [22].
They showed that the dual of the flag Hardy space Hp

f lag is CMOp
f lag . In particular,

CMO1
f lag = BMO1

f lag . Following the idea employed in [22], we introduce the local flag
Carleson measure space cmop

f lag which is defined as the set of f ∈ S ′(Rn1+n2) such
that

sup
Ω

{
1

|Ω| 2
p−1 ∑

j,k�0

∫
Ω

∑
I,J:I×J⊆Ω

|ϕ j,k ∗ f (x1,x2)|2χI(x1)χJ(x2)dx1dx2

} 1
2

< ∞

for all open sets Ω in Rn1 ×Rn2 with finite measures, and I ⊂ Rn1 , J ⊂ Rn2 , are
dyadic cubes with side-length �(I) = 2− j and �(J) = 2−( j∧k) respectively, and where
ϕ j,k are the same as Theorem 3. As mentioned in [22], we denote bmo f lag by the
space cmo1

f lag. Observe that if f ∈ Lipα
flag with α = (α1,α2) , by Theorem 3, we have

|ϕ j,k ∗ f | � C2− jα12−kα2 . Then

1
|Ω| ∑

j,k�0

∫
Ω

∑
I,J:I×J⊆Ω

|ϕ j,k ∗ f (x1,x2)|2χI(x1)χJ(x2)dx1dx2

� C
1
|Ω| ∑

j,k�0

2−2 jα12−2kα2

∫
Ω

∑
I,J:I×J⊆Ω

χI(x1)χJ(x2)dx1dx2 < ∞,

which means that f ∈ bmo f lag .
Our last main result of this paper is the following theorem.

THEOREM 4. The inhomogeneous flag singular integral operator T is bounded
on Lipα

flag with α = (α1,α2) , α1,α2 > 0 . Furthermore,

‖T f‖Lipα
flag

� C‖ f‖Lipα
flag

.

This paper is organized as follows. In the next section, we will give the proof
of Theorem 1. Theorem 2 will be proved in Section 3. Section 4 is devoted to the
Littlewood-Paley characterization of inhomogeneous flag Lipschitz space. In the last



INHOMOGENEOUS LIPSCHITZ SPACES 973

section, as an application, we prove the boundedness of singular integral operators on
these spaces.

Throughout this paper, the letter C stands for a positive constant which is inde-
pendent of the essential variables, but whose value may vary from line to line. We
use the notation A ≈ B to denote that there exists a positive constant C such that
C−1B � A � CB . Let j∧ j′ be the minimum of j and j′ .

2. Proof of Theorem 1

The main purpose of this section is to show the relation the inhomogeneous prod-
uct kernel and the inhomogeneous flag kernel. One one hand, we first show that if K�

is a inhomogeneous product kernel on Rn1×n2 ×Rn3 , then the function

K(x1,x2) =
∫

Rn2
K�(x1,x2− x3,x3)dx3

satisfies (7)–(12). To simplify the notation, we take α = β = 0. The extension to the
general case does not present any difficulty.

We prove (7) first. We only verify it for |x1|> 1. If |x1|< 1, the proof below needs
a slight modification, but is even more simple. Let ϕ be a normalized bump function
on Rn3 , supported on the unit ball and identically equal to 1 for |x3| � 1/2. Then

K(x1,x2) =
∫

Rn2
K�(x1,x2 − x3,x3)dx3

=
∫

Rn2
[K�(x1,x2− x3,x3)−K�(x1,x2,x3)]ϕ(x3)dx3

+
∫

Rn2
K�(x1,x2,x3)ϕ(x3)dx3 +

∫
Rn2

K�(x1,x2− x3,x3)(1−ϕ(x3))dx3

= I1 + I2 + I3.

For I1 we use the mean value theorem to obtain

|I1| = |
∫

Rn2
[K�(x1,x2− x3,x3)−K�(x1,x2,x3)]ϕ(x3)dx3|

� C
∫
|x3|�1

(|x1|+ |x2−θx3|)−n1−n2−1dx3

� C(|x1|+ |x2|)−n1−n2−1.

By (2), |I2| � C(|x1|+ |x2|)−n1−n2−δ . Finally,

|I3| � |
∫
|x3|�1/2

|K�(x1,x2− x3,x3)|dx3

� C
∫
|x3|�1/2

(|x1|+ |x2− x3|)−n1−n2−δ |x3|−n2−δ dx3

� C|x1|−n1−δ1(|x1|+ |x2|)−n2−δ2
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with δ1 + δ2 = δ .
Next we prove (10). Then∫

Rn2
K(x1,x2)ϕ(rx2)dx2 =

∫
Rn2

∫
Rn2

K�(x1,x2 − x3,x3)ϕ(rx2)dx3dx2

=
∫

Rn2

∫
Rn2

K�(x1,x2,x3)ϕ(r(x2 + x3))dx3dx2.

Integrating in du first, we observe that, for each fixed x2 , ϕ(r(x2 +x3)) is the translate
of a normalized bump function scaled by r . Hence

|
∫

Rn2
K(x1,x2)ϕ(rx2)dx2| � C

∫
Rn2

min{(|x1|+ |x2|)−n1−n2 ,(|x1|+ |x2|)−n1−n2−δ}dx2

� Cmin{|x1|−n1 , |x1|−n1−δ}.
We prove now (11). It suffices for us to check the case where |x2| > 1. Since

|x2| � 1, it has been proved

|
∫

Rn1
K(x1,x2)ϕ(rx1)dx1| � C|x2|−n2 .

We take a normalized bump function η on Rn2 , supported on {|x| : |x| � 1/2} , identi-
cally equal to 1 on {|x| : |x| � 1/4} , and write∫

Rn1
K(x1,x2)ϕ(rx1)dx1

=
∫

Rn1

∫
Rn2

[K�(x1,x3,x2− x3)−K�(x1,x3,x2)]ϕ(rx1)η
(

x3

|x2|
)

dx1dx3

+
∫

Rn1

∫
Rn2

K�(x1,x3,x2)ϕ(rx1)η
(

x3

|x2|
)

dx1dx3

+
∫

Rn1

∫
Rn2

K�(x1,x3,x2 − x3)ϕ(rx1)
(

1−η
(

x3

|x2|
))

dx1dx3

= I1 + I2 + I3.

Since |x3| � 1/2|x2| in I1, we have

|I1| � C
∫
|x3|� 1

2 |x2|

∫
Rn1

min{(|x1|+|x3|)−n1−n2 ,(|x1|+|x3|)−n1−n2−δ}|x2|−n2−1|x3|dx1dx3

� Cmin{|x2|−n2 , |x2|−n2−δ ′ } for some δ ′ > 0.

For I2 we distinguish between the two cases r � 1 and r > 1. If r > 1, we take a
normalized bump function η̃ on Rn2 , supported on {|x| : |x| � 1} , identically equal to
1 on {|x| : |x| � 1/2} . Then

I2 =
∫

Rn1

∫
Rn2

K�(x1,x3,x2)ϕ(rx1)η
(

x3

|x2|
)

η̃(x3)dx1dx3

+
∫

Rn1

∫
Rn2

K�(x1,x3,x2)ϕ(rx1)η
(

x3

|x2|
)

(1− η̃(x3))dx1dx3

= I21 + I22.
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Since ϕ(rx1)η( x3
|x2| )η̃(x3) is a normalized bump function, (4) implies that

|I21| � Cmin{|x2|−n2 , |x2|−n2−δ}.
Also,

|I22| � C
∫
|x3|�1/2

∫
|x1|�1/r

1

(|x1|+ |x3|)n1+n2+δ min{|x2|−n2 , |x2|−n2−δ}dx1dx3

� Cmin{|x2|−n2 , |x2|−n2−δ}.
If r � 1, we take another normalized bump function ϕ̃ on Rn1 , supported on

{|x| : |x| � 1} , identically equal to 1 on {|x| : |x| � 1/2} , and write

I2 =
∫

Rn1

∫
Rn2

K�(x1,x3,x2)ϕ(rx1)ϕ̃(x1/|x2|)η
(

x3

|x2|
)

dx1dx3

+
∫

Rn1

∫
Rn2

K�(x1,x3,x2)ϕ(rx1)(1− ϕ̃(x1/|x2|))η
(

x3

|x2|
)

dx1dx3.

Then I2 can be estimated as in the previous case.
In order to deal with I3 , we need a normalized bump function λ on Rn1 , supported

on {|x| : |x| � 1/2} , identically equal to 1 on {|x| : |x| � 1/4} . Then

I3 =
∫

Rn1

∫
Rn2

[K�(x1,x3,x2− x3)−K�(x1,x2,x2 − x3)]ϕ(rx1)

×
(

1−η
(

x3

|x2|
))

λ
(

x2 − x3

|x2|
)

dx1dx3

+
∫

Rn1

∫
Rn2

K�(x1,x2,x2− x3)ϕ(rx1)
(

1−η
(

x3

|x2|
))

λ
(

x2− x3

|x2|
)

dx1dx3

+
∫

Rn1

∫
Rn2

K�(x1,x3,x2− x3)ϕ(rx1)

×
(

1−η
(

x3

|x2|
))(

1−λ
(

x2− x3

|x2|
))

dx1dx3

= I31 + I32 + I33.

Then

|I31| � C
∫
|x2−x3|� |x2|

2

∫
Rn1

1
(|x1|+ |x2|)n1+n2+1 |x2− x3|

×min

{
1

|x2− x3|n2
,

1

|x2 − x3|n2+δ

}
dx1dx3

� Cmin{|x2|−n2 , |x2|−n2−δ ′ }
for some δ > 0. Since (1−η(x3))λ (x2 − x3) is the translate of a normalized bump
function for every x2 , we obtain from (2)

|I32| � C
∫

Rn1
min

{
1

(|x1|+ |x2|)n1+n2
,

1

(|x1|+ |x2|)n1+n2+δ

}
dx1

� Cmin{|x2|−n2 , |x2|−n2−δ}.
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Finally,

|I33| � C
∫
|x3|� |x2|

4 ,|x2−x3|� |x2|
4

min

{
1

|x3|n2
,

1

|x3|n2+δ

}
min

{
1

|x2− x3|n2
,

1

|x2− x3|n2+δ

}
� Cmin{|x2|−n2 , |x2|−n2−δ}.

The cancellation condition of (12) follows from Proposition 3.2 in [29] on Heisenberg
group.

We now prove the converse implication of Theorem1. Suppose that K ∈L1(Rn+m)
satisfies (7)–(12). To begin with,

∫
Rn2

K �(x1,x2− x3,x3)dx3 =
∫

Rn2

1
|x1|n2

χ
(

x2− x3

|x1|
)

K (x1,x2)dx3

= K (x1,x2).

Noting the support of K� and using (7), we have

|K �(x1,x2,x3)|

� C|x1|−n2 min

{
1

|x1|n1
,

1

|x1|n1+δ

}
min

{
1

(|x1|+ |x2 + x3|)n2
,

1

(|x1|+ |x2 + x3|)n2+δ

}

� Cmin

{
1

(|x1|+ |x2|)n1+n2
,

1

(|x1|+ |x2|)n1+n2+δ

}
min

{
1

|x3|n2
,

1

|x3|n2+δ

}
,

since |x3| � |x2|+ |x2 + x3| � C(|x1|+ |x2 + x3|) . The other estimates in (1) can be
obtained similarly. The proof of the cancellation conditions (2)–(6) is very similar to
Lemma 4.5 in [29]. We leave the details to the reader. Hence, the proof of Theorem 1
is concluded.

3. Proof of Theorem 2

In order to prove that the local Calderón reproducing formula (15) converges in
both test function space and distribution space, we recall the following well-known
one-parameter almost orthogonality estimates (see, for example, [12, 13]). From now
on, we use the notation j∧ k = min{ j,k} . For some positive integer N � 1, set

SN(Rn) =
{

φ ∈ S (Rn) :
∫

Rn
φ(x)xα dx = 0, |α| � N−1

}
.

LEMMA 1. Let ψ , ϕ ∈ S (Rn) and j,k ∈ Z , j � k . If ϕ ∈ SN(Rn) , then for
any given positive integer L, there exists a constant C depending only ψ ,ϕ ,n,N and
L so that

|ψ j ∗ϕk(x)| � C2−(k− j)N 2− jL

(2− j + |x|)n+L .
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To show Theorem 2, we only need to prove that the series in (15) in S (Rn1+n2) if
f ∈S (Rn1+n2) . The convergence in S ′(Rn1+n2) then follows from a standard duality
argument. The key for doing this is the almost orthogonal estimates: for any given
positive integers L,N and f ∈ S (Rn1+n2) , there exists a constant C > 0 independent
of j and k such that

|ϕ j,k ∗ f (x)| � C2− jN2−kN 1
(1+ |x|)L . (16)

Assume that (16) holds for the moment. Given any positive integers M1 , M2 and
denoting E = { j,k ∈ N : 0 � j � M1,0 � k � M2} , by (16),

∑
j,k∈Ec

∣∣∫ ϕ j,k ∗ f (y)(Dα ψ j,k)(x− y)dy
∣∣

� C ∑
j,k∈Ec

2− jN′
2−kN′

∫
1

(1+ |y1|+ |y2|)L

1
(1+ |x1− y2|+ |x2− y2|)L dy1dy2

� C ∑
j,k∈Ec

2− jN′
2−kN′ 1

(1+ |x|)L for some N′ > 0,

since N can be chosen arbitrarily large, which further implies that the local Calderón
reproducing formula (15) holds in S (Rn1+n2).

It remains to verify (16). Note that ϕ j,k ∗ f = (ϕ(1)
j ∗ f )∗2 ϕ(2)

k . Thus by the almost
orthogonality estimate on Rn1+n2 ,

|ϕ(1)
j ∗ f (x)| � C2− jN 1

(1+ |x|)n1+n2+L ,

which implies

|ϕ j,k ∗ f (x)| � C2− jN 1
(1+ |x|)n1+n2+L . (17)

On the other hand, ϕ j,k ∗ f = ϕ(1)
j ∗ ( f ∗2 ϕ(2)

k ) . Arguing as above, we have

|ϕ j,k ∗ f (x)| � C2−kN 1
(1+ |x|)n1+n2+L . (18)

By choosing a sufficiently large N in (17)–(18) and taking the geometric mean, (16)
follows.

4. Proof of Theorem 3

We first show that if f ∈ Lipα
flag with α = (α1,α2) , 0 < α1,α2 < 1, then f ∈

S ′(Rn1+n2) . To do this, for each g ∈ S (Rn1+n2) , by the local Calderón reproducing
formula (15), we have

g(x) = ∑
j,k�0

ψ j,k ∗ϕ j,k ∗ g(x),
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where the series converges in S (Rn1+n2) . Therefore, for f ∈ Lipα
flag with 0 < α1,α2 <

1, it suffices to show that ∑ j,k�0
〈
ϕ j,k ∗ f ,ψ j,k ∗g

〉
is well defined for g ∈ S (Rn1+n2) .

To this end, we estimate
〈
ϕ j,k ∗ f ,ψ j,k ∗ g

〉
as follows.

Case 1: j = k = 0.

|ϕ0,0 ∗ f (x1,x2)| = |
∫∫

Rn1×Rn2

∫
Rn2

ϕ(1)
0 (u,v)ϕ(2)

0 (w) f (x1 −u,x2− v−w)dwdudv|
� C‖ f‖∞ � C‖ f‖Lipα

flag
.

This implies that
|〈ϕ0,0 ∗ f ,ψ0,0 ∗ g

〉| � C‖ f‖Lipα
flag
‖g‖S .

Case 2: j � 1, k = 0.

By the cancellation condition on ϕ(1)
j , we have

ϕ j,0 ∗ f (x1,x2) =
∫∫

Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ϕ(2)

0 (w) f (x1 −u,x2− v−w)dudvdw

=
∫∫

Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ϕ(2)

0 (w)Δ1
(u,v) f (x1,x2)dudvdw.

The size condition of ϕ(1)
j and ϕ(2)

0 and the fact that f ∈ Lipα
flag give us that∣∣ϕ j,0 ∗ f (x1,x2)

∣∣
� C‖ f‖Lipα

flag

∫∫
Rn1×Rn2

∫
Rn2

|(u,v)|α1
2− j

(2− j + |(u,v)|)n1+n2+1 |ϕ
(2)
0 (w)|dudvdw

� C2− jα1‖ f‖Lipα
flag

.

Therefore, we obtain that

|〈ϕ j,0 ∗ f ,ψ j,0 ∗ g
〉| � C2− jα1‖ f‖Lipα

flag
‖ψ j,0 ∗ g‖L1(Rn1+n2 ) � C2− jα1‖ f‖Lipα

flag
‖g‖S .

Case 3: j = 0, k � 1.
Repeating the similar argument as the Case 3, we get

|〈ϕ0,k ∗ f ,ψ0,k ∗ g
〉| � C2−kα2‖ f‖Lipα

flag
‖g‖S .

Case 4: j � 1, k � 1.

Applying the cancellation conditions on both ϕ(1)
j and ϕ(2)

k , we have

|ϕ j,k ∗ f (x1,x2)|
= |

∫∫
Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ϕ(2)

k (w) f (x1 −u,x2− v−w)dudvdw|

= |
∫∫

Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ϕ(2)

k (v)Δ2
wΔ1

(u,v)( f )(x1,x2)dudvdw|

� C2− jα12−kα2‖ f‖Lipα
flag

∫∫
Rn1×Rn2

∫
Rn2

|ϕ(1)
j (u,v)ϕ(2)

k (w)||(u,v)|α1 |w|α2dudvdw

� C2− jα12−kα2‖ f‖Lipα
flag

,
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which yields
|〈ϕ j,k ∗ f ,ψ j,k ∗ g

〉| � C2− jα12−kα2‖ f‖Lipα
flag
‖g‖S .

Combing these four cases, we obtain that

|〈ϕ j,k ∗ f ,ψ j,k ∗ g
〉| � C2− jα12−kα2‖ f‖Lipα

flag
‖g‖S

and thus,
〈
f ,g

〉
is well defined. In addition, we also obtain 2 jα12kα2‖ϕ j,k ∗ f‖L∞ �

C‖ f‖Lipα
flag

for any j,k � 0.

When α = (α1,α2) with α1 = 1, 0 < α2 < 1, we only need to consider the cases
where j � 1, k = 0 and j,k � 1 since the other two cases are similar. Indeed, if j � 1,
k = 0, noting first that ϕ(1)

j is a radial function and then applying the cancellation

conditions on ϕ(1)
j , we have

|ϕ j,0 ∗ f (x1,x2)|
=

1
2
|
∫∫

Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ϕ(2)

0 (w)[ f (x1 −u,x2− v−w)

+ f (x1 +u,x2 + v−w)]dudvdw

=
1
2
|
∫∫

Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ϕ(2)

0 (w)Δ1,Z
(u,v) f (x1,x2)dudv|

� C‖ f‖Lipα
flag

∫∫
Rn1×Rn2

∫
Rn2

|(u,v)| 2−2 j

(2− j + |(u,v)|)n1+n2+2 |ϕ
(2)
0 (w)|dudvdw

� C2− j‖ f‖Lipα
flag

.

If j,k � 1, then

ϕ j,k ∗ f (x1,x2)

=
1
2

∫∫
Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ψ(2)

k (w)[ f (x1−u,x2−v−w)+ f (x1+u,x2+v−w)]dudv

=
∫∫

Rn1×Rn2

∫
Rn2

ϕ(1)
j (u,v)ϕ(2)

k (w)ΔwΔ1,Z
(u,v) f (x1,x2)dudvdw

The last equality follows the cancellations conditions on ϕ(1)
j and ϕ(2)

k . Hence,

|ϕ j,k ∗ f (x1,x2)|
� C2− j2−kα2‖ f‖Lipα

flag

∫∫
Rn1×Rn2

∫
Rn2

|ϕ(1)
j (u,v)ϕ(2)

k (w)||(u,v)||w|α2dudvdw

� C2− j2−kα2‖ f‖Lipα
flag

.

Thus,
〈
f ,g

〉
is well defined and

sup
j,k�0

2 j2kα2‖ψ j,k ∗ f‖L∞ � C‖ f‖Lipα
flag

.
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All other cases α = (α1,α2) where 0 < α1 < 1, α2 = 1 or α1 = α2 = 1 can
be handled similarly. For the case where α = (α1,α2) with α1,α2 > 1 and α1 =

m1 + r1 and α2 = m2 + r2 , 0 < r1,r2 � 1. Set
̂̃ϕ(1)

j (ξ1,ξ2) =
ϕ̂(1)

j (ξ1,ξ2)

(−2π iξ1)β1
and

̂̃ϕ(2)
k (ξ2) =

̂
ψ(2)

k (ξ2)
(−2π iξ2)β2

for j,k � 0, where |β1| = m1 and |β2| = m2 . Then

ϕ j,k ∗ f (x1,x2) = ∂ β1∂ β2(ϕ̃ j,k ∗ f )(x1,x2) = (−1)m1+m2 ϕ̃ j,k ∗ ∂ β1∂ β2 f (x1,x2),

where ϕ̃ j,k = ϕ̃(1)
j ∗2 ϕ̃(2)

k . Note that 2 jm12km2 ϕ̃ j,k satisfy the similar smoothness, size
and cancellation properties as ϕ j,k . Therefore, repeating the same proof gives that

|ϕ j,k ∗ f | = |2− jm12−km2(2 jm12km2 ϕ̃ j,k)∗ ∂ β1∂ β2 f |
� C2− jm12−km22− jr12−kr2‖∂ β1∂ β2 f‖Lipα

flag

= C2− jα12−kα2‖ f‖Lipα
flag

.

Therefore, this case can be also handled similarly.
We now prove the converse implication of Theorem3. Suppose that f ∈S ′(Rn1+n2)

satisfying

sup
j,k�0

2 jα12kα2‖ϕ j,k ∗ f‖L∞ � C

with α1,α2 > 0. We first show that f coincides with a continuous function. As men-
tioned,

f (x1,x2) = ∑
j,k�0

ψ j,k ∗ϕ j,k ∗ f (x1,x2) in S ′(Rn1+n2).

Then

|ψ j,k∗ϕ j,k∗ f (x1,x2)|� ‖ϕ j,k∗ f‖L∞‖ψ j,k‖L1 �C2− jα12−kα2( sup
j,k�0

2 jα12kα2‖ϕ j,k∗ f‖L∞).

Thus, the series ∑ j,k�0 ψ j,k ∗ϕ j,k ∗ f (x1,x2) converges uniformly in x,y . Since ψ j,k ∗
ϕ j,k ∗ f is continuous in Rn1+n2 , then the sum function f is also continuous in Rn1+n2 .
Moreover,

‖ f‖L∞ � C sup
j,k�0

2 jα12kα2‖ϕ j,k ∗ f‖L∞ . (19)

Now we show that f ∈ Lipα
flag . First, if α = (α1,α2) with 0 < α1,α2 < 1, we

then prove that

|Δ1
(u,v) f (x1,x2)| � C|(u,v)|α1 sup

j,k�0
2 jα12kα2‖ϕ j,k ∗ f‖L∞ .
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From (19), it suffices to consider |(u,v)| < 1. Then

Δ1
(u,v) f (x1,x2)

= ∑
j,k�0

∫∫
Rn1×Rn2

[ψ j,k(x1−u−u′,x2−v−v′)−ψ j,k(x1−u′,x2−v′)]ϕ j,k ∗ f (u′,v′)du′dv′

= ∑
j,k�0

∫∫
Rn1×Rn2

∫
Rn2

Δ1
(u,v)ψ

(1)
j (x1−u′,x2− v′ −w)ψ(2)

k (w)ϕ j,k ∗ f (u′,v′)du′dv′dw.

We now choose a nonnegative integer m1 such that 2−m1−1 � |(u,v)| < 2−m1 , and we
split

|Δ1
(u,v) f (x1,x2)|

� A
( m1

∑
j=0

∞

∑
k=0

2− jα12−kα2

∫∫
Rn1×Rn2

∫
Rn2

|Δ1
(u,v)ψ

(1)
j (x1−u′,x2−v′−w)ψ(2)

k (w)|du′dv′dw

+
∞

∑
j=m1

∞

∑
k=0

2− jα12−kα2

∫∫
Rn1×Rn2

∫
Rn2

|Δ1
(u,v)ψ

(1)
j (x1−u′,x2−v′−w)ψ(2)

k (w)|du′dv′dw
)

:= I + II,

where A = sup j,k�0 2 jα12kα2‖ϕ j,k ∗ f‖L∞ .

To estimate I , applying the smoothness condition on ψ(1)
j and the size condition

on ψ(2)
k implies

I � CA
m1

∑
j=0

∞

∑
k=0

2− jα12−kα2
|(u,v)|
2− j � CA2m1(1−α1)|u| � CA|u|α1 .

To deal with II , the size conditions on both ψ(1)
j and ψ(2)

k yields

I � CA
∞

∑
j=m1

∞

∑
k=0

2− jα12−kα2 � CA2−m1α1 |u| � CA|u|α1 .

Thus, we obtain that for any (u,v) �= 0,(x1,x2) ∈ Rn1+n2 ,

Δ1
(u,v) f (x1,x2)

|(u,v)|α1
� C sup

j,k�0
2 jα12kα2‖ϕ j,k ∗ f‖L∞ .

Similarly, for any w �= 0,(x1,x2) ∈ Rn1+n2 , there holds

Δ2
w f (x1,x2)
|w|α2

� C sup
j,k�0

2 jα12kα2‖ϕ j,k ∗ f‖L∞ .

Finally, we prove that

|Δ2
wΔ1

(u,v) f (x1,x2)| � C|(u,v)|α1 |w|α2 sup
j,k�0

2 jα12kα2‖ϕ j,k ∗ f‖L∞ .
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We only need consider |(u,v)|< 1 and |w|< 1. Let m1 , m2 be the unique nonnegative
integer such that 2−m1−1 � |(u,v)| < 2−m1 and 2−m2−1 � |w| < 2−m2 . Observe that

Δ2
wΔ1

(u,v) f (x1,x2)

= ∑
j,k�0

∫∫
Rn1×Rn2

∫
Rn2

Δ1
(u,v)ψ

(1)
j (x1−u′,x2−v′−w′)Δ2

wψ(2)
k (w′)ϕ j,k ∗ f (u′,v′)du′dv′dw′.

Now we split the above series by

( ∞

∑
j=m1

∞

∑
k=m2

+
m1

∑
j=0

∞

∑
k=m2

+
∞

∑
j=m1

m2

∑
k=0

+
m1

∑
j=0

m2

∑
k=0

)∫∫
Rn1×Rn2

∫
Rn2

Δ1
(u,v)ψ

(1)
j (x1 −u′,x2 − v′ −w′)

×Δ2
wψ(2)

k (w′)ϕ j,k ∗ f (u′,v′)du′dv′dw′

:= B1 +B2 +B3 +B4.

To deal with the first series B1 , applying the the size conditions on both ψ(1)
j and

ψ(2)
k yields that

|B1| �
∞

∑
j=m1

∞

∑
k=m2

2− jα12−kα2 � CA2−n1α12−n2α2 � CA|(u,v)|α1 |w|α2 .

To estimate the second series B2 , applying the smooth condition on ψ(1)
j and the

size condition on ψ(2)
k implies that

|B2| � CA
m1

∑
j=0

∞

∑
k=m2

2− jα12−kα2
|(u,v)|
2− j � CA2n1(1−α1)2−n2α2 |u| � CA|(u,v)|α1 |w|α2 .

The estimate for third series B3 is similar to the estimate for B2 . Finally, to handle

with the last series B4 , applying the smoothness conditions on both ψ(1)
j and ψ(2)

k , we
get that

|B4| � C
m1

∑
j=0

m2

∑
k=0

2− jα12−kα2
|(u,v)|
2− j

|w|
2−k

� CA2n1(1−α1)2n2(1−α2)|(u,v)||w| � CA|(u,v)|α1 |w|α2 .

When α = (α1,α2) with α1 = α2 = 1, observe that

Δ2,Z
w Δ1,Z

(u,v) f (x1,x2)

= ∑
j,k�0

∫∫
Rn1×Rn2

∫
Rn2

Δ1,Z
(u,v)ψ

(1)
j (x1−u′,x2−v′−w′)Δ2,Z

w ψ(2)
k (w′)ϕ j,k ∗ f (u′,v′)du′dv′dw′.

Repeating a similar calculation gives the desired result for this case. The other two
cases, where α1 = 1, 0 < α2 < 1 and 0 < α1 < 1, α2 = 1, can be handled similarly.
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Finally, when 1 < α1 = m1 + r1 , 1 < α2 = m2 + r2 with 0 < r1,r2 � 1, note that

Δ2
wΔ1

(u,v)∂
β1∂ β2 f (x1,x2) = ∑

j,k�0

∫∫
Rn1×Rn2

∫
Rn2

Δ1
(u,v)∂

β1ψ(1)
j (x1−u′,x2− v′ −w′)

×Δ2
w∂ β2ψ(2)

k (w′)ϕ j,k ∗ f (u′,v′)du′dv′dw

for |β1|= m1 and |β2|= m2 . Again observe that the properties of ∂ β1ψ(1)
j and ∂ β2ψ(2)

k

are similar to 2 jm1ψ(1)
j and 2km2ψ(2)

k , respectively, and hence the estimate for this case
is the same as the proof for the case where 0 < α1,α2 � 1. Therefore, the proof of
Theorem 3 is completed.

5. Proof of Theorem 4

To prove Theorem 4, we need the following

LEMMA 2. For any f ∈ Lipα
flag with α = (α1,α2) , α1,α2 > 0 , there exists a

sequence { fn} such that fn ∈ L2 ∩Lipα
flag and fn converges to f in the distribution

sense. Furthermore,

‖ fn‖Lipα
flag

� C‖ f‖Lipα
flag

,

where the constant C is independent of fn and f .

Proof. To do this, note that, by Theorem 2, for each f ∈ Lipα
flag ,

f (x) =
∞

∑
j,k=0

ψ j,k ∗ϕ j,k ∗ f (x),

in the distribution sense. For any fixed n > 0, denote

E = {( j,k) : 0 � j � n,0 � k � n},

and

fn(x) = ∑
( j,k)∈E

ψ j,k ∗ϕ j,k ∗ f (x).

Obviously, fn ∈ L2 and converges to f in the distribution sense. To see that fn ∈Lipα
flag,

by Theorem 3,

‖ fn‖Lipα
flag

� C sup
j,k�0

2 jα12kα2‖ϕ j,k ∗ fn‖L∞ .

Observe that

ϕ j,k ∗ fn(x) = ∑
( j′,k′)∈E

ϕ j,k ∗ψ j′,k′ ∗ϕ j′,k′ ∗ f (x).
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We claim that for any given positive integer N and L , there exists a constant C > 0
such that

|ϕ j,k ∗ψ j′,k′(x)| � C2−| j− j′|N2−|k−k′|N 2−( j∧ j′)L

(2−( j∧ j′) + |x1|)n1+L

2−( j∧ j′∧k∧k′)L

(2−( j∧ j′∧k∧k′) + |x2|)n2+L
.

(20)
Assuming the claim for the moment and applying Theorem 2 again, it follows that if
N > α1∨α2 ,

2 jα12kα2 |ϕ j,k ∗ fn(x)| � C sup
j′,k′�0

2 j′α12k′α2‖ϕ j′,k′ ∗ f‖L∞ � C‖ f‖Lipα
flag

,

which yields that
‖ fn‖Lipα

flag
� C‖ f‖Lipα

flag
.

It remains to verify (20). Note that

ϕ j,k ∗ψ j′,k′ = (ϕ(1)
j ∗ψ(2)

j′ )∗2 (ϕ(2)
k ∗ψ(2)

k′ ).

By Lemma 1, for any given positive integer N and L , there exists a constant C > 0
such that

|ϕ j,k ∗ψ j′,k′(x)|

� C2−| j− j′|N2−|k−k′|N
∫

Rn2

2−( j∧ j′)L

(2−( j∧ j′) + |x1|+ |x2− v|)n1+n2+L

2−(k∧k′)L

(2−(k∧k′) + |v|)n2+L
dv.

By an estimate given in Lemma 52 in [22], (20) follows.

We are now ready to prove Theorem 4.

Proof of Theorem 4. First we claim that if f ∈ L2 and T = K ∗ f is a inhomoge-
neous flag singular integral operator on Rn1 ×Rn2 with a inhomogeneous flag kernel
as given in Definition 2, then

‖T ( f )‖Lipα
flag

� C‖ f‖
Lipα

flag
. (21)

Indeed, by Theorem 2,

‖T ( f )‖Lipα
flag

� C sup
j,k�0

2 jα12kα2‖ϕ j,k ∗T ( f )‖L∞ .

Observe that T is bounded on L2(Rn1+n2) , and hence

ϕ j,k ∗T ( f )(x) = ∑
j′,k′�0

ϕ j,k ∗K ∗ψ j′,k′ ∗ϕ j′,k′ ∗ f (x).

By Theorem 1, K (x1,x2) =
∫
Rn2 K �(x1,x2 − x3,x3)dx3 , where K � is a inhomoge-

neous product singular integral kernel on Rn1+n2 ×Rn2 . Note that

ϕ j,k ∗K ∗ψ j′,k′(x1,x2) =
∫

Rn2
Φ j,k ∗K � ∗Ψ j′,k′(x1,x2− x3,x3)dx3,
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where Φ j,k(x1,x2,x3)= ϕ(1)
j (x1,x2)ϕ

(2)
k (x3) and Ψ j′,k′(x1,x2,x3)= ψ(1)

j′ (x1,x2)ψ
(2)
k′ (x3) .

Applying the classical almost orthogonal estimates with Φ j,k , K � and Ψ j′,k′ on Rn1+n2

×Rn2 (see Lemmas 2.6 and 2.7 in [28]), we have that for any given positive integer M ,

|Φ j,k ∗K � ∗Ψ j′,k′(x1,x2,x3)|

� C2−| j− j′|M2−|k−k′|M 2−( j∧ j′)σ

(2−( j∧ j′) + |x1|+ |x2|)n1+n2+σ
2−(k∧k′)σ

(2−(k∧k′) + |x2|)n2+σ ,

where σ = δ when j = 0, j′ > 0 or j > 0, j′ = 0, otherwise σ can be sufficiently
large. Thus, we obtain that

|ϕ j,k ∗K ∗ψ j′,k′(x1,x2)|

� C2−| j− j′|M2−|k−k′|M 2−( j∧ j′)σ

(2−( j∧ j′) + |x1|)n1+σ
2−( j∧ j′∧k∧k′)σ

(2−( j∧ j′∧k∧k′) + |x2|)n2+σ .

Repeating the same proof as in Lemma 2 gives that

sup
j,k�0

2 jα12kα2‖ϕ j,k ∗T ( f )‖L∞ � C sup
j,k�0

2 j′α12k′α2‖ϕ j′,k′ ∗ f‖L∞ � C‖ f‖
Lipα

flag
.

if M > α1 ∨α2, which yields the claim (21).
We now extend T to Lipα

flag as follows. First, if f ∈ Lipα
flag , then, as mentioned

in Lemma 1, there exists a sequence { fn} ∈ L2∩Lipα
flag such that fn converges to f in

the distribution sense and ‖ fn‖Lipα
flag

� C‖ f‖Lipα
flag

. It follows from the claim (21) that

‖T ( fn)−T( fm)‖Lipα
flag

� C‖ fn − fm‖Lipα
flag

and hence T ( fn) converges in the distribution sense. We define

T ( f ) = lim
n→∞

T ( fn)

in the distribution sense. We obtain, by Theorem 3 and the above claim in (21),

‖T f‖Lipα
flag

� C sup
j,k�0

2 jα12kα2‖ϕ j,k ∗T ( f )‖L∞

� C sup
j,k�0

2 jα12kα2‖ lim
n→∞

ϕ j,k ∗T ( fn)‖L∞

� C liminf
n→∞

sup
j,k�0

2 jα12kα2‖ϕ j,k ∗T ( fn)‖L∞

� C liminf
n→∞

‖ fn‖Lipα
flag

� C‖ f‖Lipα
flag

.

The proof of Theorem 4 is finished. �
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