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NEW BOUNDS FOR GENERALIZED TAYLOR EXPANSIONS
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Abstract. We give inequalities for higher order convex functions involving harmonic sequence
of polynomials. As a consequence, we obtain bounds for generalized Taylor expansions.

1. Introduction

We say that a sequence of polynomials {Pn}n�0 is a harmonic sequence of poly-
nomials if it satisfies the following two properties:

P′
n(t) = Pn−1(t) for all t ∈ R and n ∈ N

P0(t) = 1.

The following generalization of Taylor’s formula is given in [2].

THEOREM 1. Let {Pn}n�0 be a harmonic sequence of polynomials. Further, let
I ⊂ R be a closed interval, a ∈ I and f : I → R be such that f (n) is absolutely contin-
uous. Then for any x ∈ I

f (x) = f (a)+
n

∑
k=1

(−1)k+1[Pk(x) f (k)(x)−Pk(a) f (k)(a)]+Rn( f ;a,x) (1)

where

Rn( f ;a,x) = (−1)n
∫ x

a
Pn(t) f (n+1)(t)dt. (2)

This is, indeed, a generalization because (1) reduces to Taylor’s formula if Theo-
rem 1 is applied for the harmonic sequence of polynomials

Pn(t) =
(t− x)n

n!
.

We will give bounds for generalized Taylor’s difference by using the weighted
Hermite-Hadamard inequality given in the following theorem (see [4]).
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THEOREM 2. If f : [a,x] → R is convex and p : [a,x] → R is of a constant sign
on [a,x] , then we have

f (λ ) � 1
P(x)

∫ x

a
p(t) f (t)dt � x−λ

x−a
f (a)+

λ −a
x−a

f (x), (3)

where

P(s) =
∫ s

a
p(t)dt

and

λ =
1

P(x)

∫ x

a
t p(t)dt.

2. New results

THEOREM 3. Let n ∈ N be fixed and let {Pk}k�0 be a harmonic sequence of
polynomials such that Pn−1 has a constant sign on [a,x] . If f : [a,x]→R is an (n+2)-
convex function, then

f (n)(λ ) � 1
P(x)

n−1

∑
k=0

(−1)k
[
Pk(x) f (k)(x)−Pk(a) f (k)(a)

]

� x−λ
x−a

f (n)(a)+
λ −a
x−a

f (n)(x), (4)

where

P(x) = (−1)n−1
∫ x

a
Pn−1(t)dt (5)

and

λ =
(−1)n−1

P(x)

∫ x

a
tPn−1(t)dt. (6)

Proof. If f is an (n+2)-convex function, then the function f (n) is convex. Fur-
thermore, a convex function is Lipschitz continuous and, thus, absolutely continuous.
Therefore, equality (1) from Theorem 1 yields

n−1

∑
k=0

(−1)k
[
Pk(x) f (k)(x)−Pk(a) f (k)(a)

]
= (−1)n−1

∫ x

a
Pn−1(t) f (n)(t)dt. (7)

Since f (n) is convex, applying Theorem 2 with p(t) = (−1)n−1Pn−1(t) one gets

f (n)(λ ) � (−1)n−1

P(x)

∫ x

a
Pn−1(t) f (n)(t)dt � x−λ

x−a
f (n)(a)+

λ −a
x−a

f (n)(x), (8)

where P(x) and λ are as in (5) and (6). Using identity (7), inequalities (8) become the
required inequalities (4). �
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COROLLARY 1. Let n, {Pk}k∈N0 and f be as in Theorem 3. Then, inequalities
(4) hold, where

P(x) =
n−1

∑
k=0

(−1)k
[
Pk(x)

xn−k

(n− k)!
−Pk(a)

an−k

(n− k)!

]
(9)

and

λ =
1

P(x)

n−1

∑
k=0

(−1)k
[
Pk(x)

xn+1−k

(n+1− k)!
−Pk(a)

an+1−k

(n+1− k)!

]
. (10)

Proof. The function f (t) = tn
n! satisfies f (n)(t) = 1, so applying identity (7) for

this function we can calculate P(x) and we obtain (9). To calculate λ we take the

function f (t) = tn+1

(n+1)! since its n -th derivative is f (n)(t) = t and identity (7) then gives
(10). �

COROLLARY 2. Let n, {Pk}k∈N0 and f be as in Theorem 3. Then, inequalities
(4) hold, where

P(x) = (−1)n−1 (Pn(x)−Pn(a)) (11)

and

λ =
(−1)n−1

P(x)
(xPn(x)−aPn(a)−Pn+1(x)+Pn+1(a)) . (12)

Proof. Expression (11) is a trivial consequence of P′
n(t) = Pn−1(t) and (12) is a

simple consequence of integration by parts. �

3. Applications

In this section we will apply the results from the previous section for some special
harmonic sequences of polynomials. The polynomials

Pn(t) =
(t − x)n

n!
(13)

satisfy P′
n(t) = Pn−1(t) and P0(t) = 1. For these polynomials the equality (1) becomes

the Taylor expansion of the function f around the point a . The inequalities from The-
orem 3 for these harmonic sequence of polynomials is stated in the following theorem.

THEOREM 4. Let f : [a,x] → R be an (n+2)-convex function. Then

(x−a)n

n!
f (n)

(
na+ x
n+1

)
� f (x)− f (a)−

n−1

∑
k=1

(x−a)k

k!
f (k)(a)

� (x−a)n

n!

[
n

n+1
f (n)(a)+

1
n+1

f (n)(x)
]

(14)
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Proof. The polynomials given by (13) satisfy (−1)n−1Pn−1(t) � 0 and P(x) from
(5) is positive. Therefore, multiplying inequalities (4) with P(x) gives

P(x) f (n)(λ ) � f (x)− f (a)+
n−1

∑
k=1

(−1)k
[
Pk(x) f (k)(x)−Pk(a) f (k)(a)

]

� P(x)
[
x−λ
x−a

f (n)(a)+
λ −a
x−a

f (n)(x)
]

(15)

Formulas (11) and (12) for P(x) and λ from Corollary 2 and simple calculations yield

Pk(x) f (k)(x)−Pk(a) f (k)(a) = (−1)k+1 (x−a)k

k!
f (k)(a),

P(x) = (x−a)n
n! and λ = na+x

n+1 . Inserting these expressions in (15) we obtain the required
inequalities (14). �

The polynomials

Pn(t) =
1
n!

(
t− a+ x

2

)n

(16)

obviously satisfy P′
n(t) = Pn−1(t) and P0(t) = 1. Applying our results to this sequence

of harmonic polynomials we get the following result.

THEOREM 5. Let n be odd and f : [a,x] → R be an (n + 2)-convex function.
Then the following inequalities hold

(x−a)n

2n−1n!
f (n)

(
a+ x

2

)

� f (x)− f (a)−
n−1

∑
k=1

(x−a)k

2kk!

(
f (k)(a)+ (−1)k+1 f (k)(x)

)

� (x−a)n

2nn!

(
f (n)(a)+ f (n)(x)

)
. (17)

Proof. For polynomials Pn given by (16) we have

Pk(x) f (k)(x)−Pk(a) f (k)(a) =
(x−a)k

2kk!
[ f (k)(x)− (−1)k f (k)(a)] (18)

Since n is odd, we have Pn−1(t) � 0 for t ∈ [a,x] and P(x) from (5) is positive. There-
fore, multiplying inequalities (4) with P(x) and taking into account (18) we get

P(x) f (n)(λ ) � f (x)− f (a)−
n−1

∑
k=1

(x−a)k

2kk!

(
f (k)(a)+ (−1)k+1 f (k)(x)

)

� P(x)
[
x−λ
x−a

f (n)(a)+
λ −a
x−a

f (n)(x)
]
. (19)
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Corollary 2 and simple calculations yield P(x) = (x−a)n

2n−1n!
and λ = x+a

2 and inserting
these in (19) gives the required inequalities (17). �

For the next example we will first recall some definitions and basic properties of
the Euler polynomials. All the results and properties of the Euler polynomials stated
here can be found in Chapter 23 of [1]. The Euler polynomials can be defined by the
series expansion

2etx

ex +1
=

∞

∑
n=0

En(t)
n!

xn, |x| < π ,t ∈ R.

The first few Euler polynomials are

E0(t) = 1, E1(t) = t− 1
2
, E2(t) = t2− t, E3(t) = t3− 3

2
t2 +

1
4
, . . .

The Euler polynomials are uniquely determined by the following two properties ([1,
23.1.5 and 23.1.6])

E ′
n(t) = nEn−1(t), for n ∈ N; E0(t) = 1, (20)

En(t +1)+En(t) = 2tn, for n ∈ N0. (21)

The values of the Euler polynomials at 0 and 1 satisfy ([1, 23.1.20])

En(1) = −En(0) =
2

n+1
(2n+1−1)Bn+1, for n ∈ N, (22)

where Bn are the Bernoulli numbers. Since B2n+1 = 0, the values in (22) for even n
are equal to zero, i. e.

E2n(1) = E2n(0) = 0, for n ∈ N.

The Euler polynomials satisfy ([1, 23.1.8, 23.1.13 and 23.1.14])

En(1− t) = (−1)nEn(t), for n ∈ N0, (23)

(−1)nE2n(t) > 0, for 0 < t <
1
2
, n ∈ N, (24)

(−1)nE2n−1(t) > 0, for 0 < t <
1
2
, n ∈ N. (25)

In particular, properties (23) and (24) yield

E4m(t) � 0 and E4m+2(t) � 0, for 0 � t � 1, m ∈ N0 (26)

Due to (20), the polynomials

Pn(t) =
(x−a)n

n!
En

(
t−a
x−a

)
(27)

satisfy P′
n(t) = Pn−1(t) and P0(t) = 1, so they form a harmonic sequence of polynomi-

als.
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THEOREM 6. Let n = 2m+1 , m ∈ N0 , and f : [a,x] → R be an (n+2)-convex
function. If m is even, then the following inequalities hold

2(x−a)n

n!
En(1) f (n)

(
a+ x

2

)

� f (x)− f (a)−
m

∑
k=1

(x−a)2k−1

(2k−1)!
E2k−1(1)

(
f (2k−1)(x)+ f (2k−1)(a)

)

� (x−a)n

n!
En(1)

(
f (n)(a)+ f (n)(x)

)
, (28)

while if m is odd, the reversed inequalities in (28) hold.

Proof. When m = 2k is even, then n = 2m + 1 = 4k + 1, so the property (26)
yields En−1(t) = E4k(t) � 0 for t ∈ [0,1] . Therefore, the polynomials given by (27)
satisfy

Pn−1(t) =
(x−a)n−1

(n−1)!
E4k

(
t−a
x−a

)
� 0, for a � t � x.

Similarly, when m = 2k+1 is odd, then n = 2m+1 = 4k+3 and En−1(t) = E4k+2(t) �
0 for t ∈ [0,1] , so

Pn−1(t) =
(x−a)n−1

(n−1)!
E4k+2

(
t −a
x−a

)
� 0, for a � t � x.

Further, since Ek(0) = −Ek(1) , we have

Pk(x) f (k)(x)−Pk(a) f (k)(a) =
(x−a)k

k!
Ek(1) f (k)(x)− (x−a)k

k!
Ek(0) f (k)(a)

=
(x−a)k

k!
Ek(1)

[
f (k)(x)+ f (k)(a)

]
.

We can apply Theorem 3 and, since E2k(1) = 0, inequalities (4) for even m become

P(x) f (n)(λ ) � f (x)− f (a)−
2m

∑
k=1

(x−a)2k−1

(2k−1)!
E2k−1(1)

(
f (2k−1)(x)+ f (2k−1)(a)

)

� P(x)
[
x−λ
x−a

f (n)(a)+
λ −a
x−a

f (n)(x)
]
, (29)

while for odd m the reverse inequalities hold. By Corollary 2 we have

P(x) = (−1)n−1 (Pn(x)−Pn(a))

=
(x−a)n

n!
En(1)− (x−a)n

n!
En(0) =

2(x−a)n

n!
En(1) (30)
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Next, since Pn+1(x) = (x−a)n+1

(n+1)! E2m+2(1) = 0 and Pn+1(a) = (x−a)n+1

(n+1)! E2m+2(0) = 0, we
have

xPn(x)−aPn(a)−Pn+1(x)+Pn+1(a)

= xPn(x)−aPn(a) = x
(x−a)n

n!
En(1)−a

(x−a)n

n!
En(0)

=
(x−a)n

n!
En(1)(x+a).

We can now calculate λ from (12) and get

λ =
xPn(x)−aPn(a)−Pn+1(x)+Pn+1(a)

P(x)
=

x+a
2

(31)

Finally, inserting P(x) and λ from (30) and (31) in (29) we obtain the required in-
equality (28). �
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RUDN University

Miklukho-Maklaya str. 6, 117198 Moscow, Russia
e-mail: pecaric@element.hr

Mihaela Ribičić Penava
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