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ORLICZ DUAL LOGARITHMIC MINKOWKI INEQUALITY

CHANG-JIAN ZHAO

(Communicated by J. Jakšetić)

Abstract. In this paper, we establish an Orlicz dual logarithmic Minkowski inequality by intro-
ducing a new concept of Orlicz dual mixed volume measure, and using the newly established
Orlicz dual Minkowski inequality. The Orlicz dual logarithmic Minkowski inequality in special
case yields the dual logarithmic Minkowski inequality. The Lp -dual mixed volume measure and
Lp -dual logarithmic Minkowski inequality are first derived here.

1. Introduction

In 2016, Stancu [18] established the following logarithmic Minkowski inequality.

The logarithmic Minkowski inequality. If K and L are convex bodies in R
n that

containing the origin in their interior, then∫
Sn−1

ln

(
hK

hL

)
dv1 � 1

n
ln

(
V (K)
V (L)

)
, (1.1)

with equality if and only if K and L are homothetic, where dv1 is the mixed volume
measure dv1 = 1

nhKdSL, and dv1 = 1
V1(L,K)dv1 is its normalization, and V1(L,K) de-

notes the usual mixed volume of L and K , is defined by (see e.g. [2])

V1(L,K) =
1
n

∫
Sn−1

hKdSL,

and the functions hK , hL are the support functions.
If K is a nonempty closed (not necessarily bounded) convex set in R

n , then ([17])

hK = max{x · y : y ∈ K},

for x ∈ R
n, defines the support function hK of K .

In 2017, Wang, Xu and Zhou [22] proved the following dual logarithmicMinkowski
inequality, which is a special case p = 1 of Lp -dual logarithmic Minkowski inequality
in [22].
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The dual logarithmic Minkowski inequality. If K and L are star bodies about the
origin in R

n , then∫
Sn−1

ln

(
ρ(K,u)
ρ(L,u)

)
dV−1(L,K) � 1

n
ln

(
V (K)
V (L)

)
, (1.2)

with equality if and only if K and L are dilates, and where

dV−1(L,K) =
1
n

ρ(K,u)−1ρ(L,u)n+1

is the mixed radial cone volume measure of K and L, and

dV−1(L,K) =
1

Ṽ−1(L,K)
dV−1(L,K)

is its normalization, and Ṽ−1(L,K) denotes the dual mixed volume of L and K , is
defined by (see [10])

Ṽ−1(L,K) =
1
n

∫
Sn−1

ρ(K,u)−1ρ(L,u)n+1dS(u).

Here, ρ(K, ·) denotes the radial function of star body K. The radial function of
star body K is defined by (see [2])

ρ(K,u) = max{c � 0 : cu ∈ K},

for u ∈ Sn−1.
Recently, the logarithmic Minkowski inequality and its dual form have attracted

extensive attention and research, and the recent research can be found in the references
[1], [3], [4], [7], [8], [9], [14], [15], [16], [19], [21], [23], [24], [25] and [26]. In
the paper, we generalize the dual logarithmic Minkowski inequality (1.2) to the Orlicz
space, and establish the following Orlicz dual logarithmic Minkowski inequality.

Orlicz dual logarithmic Minkowski inequality. Let φ : (0,∞)→ (0,∞) be a convex
and decreasing function such that φ(0) = ∞ , limt→∞ φ(t) = 0 and limt→0 φ(t) = ∞. If
K and L are star bodies about the origin in R

n , then

∫
Sn−1

ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṼφ (L,K) � ln

(
φ

((
V (K)
V (L)

)1/n
))

. (1.3)

If φ is strictly convex, equality holds if and only if K and L are dilates, where dṼφ (L,K)
denotes a new Orlicz dual mixed volume probability measure of star bodies L and K ,
is defined by (see Section 3)

dṼφ (L,K) =
1

nṼφ (L,K)
φ
(

ρ(K,u)
ρ(L,u)

)
ρ(L,u)ndS(u), (1.4)
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and Ṽφ (L,K) denotes the Orlicz dual mixed volume, is defined by (see [27])

Ṽφ (L,K) =
1
n

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

)
ρ(L,u)ndS(u). (1.5)

Obviously, when φ(t) = 1
t , (1.3) becomes the dual logarithmic Minkowski in-

equality (1.2). On the other hand, when φ(t) = t−p and p � 1, (1.3) becomes the
following Lp -dual logarithmic Minkowski inequality.

The Lp -dual logarithmic Minkowski inequality. If K and L are star bodies about
the origin in R

n and p � 1 , then∫
Sn−1

ln

(
ρ(K,u)
ρ(L,u)

)
dṼ−p(L,K) � 1

n
ln

(
V (K)
V (L)

)
. (1.6)

with equality if and only if K and L are dilates, where dṼ−p(L,K) denotes the Lp -dual
mixed volume probability measure of K and L, is defined by (see Section 3)

dṼ−p(L,K) =
1

nṼ−p(L,K)
ρ(K,u)−pρ(L,u)n+pdS(u), (1.7)

where Ṽ−p(L,K) denotes the well-known Lp -dual mixed volume, is defined by ([10])

Ṽ−p(L,K) =
1
n

∫
Sn−1

ρ(K,u)−pρ(L,u)n+pdS(u).

Apparently, when p = 1, (1.6) becomes the dual logarithmic Minkowski inequal-
ity (1.2).

2. Notations and preliminaries

The setting for this paper is n -dimensional Euclidean space R
n . A body in R

n

is a compact set equal to the closure of its interior. For a compact set K ⊂ R
n , we

write V (K) for the (n -dimensional) Lebesgue measure of K and call this the volume
of K . The unit ball in R

n and its surface are denoted by B and Sn−1 , respectively.
Let K n denote the class of nonempty compact convex subsets containing the origin
in their interiors in R

n . Let φ : (0,∞) → (0,∞) be a convex and decreasing function
such that φ(0) = ∞ , limt→∞ φ(t) = 0 and limt→0 φ(t) = ∞ and let C denote the class
of the convex and decreasing functions φ . Associated with a compact subset K of
R

n , which is star-shaped with respect to the origin and contains the origin, its radial
function is ρ(K, ·) . If ρ(K, ·) is positive and continuous, K will be called a star body.
Let S n denote the set of star bodies about the origin in R

n . Two star bodies K and
L are dilates if ρ(K,u)/ρ(L,u) is independent of u ∈ Sn−1 . Let δ̃ denote the radial
Hausdorff metric, as follows, if K,L ∈ S n , then

δ̃ (K,L) = |ρ(K,u)−ρ(L,u)|∞.
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The formula for the volume of a compact star shaped set in R
n in hyperspherical coor-

dinates is

V (K) =
1
n

∫
Sn−1

ρ(K,u)ndS(u).

2.1. The operations between star bodies

The Orlicz harmonic radial addition K+̂φ L of two star bodies K and L , is defined
by (see [27])

ρ(K+̂φ L,u)) = sup

{
λ > 0 : φ

(
ρ(K,u)

λ

)
+ φ

(
ρ(L,u)

λ

)
� φ(1)

}
, (2.1)

where u ∈ Sn−1 , and φ : (0,∞) → (0,∞) is a convex and decreasing function such that
φ(0) = ∞ , limt→∞ φ(t) = 0 and limt→0 φ(t) = ∞. Let C denote the class of the convex
and decreasing functions φ with φ(0) = ∞ , limt→∞ φ(t) = 0 and limt→0 φ(t) = ∞.

If φ(t) = t−p and p � 1, then the Orlicz harmonic radial addition +φ becomes the
following p -harmonic radial addition. If K,L are star bodies, the p -harmonic radial
addition, is defined by (see [13])

ρ(K+̂pL,x)−p = ρ(K,x)−p + ρ(L,x)−p, (2.2)

for p � 1 and x ∈ R
n . When φ(t) = 1

t , the Orlicz harmonic radial addition +φ be-
comes the classical harmonic radial addition, is defined by (see [12])

ρ(K+̂L,x)−1 = ρ(K,x)−1 + ρ(L,x)−1, (2.3)

for x ∈ R
n .

For any p �= 0, the p -radial addition K+̃pL is defined by (see [6])

ρ(K+̃pL,x)p = ρ(K,x)p + ρ(L,x)p, (2.4)

for x ∈R
n and K,L ∈S n . Obviously, when p = 1, the p -radial addition +̃p becomes

the well-known radial addition +̃ , is defined by (see [11])

ρ(K+̃L,x) = ρ(K,x)+ ρ(L,x). (2.5)

2.2. The dual mixed volumes

The Orlicz dual mixed volume with respect to the Orlicz harmonic radial addition
is denoted by Ṽφ (K,L) , is defined by (see [27])

Ṽφ (K,L) :=
φ ′

r(1)
n

lim
ε→0+

V (K+̂φ ε ·L)−V(K)
ε

=
1
n

∫
Sn−1

φ
(

ρ(L,u)
ρ(K,u)

)
ρ(K,u)ndS(u), (2.6)
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where the right derivative of a real-valued function φ is denoted by φ ′
r and K +φ ε ·L

is the Orlicz linear combination of K and L (see [27]).
When φ(t) = t−p and p � 1, Ṽφ (K,L) becomes the Lp -dual mixed volume

Ṽ−p(K,L) with respect to the p -harmonic radial addition, is defined by (see [5])

Ṽ−p(K,L) = − p
n

lim
ε→0+

V (K+̂pε ·L)−V(K)
ε

=
1
n

∫
Sn−1

ρ(K,u)n+pρ(L,u)−pdS(u). (2.7)

where K,L ∈ S n and p � 1. When φ(t) = 1
t , Ṽφ (K,L) becomes the dual mixed

volume Ṽ−1(K,L) with respect to the harmonic radial addition, is defined by (see [12])

Ṽ−1(K,L) = lim
ε→0+

V (K)−V (K+̂ε ·L)
ε

=
1
n

∫
Sn−1

ρ(K,u)n+1ρ(L,u)−1dS(u), (2.8)

where +̂ is the harmonic radial addition. Obviously, when K = L , Ṽ−1(K,L) becomes
V (K).

On the other hand, the first dual mixed volume with respect to the radial addition
Ṽ1(K,L) , is defined by (see [11])

Ṽ1(K,L) =
1
n

lim
ε→0+

V (K+̃ε ·L)−V(K)
ε

=
1
n

∫
Sn−1

ρ(K,u)n−1ρ(L,u)dS(u), (2.9)

where K,L ∈S n. The dual mixed quermassintegral of star bodies K and L , W̃i(K,L) ,
is defined by

W̃i(K,L) = lim
ε→0+

W̃i(K+̃ε ·L)−W̃i(K)
ε

=
1
n

∫
Sn−1

ρ(K,u)n−i−1ρ(L,u)dS(u), (2.10)

where K,L ∈ S n and 0 � i < n . Obviously, when K = L , Ṽ1(K,L) becomes V (K).

2.3. The dual Minkowski inequalities

Orlicz dual Minkowski inequality for the Orlicz dual volumes is the following: If
K,L ∈ S n and φ ∈ C , then (see [27])

Ṽφ (K,L) � V (K) ·φ
((

V (L)
V (K)

) 1
n
)

, (2.11)
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If φ is strictly convex, equality holds if and only if K and L are dilates.
Obviously, when φ(t) = t−p and p � 1, (2.11) becomes the Lp -dual Minkowski

inequality (see [10]): If K,L ∈ S n and p � 1, then

Ṽ−p(K,L)n � V (K)n+pV (L)−p, (2.12)

with equality if and only if K and L are dilates. When φ(t) = 1
t , (2.11) becomes the

dual Minkowski inequality (see [12]):

Ṽ−1(K,L)n � V (K)n+1V (L)−1, (2.13)

with equality if and only if K and L are dilates.
The fundamental inequality for dual mixed quermassintegral stated that: If K,L ∈

S n and 0 � i < n , then

W̃i(K,L)n−i � W̃i(K)n−1−iW̃i(L), (2.14)

with equality if and only if K and L are dilates. When i = 0, (2.14) becomes the
Minkowski inequality for first dual mixed volume is the following: If K,L ∈ S n, then
(see [11])

Ṽ1(K,L)n � V (K)n−1V (L), (2.15)

with equality if and only if K and L are dilates.

3. Orlicz dual logarithmic Minkowski inequality

In the section, in order to derive the Orlicz dual logarithmic Minkowski inequality,
we need to define some new mixed volume measures. From the definition of (2.8), we
introduce the following dual mixed volume measure of star bodies L and K .

DEFINITION 1. (Dual mixed volume measure) For L,K ∈ S n , the dual mixed
volume measure of L and K , is denoted by dṽ−1(L,K) , is defined by

dṽ−1(L,K) =
1
n

ρ(L,u)n+1ρ(K,u)−1dS(u). (3.1)

When K = L , dṽ−1(L,K) becomes the dual cone volume measure dṽL, is defined
by

dṽL =
1
n

ρ(L,u)ndS(u).

From Definition 1, we find the following mixed volume probability measure.

dṼ−1(L,K) =
1

Ṽ−1(L,K)
dṽ−1(L,K). (3.2)

From the definition of (2.6), we introduce the following Orlicz dual mixed volume
measure of star bodies L and K .
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DEFINITION 2. (Orlicz dual mixed volume measure) For L,K ∈S n and φ ∈ C ,
the Orlicz dual mixed volume measure of L and K , is denoted by dṽφ (L,K) , is defined
by

dṽφ (L,K) =
1
n

φ
(

ρ(K,u)
ρ(L,u)

)
ρ(L,u)ndS(u). (3.3)

From Definition 2, Orlicz dual mixed volume probability measure is defined by

dṼφ (L,K) =
1

Ṽφ (L,K)
dṽφ (L,K). (3.4)

Obviously, when φ(t) = 1
t , (3.3) and (3.4) become (3.1) and (3.2), respectively.

When φ(t) = t−p and p � 1, (3.4) becomes (1.7) stated in introduction.

THEOREM 1. (Orlicz dual logarithmic Minkowski inequality) If L,K ∈S n and
φ ∈ C , then

∫
Sn−1

ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṼφ (L,K) � ln

(
Ṽφ (L,K)

V (L)

)
� ln

(
φ

((
V (K)
V (L)

)1/n
))

.

(3.5)
If φ is strictly convex, each equality holds if and only if L and K are dilates.

Proof. From (3.1) and (3.3), we have∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

)
ln

(
ρ(K,u)
ρ(L,u)

)
dṽL =

∫
Sn−1

ln

(
ρ(K,u)
ρ(L,u)

)
dṽφ (L,K). (3.6)

Note the following formula

Ṽφ (L,K) =
1
n

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

)
ρ(L,u)ndS(u).

From Lebesgue’s dominated convergence theorem, we obtain

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

) q
q+n

dṽL → Ṽφ (L,K)

as q → ∞, and

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

) q
q+n

ln

(
ρ(K,u)
ρ(L,u)

)
dṽL →

∫
Sn−1

ln

(
ρ(K,u)
ρ(L,u)

)
dṽφ (L,K)

as q → ∞.
Let the function gL,K(q) : [1,∞] → R be defined by

gL,K(q) =
1

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

) q
q+n

dṽL. (3.7)
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By calculating the derivative and limit, we obtain

(q+n)2

n
· dgL,K(q)

dq
=

1

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

) q
q+n

ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṽL. (3.8)

and
lim
q→∞

gL,K(q) = 1. (3.9)

From (3.7), (3.8) and (3.9), and by using L’Hôpital’s rule, we have

lim
q→∞

ln(gL,K(q))q+n = −(q+n)2 lim
q→∞

1
gL,K(q)

dgL,K(q)
dq

= − n

Ṽφ (L,K)
lim
q→∞

∫
Sn−1 φ

(
ρ(K,u)
ρ(L,u)

) q
q+n

ln
(

φ
(

ρ(K,u)
ρ(L,u)

))
dṽL

gL,K(q)

= − n

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

)
ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṽL.

Hence

exp

(
− n

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

)
ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṽL

)
= lim

q→∞
(gL,K)q+n

= lim
q→∞

(
1

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

) q
q+n

dṽL

)q+n

. (3.10)

Moreover, from Hölder’s inequality(∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

) q
q+n

dṽL

)(q+n)/q(∫
Sn−1

dṽL

)−n/q

�
∫

Sn−1
φ
(

ρ(K,u)
ρ(L,u)

)
dṽL

= Ṽφ (L,K). (3.11)

From the equality of Hölder’s inequality, it follows the equality in (3.11) holds if
and only if ρ(K,u) and ρ(L,u) are proportional. This yields equality in (3.11) holds if
and only if K and L are dilates, if φ is strictly convex. Namely(

1

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

) q
q+n

dṽL

)q+n

�
(

V (L)
Ṽφ (L,K)

)n

.

If φ is strictly convex, equality holds if and only if K and L are dilates. Hence

exp

(
− n

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

)
ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṽL

)
�
(

V (L)
Ṽφ (L,K)

)n

.
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Therefore

1

Ṽφ (L,K)

∫
Sn−1

φ
(

ρ(K,u)
ρ(L,u)

)
ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṽL � ln

(
Ṽφ (L,K)

V (L)

)
.

That is ∫
Sn−1

ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṼφ (L,K) � ln

(
Ṽφ (L,K)

V (L)

)
. (3.12)

If φ is strictly convex, equality holds if and only if K and L are dilates. The completes
proof of the first inequality in (3.5).

Further, by using the Orlicz dual Minkowski inequality in (2.11), we obtain

∫
Sn−1

ln

(
φ
(

ρ(K,u)
ρ(L,u)

))
dṼφ (L,K) � ln

(
φ

((
V (K)
V (L)

)1/n
))

.

If φ is strictly convex, equality holds if and only if L and K are dilates.
This completes the proof. �
When φ(t) = 1

t , (3.5) becomes the following logarithmic dual Minkowski inequal-
ity.

COROLLARY 1. (The logarithmic dual Minkowski inequality) If L,K ∈S n , then

∫
Sn−1

ln

(
ρ(L,u)
ρ(K,u)

)
dṼ−1(L,K) � ln

(
Ṽ−1(L,K)

V (L)

)
� 1

n
ln

(
V (L)
V (K)

)
,

each equality holds if and only if L and K are dilates.
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