ON L_{p} INTERSECTION MEAN ELLIPSOIDS AND AFFINE ISOPERIMETRIC INEQUALITIES

Xin Cai and Fangwei Chen*

(Communicated by I. Perić)

Abstract

In the paper, we discussed the $L_{p}(p \geqslant 1)$ harmonic combination of convex bodies in \mathbb{R}^{n}. A variational formula for j th affine mean intersection $\tilde{\Lambda}_{j}$ of convex bodies is established when $1 \leqslant j \leqslant n-1$. Using the new L_{p} intersection ellipsoids associated with convex bodies, some affine isoperimetric equalities are obtained.

1. Introduction

Let $K \in \mathbb{R}^{n}$ be a convex body, a compact convex set with a nonempty interior. The relationship between the geometric invariants of K is very important, these geometric quantities are mainly described by some geometric equalities or geometric inequalities. Maybe the isoperimetric inequality is one of the most powerful inequalities in convex geometry, the ellipsoid often appears in solving the isoperimetric type problems and other extreme value problems. In particular, the L_{p} John ellipsoid [15], mixed L_{p} John ellipsoid [7], Orlicz-John ellipsoid [21], Orlicz-Legendre ellipsoid [22] are all a powerful tool to solve the isoperimetric types problem. The research of convex geometry theory in L_{p} space and Orlicz space is one of the hotspots in convex geometry, which has attracted the attention and interest of many mathematicians. In 1980s and 1990s, Firey, Lutwak and others studied the L_{p} Brunn-Minkowski theory and the dual L_{p} Brunn-Minkowski theory, which developed the classical Brunn-Minkowski theory in \mathbb{R}^{n} (see $[11,10,2,12,13,16,8,14,5,18,17]$). The research on the relationship between the affine inequality and the ellipsoid in Euclidean space and L_{p} space has caused the concern of many scholars. Recently, Hu, Xiong and Zou defined the intersection mean ellipsoid in Euclidean space and proved some affine isoperimetric inequalities in Euclidean space (see [6]). The projection mean ellipsoid and the connection with the affine isoperimetric inequalities in Euclidean space are established in [23]. Inspired by paper of Hu , Xiong and Zou [6], in this paper we study the L_{p} intersection mean ellipsoid.

[^0]Let $K \in \mathbb{R}^{n}$ be a convex body, a compact convex set with a nonempty interior, denote by $V(K)$ the volume of K in \mathbb{R}^{n}, it can be represented as

$$
V(K)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} \rho_{K}(z, u)^{n} d \mathscr{H}^{n-1}(u)
$$

where z is an interior point of K, the radical function $\rho_{k}(z, u): \mathbb{S}^{n-1} \rightarrow \mathbb{R}^{n}$ of K with respect to z is defined by $\rho_{k}(z, u)=\sup \{\lambda>0, z+\lambda u \in K\}$ and \mathscr{H}^{n-1} is the $(n-1)$ dimensional Hausdorff measure on the unit sphere \mathbb{S}^{n-1} of \mathbb{R}^{n}. If z is the origin, we simply write $\rho_{k}(u)=\rho_{k}(z, u)$.

Let $G_{n . j}$ denote the Grassman manifold of \mathbb{R}^{n}, μ_{j} is the Haar probability measure on $G_{n, j}, V_{j}(K \cap \xi)$ denotes the j-dimensional volume of intersection of K with a subspace $\xi \in G_{n, j}$. The total average volume of the j-th intersection of a convex body on $G_{n, j}$ is defined by Lutwak [9], which is called the dual affine quermassintegrals Φ_{n-j},

$$
\begin{equation*}
\tilde{\Phi}_{n-j}(K)=\frac{\omega_{n}}{\omega_{j}}\left(\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)\right)^{\frac{1}{n}}, \quad j=1, \cdots, n-1 \tag{1.1}
\end{equation*}
$$

Specially with $\tilde{\Phi}_{0}(K)=V_{n}(K), \tilde{\Phi}_{n}(K)=\omega_{n}$. We rewrite

$$
\tilde{\Lambda}_{j}(K)=\tilde{\Phi}_{n-j}(K), \quad j=1, \cdots, n-1
$$

for convenience. It was proved by Grinberg [4] that the j th affine mean intersections are invariant under the volume preserving linear transforms. Moreover, he proved the following inequality

$$
\begin{equation*}
\tilde{\Lambda}_{j}(K) \leqslant \omega_{n}^{n-j} V(K)^{j} \tag{1.2}
\end{equation*}
$$

for $2 \leqslant j \leqslant n-1$, equality holds if and only if K is an origin-symmetric ellipsoid. Specially, when $j=1$ and K is symmetric, inequality (1.2) becomes an identity; when $j=n-1$, inequality is

$$
\begin{equation*}
V(I K) \leqslant \frac{\omega_{n-1}^{n}}{\omega_{n}^{n-2}} V(K)^{n-1} \tag{1.3}
\end{equation*}
$$

with equality if and only if K is an origin-symmetric ellipsoid. Where $I K$ is the intersection body of K defined by

$$
\rho_{I K}(u)=V_{n-1}\left(K \cap u^{\perp}\right), u \in \mathbb{S}^{n-1}
$$

More details see $[3,4,11,10]$.
The L_{p} dual mixed volume $\tilde{V}_{n,-p}(K, L)$ of convex bodies K and L is defined by Lutwak [11], which is a variation of volume V with respect to the L_{p} harmonic combination $K \hat{+}_{p} \varepsilon \cdot L$, which is

$$
\tilde{V}_{n,-p}(K, L)=-\left.\frac{p}{n} \frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}} V\left(K \hat{+}_{p} \varepsilon \cdot L\right)
$$

where $K \hat{+}_{p} \varepsilon \cdot L$ is defineded by $\rho_{K \hat{+}}^{p}$ 泣 $=\left(\rho_{k}^{-p}+\varepsilon \rho_{L}^{-p}\right)^{-\frac{1}{p}}, \varepsilon>0$.

In this paper, we discuss the L_{p} harmonic combination of convex bodies K and L. In section 3, we defined the j th L_{p} mixed dual affine mean intersection $\bar{\Lambda}_{j,-p}(K, L)$ of convex bodies K and L by,

$$
\bar{\Lambda}_{j,-p}(K, L)=-\left.\frac{p}{j \Lambda_{j}(K)} \frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}} \tilde{\Lambda}_{j}\left(K \hat{+}_{p} \varepsilon \cdot L\right), \quad 1 \leqslant j \leqslant n-1
$$

We show the j th L_{p} mixed dual affine mean intersection is affine invariant and can be represent as the integral of the L_{p} mixed volume of K and L. In section 4, by normalizing the j th L_{p} mixed dual affine mean intersection $\bar{\Lambda}_{j,-p}(K, L)$, we show that there exists a unique origin-symmetric ellipsoid solving the constrained minimization problem, that is

$$
\min V(E) \quad \text { subject to } \quad \bar{\Lambda}_{j,-p}(K, E) \leqslant 1 .
$$

The ellipsoid is called the j-th L_{p} intersection mean ellipsoid of the convex body K, and is denoted by $S_{j, p} K$. Observe that $S_{j, p} K$ is closely related to $V_{j}(K \cap \cdot)$ of the convex body K. Moreover, we prove the following sharp affine isoperimetric inequalities.

THEOREM 1.1. Suppose that K is a convex body in \mathbb{R}^{n} that contains the origin in its interior, and $1 \leqslant j \leqslant n-1, p \geqslant 1$. Then,

$$
\tilde{\Lambda}_{j}(K) \leqslant \omega_{n}^{\frac{n-j}{n}} V\left(S_{j, p} K\right)^{\frac{j}{n}},
$$

when $2 \leqslant j \leqslant n-1$, equality holds if and only if K is an origin-symmetric ellipsoid.
THEOREM 1.2. Suppose that K is an origin-symmetric convex body in \mathbb{R}^{n}. Then,

$$
V\left(S_{1, p}^{*} K\right) V(K) \leqslant \omega_{n}^{2}
$$

with equality if and only if K is an origin-symmetric ellipsoid.
THEOREM 1.3. Suppose that K is a convex body in \mathbb{R}^{n} that contains the origin in its interior. Then,

$$
V(I K) \leqslant \frac{\omega_{n-1}^{n}}{\omega_{n}^{n-2}} V\left(S_{n-1, p} K\right)^{n-1}
$$

with equality if and only if K is an origin-symmetric ellipsoid.

2. Preliminaries

In this paper, we work in n-dimensional Euclidean space \mathbb{R}^{n}, endowed with the standard inner product $x \cdot y$ and Euclidean norm $\|x\| . B^{n}$ and \mathbb{S}^{n-1} denote the unit ball and unit sphere, respectively, the volume of B^{n} is denoted by $\omega_{n}=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right)}$. For $1 \leqslant j \leqslant n-1$, let $G_{n, j}$ be the Grassmann manifold of j dimensional linear space in \mathbb{R}^{n}, write V_{j} for the j-dimensional volume of a convex body in \mathbb{R}^{n}. The set of convex bodies in \mathbb{R}^{n} endowed with the Hausdorff metric is denoted by \mathscr{K}^{n}, and the set of
convex bodies containing the origin in their interiors is denoted by \mathscr{K}_{0}^{n}. Let $K \in \mathscr{K}^{n}$, its support function $h_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
h_{K}(x)=\max \{x \cdot y: y \in K\}, \quad x \in \mathbb{R}^{n}
$$

It is easily seen that h_{K} is 1 -homogeneous and subadditive. For $K \in \mathscr{K}_{0}^{n}$, the radial function of K is defined by

$$
\rho_{K}(x)=\sup \{\lambda>0: \lambda x \in K\}, x \in \mathbb{R}^{n} \backslash\{o\}
$$

We know that ρ_{K} is positive and 1-homogeneous. Moreover, for $T \in G L(n)$, we have $\rho_{T K}(x)=\rho_{K}\left(T^{-1} x\right)$. The polar body K^{*} of K is defined by

$$
K^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leqslant 1, y \in K\right\}
$$

It is easy to check that $h_{K^{*}}=\rho_{K}^{-1},(T K)^{*}=T^{-t} K^{*}$ for $T \in G L(n)$.
Let $K, K_{i} \subseteq \mathscr{K}_{0}^{n}, i \in \mathbb{N}$, then, $K_{i} \rightarrow K$ if and only if $\rho_{K_{i}} \xrightarrow{\delta_{H}} \rho_{K}$ uniformly on \mathbb{S}^{n-1}, where $\delta_{H}(K, L)=\max _{u \in \mathbb{S}^{n-1}}\left|h_{K}(u)-h_{L}(u)\right|$, is the Hausdorff metric.

Let $K, L \in \mathscr{K}_{0}^{n}$, the L_{p} harmonic combination $\lambda \cdot K \hat{+}_{p} \mu \cdot L \in \mathscr{K}_{0}^{n}$ is defined by

$$
\rho_{\lambda \cdot K \hat{+} p} \mu^{-p}(x)=\lambda \rho_{K}^{-p}(x)+\mu \rho_{L}^{-p}(x), x \in \mathbb{R}^{n} \backslash\{o\},
$$

where $\lambda, \mu>0$. Specially, $\lambda \cdot K=\lambda^{-\frac{1}{p}} K$.
Let $\xi \in G_{n, j}$ be j-dimensional subspace $(1 \leqslant j \leqslant n-1)$, then $K \cap \xi$ is an j dimensional convex body in ξ, and $\rho_{K \cap \xi}(u)=\rho_{K}(u)$, for $u \in \mathbb{S}^{n-1} \cap \xi$. Moreover, it is easy to show that $\left(\lambda \cdot K \hat{+}_{p} \mu \cdot L\right) \cap \xi=\lambda \cdot(K \cap \xi) \hat{+}_{p} \mu \cdot(L \cap \xi)$. The volume of $K \cap \xi$ is

$$
\begin{equation*}
V_{j}(K \cap \xi)=\frac{1}{j} \int_{\mathbb{S}^{n-1} \cap \xi} \rho_{K}^{j}(u) d \mathscr{H}^{j-1}(u) \tag{2.1}
\end{equation*}
$$

The $L_{p}(p \geqslant 1)$ dual mixed volume $\tilde{V}_{n,-p}(K, L)$ of $K, L \in \mathscr{K}_{0}^{n}$ is defined by (see [11])

$$
\begin{aligned}
\tilde{V}_{n,-p}(K, L) & =-\frac{p}{n} \lim _{\varepsilon \rightarrow 0^{+}} \frac{V\left(K \hat{+}_{p} \varepsilon \cdot L\right)-V(K)}{\varepsilon} \\
& =\frac{1}{n} \int_{\mathbb{S}^{n-1}} \rho_{K}^{n+p}(u) \rho_{L}^{-p}(u) d \mathscr{H}^{n-1}(u)
\end{aligned}
$$

The dual Minkowski inequality says

$$
\begin{equation*}
\tilde{V}_{j,-p}(K \cap \xi, L \cap \xi)^{j} \geqslant V_{j}(K \cap \xi)^{j+p} V_{j}(L \cap \xi)^{-p} \tag{2.2}
\end{equation*}
$$

with equality if and only if $K \cap \xi$ and $L \cap \xi$ are dilations. For $\xi \in G_{n, j}$, we have

$$
\begin{equation*}
\tilde{V}_{j,-p}(K \cap \xi, L \cap \xi)=\frac{1}{j} \int_{\mathbb{S}^{n-1} \cap \xi} \rho_{K}^{j+p}(u) \rho_{L}^{-p}(u) d \mathscr{H}^{j-1}(u) \tag{2.3}
\end{equation*}
$$

Let ε^{n} denote the class of n-dimensional origin-symmetric ellipsoids in \mathbb{R}^{n}, if $E \in \varepsilon^{n}$, denote by d_{E} its maximal principle radius and $u_{E} \in \mathbb{S}^{n-1}$ be its corresponding principal direction. Then, $h_{E}(u) \geqslant d_{E}\left|u \cdot u_{E}\right|$, for $u \in \mathbb{S}^{n-1}$.

The following Lemmas will be useful in the next section.

Lemma 2.1. ([6]) Suppose that $\left\{T_{i}\right\}_{i \in \mathbb{N}} \subseteq S L(n)$, then

$$
\left\|T_{i}\right\| \rightarrow \infty \Leftrightarrow\left\|T_{i}^{-1}\right\| \rightarrow \infty .
$$

Therefore, $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ is bounded if and only if $\left\{T_{i}^{-1}\right\}_{i \in \mathbb{N}}$ is bounded.
Lemma 2.2. ([6]) Suppose that $\left\{E_{i}\right\}_{i \in \mathbb{N}} \subseteq \varepsilon^{n}$ and $V_{n}\left(E_{i}\right)=a>0$, for all $i \in \mathbb{N}$. Then $\left\{E_{i}\right\}_{i \in \mathbb{N}}$ is bounded if and only if $\left\{E_{i}^{*}\right\}_{i \in \mathbb{N}}$ is bounded.

The following Lemma gathers some properties of the dual affine quermassintegral given by (1.1).

Lemma 2.3. ([6]) Suppose K, $\left\{K_{i}\right\}_{i \subseteq \mathbb{N}} \subseteq \mathscr{K}_{0}^{n}$, and $1 \leqslant j \leqslant n-1$. Then
(1) $\tilde{\Lambda}_{j}(\lambda K)=\lambda^{j} \tilde{\Lambda}_{j}(K)$, for $\lambda>0$;
(2) ${\underset{\sim}{\Lambda}}_{j}(T K)=|\operatorname{det}(T)|^{\frac{j}{n}} \tilde{\Lambda}_{j}(K)$, for $T \in G L(n)$;
(3) $\tilde{\Lambda}_{j}\left(K_{i}\right) \rightarrow \tilde{\Lambda}_{j}(K)$, if $K_{i} \rightarrow K$.

3. L_{p} mixed dual affine quermassintegrals

In this section, we will establish a variational formula of $\tilde{\Lambda}_{j}(K)$, which also is called the j th affine mean intersection.

THEOREM 3.1. Suppose $K, L \in \mathscr{K}_{0}^{n}, 1 \leqslant j \leqslant n-1$ and $p \geqslant 1, \tilde{\Lambda}_{j}(K)$ be the j th affine mean intersection of K, then

$$
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}} \bar{\Lambda}_{j}\left(K \hat{+}_{p} \varepsilon \cdot L\right)=-\frac{j}{p} \tilde{\Lambda}_{j}(K) \frac{\int_{G_{n, j}} \tilde{V}_{j,-p}(K \cap \xi, L \cap \xi) V_{j}(K \cap \xi)^{n-1} d \mu_{j}(\xi)}{\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)}
$$

Proof. For $K, L \in \mathscr{K}_{0}^{n}$, there exist r and $R, 0<r<R<\infty$, such that

$$
r B^{n} \subseteq K \subseteq R B^{n} \text { and } r B^{n} \subseteq L \subseteq R B^{n}
$$

According to the definition of L_{p} harmonic combination, we have

$$
K \hat{+}_{p} \varepsilon \cdot L \subseteq K, \varepsilon>0 \text { and } K \hat{+}_{p} \varepsilon \cdot L \rightarrow K, \varepsilon \rightarrow 0^{+} .
$$

For $\xi \in G_{n, j}$, we have

$$
\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi \nearrow K \cap \xi, \varepsilon \rightarrow 0^{+} .
$$

Since V_{j} is continuous and positive, so

$$
V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right) \nearrow V_{j}(K \cap \xi), \varepsilon \rightarrow 0^{+}
$$

By the monotone convergence theorem, we obtained that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \int_{G_{n, j}} V_{j}((K \hat{+} p, L) \cap \xi)^{n} d \mu_{j}(\xi)=\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi) \tag{3.1}
\end{equation*}
$$

In order to compute the derivation of $V_{j}\left(K \hat{+}_{p} \varepsilon \cdot L\right)$, by (2.1) and (2.3), we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)^{-\frac{j}{p}}-\rho_{K}^{j}}{\varepsilon}=-\frac{j}{p} \rho_{K}^{j+p} \rho_{L}^{-p}, \text { on } \mathbb{S}^{n-1} \cap \xi
$$

Moreover, note that

$$
\begin{align*}
\left|\frac{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)^{-\frac{j}{p}}-\rho_{K}^{j}}{\varepsilon}\right| & =\left|\frac{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)^{-\frac{j}{p}}-\rho_{K}^{j}}{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)-\rho_{K}^{-p}}\right|\left|\frac{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)-\rho_{K}^{-p}}{\varepsilon}\right| \\
& =\left|\frac{\left[\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)^{-1}\right]^{\frac{j}{p}}-\left[\left(\rho_{K}^{-p}\right)^{-1}\right]^{\frac{j}{p}}}{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)-\rho_{K}^{-p}}\right| \rho_{L}^{-p} \\
& \leqslant \frac{j}{p} \rho_{K}^{j+p} \rho_{L}^{-p} \leqslant \frac{j}{p} R^{j+p} r^{-p} \tag{3.2}
\end{align*}
$$

uniformly on $\mathbb{S}^{n-1} \cap \xi$. By the Lebesgue dominated conbergence theorem and (2.3), we have

$$
\begin{align*}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}} V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right) & =\frac{1}{j} \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{S}^{n-1} \cap \xi} \frac{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)^{-\frac{j}{p}}-\rho_{K}^{j}}{\varepsilon} d \mathscr{H}^{j-1} \\
& =-\frac{j}{p} \tilde{V}_{j,-p}(K \cap \xi, L \cap \xi) \tag{3.3}
\end{align*}
$$

Now, we prove $\left\{\varepsilon^{-1}\left[V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right)^{n}-V_{j}(K \cap \xi)^{n}\right]: \varepsilon>0, \xi \in G_{n, j}\right\}$ is uniformly bounded. By (3.2), we obtain

$$
\begin{aligned}
\left|\frac{V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right)-V_{j}(K \cap \xi)}{\varepsilon}\right| & \leqslant \frac{1}{j} \int_{\mathbb{S}^{n-1}}\left|\frac{\left(\rho_{K}^{-p}+\varepsilon \rho_{L}^{-p}\right)^{-\frac{j}{p}}-\rho_{K}^{j}}{\varepsilon}\right| d \mathscr{H}^{j-1} \\
& \leqslant \frac{j}{p} \omega_{j} r^{-p} R^{j+p}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \varepsilon^{-1}\left|V_{j}\left(\left(K_{p} \varepsilon \cdot L\right) \cap \xi\right)^{n}-V_{j}(K \cap \xi)^{n}\right| \\
& \quad=\left|\frac{V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right)^{n}-V_{j}(K \cap \xi)^{n}}{V_{j}\left(\left(K_{p} \varepsilon \cdot L\right) \cap \xi\right)-V_{j}(K \cap \xi)}\right|\left|\frac{V_{j}\left(\left(K \hat{+}{ }_{p} \varepsilon \cdot L\right) \cap \xi\right)-V_{j}(K \cap \xi)}{\varepsilon}\right| \\
& \quad \leqslant \frac{j}{p} \omega_{j} R^{p+j_{r}} r^{-p} n V_{j}(K \cap \xi)^{n-1} \\
& \quad \leqslant \frac{j n}{p} \omega_{j}^{n} r^{-p} R^{j n+p} .
\end{aligned}
$$

Therefore, according to the definition of $\tilde{\Lambda}_{j}$, formula (3.1), the above estimate and the Lebesgue dominated convergence theorem, and (3.3), we obtain that

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}} \tilde{\Lambda}_{j}\left(K \hat{+}{ }_{p} \varepsilon \cdot L\right)= & \left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}} \frac{\omega_{n}}{\omega_{j}}\left(\int_{G_{n, j}} V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right)^{n} d \mu_{j}(\xi)\right)^{\frac{1}{n}} \\
= & \frac{\omega_{n}}{n \omega_{j}}\left(\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)\right)^{\frac{1}{n}-1} \\
& \times\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}}\left(\int_{G_{n, j}} V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right)^{n} d \mu_{j}(\xi)\right) \\
= & \tilde{\Lambda}_{j}(K)\left(\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)\right)^{-1} \\
& \times\left.\int_{G_{n, j}} V_{j}(K \cap \xi)^{n-1} \cdot \frac{d}{d \varepsilon}\right|_{\varepsilon=0^{+}} V_{j}\left(\left(K \hat{+}_{p} \varepsilon \cdot L\right) \cap \xi\right) d \mu_{j}(\xi) \\
= & -\frac{j}{p} \tilde{\Lambda}_{j}(K) \frac{\int_{G_{n, j}} \tilde{V}_{j,-p}(K \cap \xi, L \cap \xi) V_{j}(K \cap \xi)^{n-1} d \mu_{j}(\xi)}{\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)}
\end{aligned}
$$

We obtained the desired formula.
Specially, if we take $p=1$, it becomes the Theorem 3.1 obtain in [6]. We introduce the j-th affine intersection measure of K.

DEFINITION 3.1. ([6]) Suppose that $K \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1$. The geometric measure

$$
\tilde{\mu}_{j}(K, \omega)=\left(\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)\right)^{-1} \int_{\omega} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)
$$

for a Borel set $\omega \subseteq G_{n, j}$ is called the j-th affine intersection measure of K. The affine intersection measure $\tilde{\mu}_{j}(K, \cdot)$ is a probability measure on $G_{n, j}$, and it is absolutely continuous with respect to μ_{j}. Observe that $\tilde{\mu}_{j}(\lambda K, \cdot)=\tilde{\mu}_{j}(K, \cdot)$ for $\lambda>0$. Specially, $\tilde{\mu}_{0}(K, \cdot)=\mu_{0}, \tilde{\mu}_{n}(K, \cdot)=\mu_{n}$ and $\tilde{\mu}_{j}\left(B^{n}, \cdot\right)=\mu_{j}$.

Now, we give the definition of the j th L_{p} mixed dual affine mean intersection of K and L.

DEFINITION 3.2. Suppose that $K, L \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. The geometric inequality

$$
\bar{\Lambda}_{j,-p}(K, L)=\int_{G_{n, j}} \frac{\tilde{V}_{j,-p}(K \cap \xi, L \cap \xi)}{V_{j}(K \cap \xi)} d \tilde{\mu}_{j}(K, \xi)
$$

is called the j th L_{p} mixed dual affine mean intersection of K and L.

Theorem 3.1 grants that

$$
\begin{equation*}
\bar{\Lambda}_{j,-p}(K, L)=-\frac{p}{j \tilde{\Lambda}_{j}(K)} \lim _{\varepsilon \rightarrow 0^{+}} \frac{\tilde{\Lambda}_{j}\left(K \hat{+}_{p} \varepsilon \cdot L\right)-\tilde{\Lambda}_{j}(K)}{\varepsilon} \tag{3.4}
\end{equation*}
$$

Specially, $\bar{\Lambda}_{j,-p}(K, K)=1, \bar{\Lambda}_{n,-p}(K, L)=\frac{\tilde{V}_{n,-p}(K, L)}{V_{n}(K)}$. Therefore, the j th L_{p} mixed dual affine mean intersection $\bar{\Lambda}_{j,-p}(K, L), 1 \leqslant j \leqslant n-1, p \geqslant 1$ is an extension of the normalized L_{p} dual mixed volume $\frac{\tilde{V}_{n,-p}(K, L)}{V_{n}(K)}$.

Proposition 3.2. Suppose that $K, L \in \mathscr{K}_{0}^{n},\left\{K_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{L_{i}\right\}_{i \in \mathbb{N}} \subset \mathscr{K}_{0}^{n}$, and $1 \leqslant j \leqslant n-1, p \geqslant 1$. Then,
(1) $\bar{\Lambda}_{j,-p}(\lambda K, \mu L)=\lambda^{p} \mu^{-p} \bar{\Lambda}_{j,-p}(K, L)$ for $\lambda>0, \mu>0$;
(2) $\bar{\Lambda}_{j,-p}(T K, T L)=\bar{\Lambda}_{j,-p}(K, L)$ for $T \in G L(n)$;
(3) $\bar{\Lambda}_{j,-p}\left(K_{i}, L_{i}\right) \rightarrow \bar{\Lambda}_{j,-p}(K, L)$ if $K_{i} \rightarrow K, L_{i} \rightarrow L$.

Proof. By Definition 3.2 and formula (2.3), $\tilde{\mu}_{j}(\lambda K, \cdot)=\tilde{\mu}_{j}(K, \cdot)$ and the homogeneity of V_{j}, the first assertion follows.

The second assertion is obtained by Lemma 2.3, formula (3.4) and the fact

$$
T K \hat{+}_{p} \varepsilon \cdot T L=T\left(K \hat{+}_{p} \varepsilon \cdot L\right)
$$

for $T \in G L(n)$.
According to Definition 3.1, and Definition 3.2, $\bar{\Lambda}_{j,-p}(K, L)$ can be represent by the following formula

$$
\bar{\Lambda}_{j,-p}(K, L)=\left(\frac{\omega_{n}}{\omega_{j}}\right)^{n} \tilde{\Lambda}_{j}(K)^{-n} \int_{G_{n, j}} \tilde{V}_{j,-p}(K \cap \xi, L \cap \xi) V_{j}(K \cap \xi)^{n-1} d \mu_{j}(\xi)
$$

If $K_{i} \rightarrow K$ and $L_{i} \rightarrow L$, there exists $0<r<R<\infty$, such that $r B^{n} \subseteq K, K_{i}, L, L_{i} \subseteq R B^{n}$. So $\tilde{V}_{j,-p}(K \cap \xi, L \cap \xi) V_{j}(K \cap \xi)^{n-1} \leqslant \omega_{j}^{n} R^{j n+p} r^{-p}$, which shows $\left\{\tilde{V}_{j,-p}(K \cap \xi, L \cap\right.$ $\left.\xi) V_{j}(K \cap \xi)^{n-1}: i \in \mathbb{N}\right\}$ is uniformly bounded on $G_{n, j}$. Combining with the Lebesgue dominated convergence theorem and Lemma 2.3, assertion (3) follows.

The following Propositions about the measure of $\mu_{j}(K, \omega)$ are obtained in [6].

Proposition 3.3. ([6]) Suppose that $K \in \mathscr{K}_{0}^{n}, T \in S L(n)$ and $1 \leqslant j \leqslant n-1$. Then for a Borel set $\omega \subseteq G_{n, j}, \tilde{\mu}_{j}(T K, \omega)=\tilde{\mu}_{j}\left(K, T^{-1} \omega\right)$.

Proposition 3.4. ([6]) Suppose that $K \in \mathscr{K}_{0}^{n},\left\{K_{i}\right\}_{i \in \mathbb{N}} \subseteq \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant$ $n-1$. If $K_{i} \rightarrow K$, then $\tilde{\mu}_{j}\left(K_{i}, \cdot\right) \rightarrow \tilde{\mu}_{j}(K, \cdot)$ weakly.

4. L_{p} intersection mean ellipsoids

In this section, we define a family of new ellipsoids associated with convex bodies according to solve the following optimization problems.

Problem $P_{j, p}$. Suppose that K is a convex body in \mathbb{R}^{n} that contains the origin in its interior, $1 \leqslant j \leqslant n-1$, and $p \geqslant 1$. Among all origin-symmetric ellipsoids E, find one to solve the constrained minimization problem

$$
\min _{E} V(E) \text { subject to } \bar{\Lambda}_{j,-p}(K, E) \leqslant 1
$$

Problem $\bar{P}_{j, p}$. Suppose that K is a convex body in \mathbb{R}^{n} that contains the origin in its interior, $1 \leqslant j \leqslant n-1$, and $p \geqslant 1$. Among all origin-symmetric ellipsoids E, find one to solve the constrained minimization problem

$$
\min _{E} \bar{\Lambda}_{j,-p}(K, E) \text { subject to } V(E) \leqslant \omega_{n}
$$

Firstly, we will show the solution of Problem $P_{j, p}$ and Problem $\bar{P}_{j, p}$ only differ by a scale factor in the following Lemma.

Lemma 4.1. Suppose that $K \in \mathscr{K}_{0}^{n}$, and $1 \leqslant j \leqslant n-1$.
(1) If E_{0} is a solution to Problem $P_{j, p}$, then

$$
\left(\frac{\omega_{n}}{V\left(E_{0}\right)}\right)^{\frac{1}{n}} E_{0}
$$

is a solution to $\bar{P}_{j, p}$.
(2) If E_{1} is a solution to Problem $\bar{P}_{j, p}$, then

$$
\bar{\Lambda}_{j,-p}\left(K, E_{1}\right)^{\frac{1}{p}} E_{1}
$$

is a solution to Problem $P_{j, p}$.

Proof. (1) Assume that $E \in\left\{E \in \varepsilon^{n}: V(E) \leqslant \omega_{n}\right\}$. By Proposition 3.2, we have

$$
\bar{\Lambda}_{j,-p}\left(K, \bar{\Lambda}_{j,-p}(K, E)^{\frac{1}{p}} E\right)=1
$$

Then

$$
V\left(E_{0}\right) \leqslant V\left(\bar{\Lambda}_{j,-p}(K, E)^{\frac{1}{p}} E\right)=\bar{\Lambda}_{j,-p}(K, E)^{\frac{n}{p}} V(E)
$$

Therefore, from $\bar{\Lambda}_{j,-p}\left(K, E_{0}\right) \leqslant 1$ and Proposition 3.2, we have
$\bar{\Lambda}_{j,-p}(K, E) \geqslant\left(\frac{V\left(E_{0}\right)}{V(E)}\right)^{\frac{p}{n}} \geqslant\left(\frac{V\left(E_{0}\right)}{\omega_{n}}\right)^{\frac{p}{n}} \bar{\Lambda}_{j,-p}\left(K, E_{0}\right)=\bar{\Lambda}_{j,-p}\left(K,\left(\frac{\omega_{n}}{V\left(E_{0}\right)}\right)^{\frac{1}{n}} E_{0}\right)$.

On the other hand, note that $V\left(\left(\frac{\omega_{n}}{V\left(E_{0}\right)}\right)^{\frac{1}{n}} E_{0}\right)=\omega_{n}$, so we obtain that $\left(\frac{\omega_{n}}{V\left(E_{0}\right)}\right)^{\frac{1}{n}} E_{0}$ is a solution to Problem $\bar{P}_{j, p}$.
(2) Assume that $E \in\left\{E \in \varepsilon^{n}: \bar{\Lambda}_{j,-p}(K, E) \leqslant 1\right\}$. Since $V\left(\left(\frac{\omega_{n}}{V(E)}\right)^{\frac{1}{n}} E\right)=\omega_{n}$, it follows that

$$
\bar{\Lambda}_{j,-p}\left(K, E_{1}\right) \leqslant \bar{\Lambda}_{j,-p}\left(K,\left(\frac{\omega_{n}}{V(E)}\right)^{\frac{1}{n}} E\right)=\left(\frac{V(E)}{\omega_{n}}\right)^{\frac{p}{n}} \bar{\Lambda}_{j,-p}(K, E)
$$

The above inequality can also be rewritten as

$$
V\left(\bar{\Lambda}_{j,-p}\left(K, E_{1}\right)^{\frac{1}{p}} E_{1}\right)=\bar{\Lambda}_{j,-p}\left(K, E_{1}\right)^{\frac{n}{p}} V\left(E_{1}\right) \leqslant \frac{V(E)}{\omega_{n}} \bar{\Lambda}_{j,-p}(K, E)^{\frac{n}{p}} V\left(E_{1}\right) \leqslant V(E)
$$

Because $\bar{\Lambda}_{j,-p}\left(K, \bar{\Lambda}_{j,-p}\left(K, E_{1}\right)^{\frac{1}{p}} E_{1}\right)=1$, so we obtain that $\bar{\Lambda}_{j,-p}\left(K, E_{1}\right)^{\frac{1}{p}} E_{1}$ is a solution to Problem $P_{j, p}$.

Lemma 4.2. Suppose that $K \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1$. Then
(1) $\min \left\{V(E): E \in \varepsilon^{n}, \bar{\Lambda}_{j,-p}(K, E) \leqslant 1\right\}=\min \left\{V(E): E \in \varepsilon^{n}, \bar{\Lambda}_{j,-p}(K, E)=1\right\}$;
(2) $\min \left\{\bar{\Lambda}_{j,-p}(K, E): E \in \varepsilon^{n}, V(E) \leqslant \omega_{n}\right\}=\min \left\{\bar{\Lambda}_{j,-p}(K, E): E \in \varepsilon^{n}, V(E)=\right.$ $\left.\omega_{n}\right\}$.

Proof. (1) Set $A=\min \left\{V(E): E \in \varepsilon^{n}, \bar{\Lambda}_{j,-p}(K, E) \leqslant 1\right\}$, and $B=\min \{V(E)$: $\left.E \in \varepsilon^{n}, \bar{\Lambda}_{j,-p}(K, E)=1\right\}$. Given an ellipsoid $E_{0} \in A$ with $\bar{\Lambda}_{j,-p}\left(K, E_{0}\right)<1$. By Proposition 3.2, we have

$$
\bar{\Lambda}_{j,-p}\left(K, \bar{\Lambda}_{j,-p}\left(K, E_{0}\right)^{\frac{1}{p}} E_{0}\right)=1
$$

That is the ellipsoid $\bar{\Lambda}_{j,-p}\left(K, E_{0}\right)^{\frac{1}{p}} E_{0} \in A$. Since

$$
V\left(\bar{\Lambda}_{j,-p}\left(K, E_{0}\right)^{\frac{1}{p}} E_{0}\right)=\bar{\Lambda}_{j,-p}\left(K, E_{0}\right)^{\frac{n}{p}} V\left(E_{0}\right)<V\left(E_{0}\right)
$$

That means E_{0} cannot be a minimum of A, then we prove the equivalence.
The same method can be applied in the second assertion. So we complete the proof.

In order to prove the existence of the solution of Problem $\bar{P}_{j, p}$, we need the following Lemma see ([19, 20]).

LEMMA 4.3. Let f is a continuousfunction on $\mathbb{S}^{n-1}, \xi \subset G_{n, j}$ be a j-dimensional subspace of $G_{n, j}, 1 \leqslant j \leqslant n-1$. Then

$$
\begin{equation*}
\frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}} f(u) d \mathscr{H}^{n-1}(u)=\int_{G_{n, j}} \frac{1}{j \omega_{j}} \int_{\mathbb{S}^{n-1} \cap \xi} f(v) d \mathscr{H}^{j-1}(v) d \mu_{j}(\xi) \tag{4.1}
\end{equation*}
$$

Now we can give the existence of the solution of Problem $\bar{P}_{j, p}$.
THEOREM 4.4. Their exists a solution to Problem $\bar{P}_{j, p}$.

Proof. If $K \in \mathscr{K}_{0}^{n}$, there exists r and $R(0<r<R<\infty)$, such that $r B^{n} \subseteq K \subseteq$ $R B^{n}$. If E is an origin-symmetric ellipsoid, by Definition 3.2, formula (2.2), (2.3), (4.1) and the fact that $\int_{\mathbb{S}^{n-1}}|u \cdot v|^{p} d \mathscr{H}^{n-1}(v)<\infty$ for $u \in \mathbb{S}^{n-1}$, we have the following computation

$$
\begin{align*}
\bar{\Lambda}_{j,-p}(K, E) & =\frac{\int_{G_{n, j}} \tilde{V}_{j,-p}(K \cap \xi, E \cap \xi) V_{j}(K \cap \xi)^{n-1} d \mu_{j}(\xi)}{\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)} \\
& \geqslant \frac{\int_{G_{n, j}} \tilde{V}_{j,-p}(K \cap \xi, E \cap \xi) V_{j}\left(r B^{n} \cap \xi\right)^{n-1} d \mu_{j}(\xi)}{\int_{G_{n, j}} V_{j}\left(R B^{n} \cap \xi\right)^{n} d \mu_{j}(\xi)} \\
& =\left(\frac{r}{R}\right)^{j n} \frac{1}{r^{j} \omega_{j}} \int_{G_{n, j}} \frac{1}{j} \int_{\mathbb{S}^{n-1} \cap \xi} \rho_{K}^{j+p} \rho_{E}^{-p} d \mathscr{H}^{j-1}(u) d \mu_{j}(\xi) \\
& \geqslant\left(\frac{r}{R}\right)^{j n} r^{p} d_{E^{*}}^{p} \int_{G_{n, j}} \frac{1}{j \omega_{j}} \int_{\mathbb{S}^{n-1} \cap \xi}\left|u \cdot u_{E^{*}}\right|^{p} d \mathscr{H}^{j-1}(u) d \mu_{j}(\xi) \\
& \left.=\left(\frac{r}{R}\right)^{j n} r^{p} d_{E^{*}}^{p} \frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1} \cap \xi} \right\rvert\, u \cdot u_{E^{*} \mid}^{p} d \mathscr{H}^{n-1}(u) \tag{4.2}
\end{align*}
$$

Thus, for many minimizing sequence of ellipsoids $\left\{E_{i}\right\}_{i \in \mathbb{N}} \subseteq \varepsilon^{n}$ for Problem $\bar{P}_{j, p}$, when i is sufficiently large, then

$$
\begin{equation*}
\bar{\Lambda}_{j,-p}\left(K, E_{i}\right) \leqslant \bar{\Lambda}_{j,-p}\left(K, B^{n}\right)<\infty . \tag{4.3}
\end{equation*}
$$

From above estimate, we can know the maximal principle radius sequence $\left\{d_{E_{i}^{*}}\right\}_{i \in \mathbb{N}}$ is bounded. And $V\left(E_{i}\right)=\omega_{n}, i \in \mathbb{N}$, and Lemma 2.2, we obtain that any minimizing sequence of ellipsoids $\left\{E_{i}\right\}_{i \in \mathbb{N}}$ for Problem $\bar{P}_{j, p}$ is bounded. By the Blaschke selection theorem, there exists a convergent subsequence $\left\{E_{i_{k}}\right\}_{i \in \mathbb{N}}$ converging to an originsymmetric ellipsoid E_{0}. From the continuity of volume, we have $V\left(E_{0}\right)=\omega_{n}>0$. This implies that E_{0} is non degenerate, and E_{0} is a solution to Problem $\bar{P}_{j, p}$. This completes the proof.

THEOREM 4.5. There exists a unique solution to Problem $\bar{P}_{j, p}$.
Proof. Assume that $E_{1}, E_{2} \in \varepsilon^{n}, E_{1} \neq E_{2}$ are solutions of Problem $\bar{P}_{j, p}$. We assume that $E_{i}=T_{i} B^{n}, T_{i}$ is symmetric and positive definite with $\operatorname{det}\left(T_{i}\right)=1, i=1,2$. And $T_{1} \neq \lambda T_{2}$ for all $\lambda>0$, according to the Minkowski inequality for symmetric and positive definite matrices, it follows that

$$
\operatorname{det}\left(\frac{T_{1}^{-p}+T_{2}^{-p}}{2}\right)^{\frac{1}{n}}>\frac{1}{2} \operatorname{det}\left(T_{1}^{-p}\right)^{\frac{1}{n}}+\frac{1}{2} \operatorname{det}\left(T_{2}^{-p}\right)^{\frac{1}{n}}=1
$$

Let

$$
T_{3}^{-p}=\operatorname{det}\left(\frac{T_{1}^{-p}+T_{2}^{-p}}{2}\right)^{-\frac{1}{n}} \frac{T_{1}^{-p}+T_{2}^{-p}}{2}, \text { and } E_{3}=T_{3} B^{n}
$$

So, $T_{3} \in S L(n)$, and for all $u \in \mathbb{S}_{n-1}$, we have

$$
\begin{aligned}
\rho_{E_{3}}^{-p}(u) & =\left|T_{3}^{-p} u\right| \\
& =\operatorname{det}\left(\frac{T_{1}^{-p}+T_{2}^{-p}}{2}\right)^{-1}\left|\frac{T_{1}^{-p} u+T_{2}^{-p} u}{2}\right| \\
& <\left|\frac{T_{1}^{-p} u+T_{2}^{-p} u}{2}\right| \leqslant \frac{1}{2}\left|T_{1}^{-p} u\right|+\frac{1}{2}\left|T_{2}^{-p} u\right| \\
& =\frac{1}{2} \rho_{E_{1}}^{-p}(u)+\frac{1}{2} \rho_{E_{2}}^{-p}(u) .
\end{aligned}
$$

Therefore, from (2.3) and Definition 3.2, we have

$$
\begin{aligned}
\bar{\Lambda}_{j,-p}\left(K, E_{3}\right) & <\frac{1}{2} \bar{\Lambda}_{j,-p}\left(K, E_{1}\right)+\frac{1}{2} \bar{\Lambda}_{j,-p}\left(K, E_{2}\right) \\
& =\bar{\Lambda}_{j,-p}\left(K, E_{1}\right)=\bar{\Lambda}_{j,-p}\left(K, E_{2}\right)
\end{aligned}
$$

But the fact that $T_{3} \in S L(n)$ and the assumption on E_{1} and E_{2}, we obtain

$$
\bar{\Lambda}_{j,-p}\left(K, E_{3}\right) \geqslant \bar{\Lambda}_{j,-p}\left(K, E_{1}\right)=\bar{\Lambda}_{j,-p}\left(K, E_{2}\right)
$$

which contradicts the above assumption. This completes the proof.
According to Theorem 4.4 and Theorem 4.5, we introduce the following ellipsoids.
DEFInItion 4.1. Let $K \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. Among all originsymmetric ellipsoids, the unique ellipsoid that solves the constrained minimization problem

$$
\min _{E} V(E) \text { subject to } \bar{\Lambda}_{j,-p}(K, E) \leqslant 1
$$

is called the L_{p} intersection mean ellipsoid of order j of K, and denoted by $S_{j, p}(K)$.
Among all origin-symmetric ellipsoids, the unique ellipsoid that solves the constrained minimization problem

$$
\min _{E} \bar{\Lambda}_{j,-p}(K, E) \text { subject to } V(E)=\omega_{n}
$$

is called the normalized L_{p} intersection mean ellipsoid of order j of K, and denoted by $\bar{S}_{j, p}(K)$.

Corollary 4.6. Suppose that $K \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. Then for $T \in G L(n)$,

$$
S_{j, p}(T K)=T\left(S_{j, p} K\right)
$$

Proof. According to Definition 4.1 and Proposition 3.2, if $T \in G L(n)$, we have

$$
\bar{\Lambda}_{j,-p}\left(K, T^{-1}\left(S_{j, p}(T K)\right)\right)=\bar{\Lambda}_{j,-p}\left(T K, S_{j, p}(T K)\right) \leqslant 1
$$

So $V\left(S_{j, p} K\right) \leqslant V\left(T^{-1}\left(S_{j, p}(T K)\right)\right)$. Then we have $V\left(T\left(S_{j, p} K\right)\right) \leqslant V\left(S_{j, p}(T K)\right)$. Since $\bar{\Lambda}_{j,-p}\left(T K, T\left(S_{j, p} K\right)\right)=\bar{\Lambda}_{j,-p}\left(K, S_{j, p} K\right) \leqslant 1$, then $T\left(S_{j, p} K\right) \in\left\{E \in \varepsilon^{n}: \bar{\Lambda}_{j,-p}(T K, E) \leqslant\right.$ 1\}. From Theorem 4.5, it follows that $S_{j, p}(T K)=T\left(S_{j, p} K\right)$, we complete the proof.

Corollary 4.7. Suppose that $K \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. Then for $E \in \varepsilon^{n}$, we have

$$
S_{j, p} E=E
$$

Proof. By Corollary 4.6, it suffices to prove that $S_{j, p} B^{n}=B^{n}$. Let $S_{j, p} B^{n}=T B^{n}$, $T \in G L(n)$. By Lemma 2.3, we have

$$
\tilde{\Lambda}_{j}\left(S_{j, p} B^{n}\right)=|\operatorname{det} T|^{\frac{j}{n}} \tilde{\Lambda}_{j}\left(B^{n}\right)
$$

By Lemma 4.2 and Lemma 5.2, we have

$$
1=\bar{\Lambda}_{j,-p}\left(B^{n}, S_{j, p} B^{n}\right) \geqslant\left(\frac{\tilde{\Lambda}_{j}\left(B^{n}\right)}{\tilde{\Lambda}_{j}\left(S_{j, p} B^{n}\right)}\right)^{\frac{p}{j}}=\left(\frac{1}{|\operatorname{det} T|}\right)^{\frac{p}{n}}=\left(\frac{V\left(B^{n}\right)}{V\left(S_{j, p} B^{n}\right)}\right)^{\frac{p}{n}}
$$

Hence, $V\left(B^{n}\right) \leqslant V\left(S_{j, p} B^{n}\right)$. On the other hand $\bar{\Lambda}_{j,-p}\left(B^{n}, B^{n}\right)=1$, we have $B^{n} \in\{E \in$ $\left.\varepsilon^{n}: \bar{\Lambda}_{j,-p}\left(B^{n}, E\right) \leqslant 1\right\}$. From Theorem 4.5, we have $S_{j, p} B^{n}=B^{n}$.

Lemma 4.8. Suppose that $K,\left\{K_{i}\right\}_{i \in \mathbb{N}} \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. If $K_{i} \rightarrow$ K, then $\left\{\bar{S}_{j, p} K, \bar{S}_{j, p} K_{i}, i \in \mathbb{N}\right\}$ is bounded from above.

Proof. Since $K_{i} \in \mathscr{K}_{0}^{n}, K_{i} \rightarrow K \in \mathscr{K}_{0}^{n}$, there exists r and $R, 0<r<R<\infty$, such that

$$
r B^{n} \subseteq K \subseteq R B^{n}, \text { and } r B^{n} \subseteq K_{i} \subseteq R B^{n}
$$

for all $i \in \mathbb{N}$.
Since $\bar{S}_{j, p} K \in \varepsilon^{n}$, by (4.2), we have

$$
\bar{\Lambda}_{j,-p}\left(K, \bar{S}_{j, p} K\right) \geqslant\left(\frac{r}{R}\right)^{j n} r^{p} d_{\bar{S}_{j, p}^{*} K}^{p} \frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}}\left|u \cdot u_{E}^{*}\right|^{p} d \mathscr{H}^{n-1}(u)
$$

Here, $\bar{S}_{j, p}^{*} K$ is the polar body of $\bar{S}_{j, p} K$. from Definition 4.1, we have

$$
\bar{\Lambda}_{j,-p}\left(K, \bar{S}_{j, p} K\right) \leqslant \bar{\Lambda}_{j,-p}\left(K, B^{n}\right) \leqslant\left(\frac{R}{r}\right)^{j n+p}
$$

Therefore, it follows that

$$
d_{\bar{S}_{j, p}^{*} K} \leqslant\left(\frac{n \omega_{n}}{\int_{\mathbb{S}^{n-1}}\left|u \cdot u_{E}^{*}\right|^{p} d \mathscr{H}^{n-1}(u)}\right)^{\frac{1}{p}}\left(\frac{R^{2 j n+p}}{r^{2 j n+2 p}}\right)^{\frac{1}{p}}
$$

For $\bar{S}_{j, p}^{*} K_{i}, i \in \mathbb{N}$, the proof is similar. Thus, we have $\left\{\bar{S}_{j, p} K, \bar{S}_{j, p} K_{i}, i \in \mathbb{N}\right\}$ is bounede from above. It completes the proof.

THEOREM 4.9. Suppose that $K, K_{i} \in \mathscr{K}_{0}^{n}, i \in \mathbb{N}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. If $K_{i} \rightarrow K$, then

$$
\lim _{i \rightarrow \infty} S_{j, p} K_{i}=S_{j, p} K
$$

Proof. From Lemma 4.8, there exists a constant $0<R<\infty$, such that all the ellipsoids $\bar{S}_{j, p} K, \bar{S}_{j, p} K_{i}, i \in \mathbb{N}$ are in the set

$$
\varepsilon=\left\{E \in \varepsilon^{n}: V(E)=\omega_{n} \text { and } E \subseteq R B^{n}\right\}
$$

By the compactness of ε^{n}, the boundedness of $\left\{K, K_{i}, \quad i \in \mathbb{N}\right\}$ and Proposition 3.2(3), it follows that

$$
\lim _{i \rightarrow \infty} \bar{\Lambda}_{j,-p}\left(K_{i}, E\right)=\bar{\Lambda}_{j,-p}(K, E), \text { uniformly in } E \in \varepsilon^{n}
$$

By Definition 4.1, we have

$$
\begin{align*}
\lim _{i \rightarrow \infty} \bar{\Lambda}_{j,-p}\left(K_{i}, \bar{S}_{j, p} K_{i}\right) & =\lim _{i \rightarrow \infty} \min _{E \in \varepsilon^{n}} \bar{\Lambda}_{j,-p}\left(K_{i}, E\right) \\
& =\min _{E \in \varepsilon^{n}} \lim _{i \rightarrow \infty} \bar{\Lambda}_{j,-p}\left(K_{i}, E\right) \\
& =\min _{E \in \varepsilon^{n}} \bar{\Lambda}_{j,-p}(K, E) \\
& =\bar{\Lambda}_{j,-p}\left(K, \bar{S}_{j, p} K\right) \tag{4.4}
\end{align*}
$$

If we assume $E_{0} \neq \bar{S}_{j, p} K$. Since $\left\{\bar{S}_{j, p} K_{i}\right\}_{i \in \mathbb{N}} \subseteq \varepsilon^{n}$, from the compactness of ε^{n}, the Blaschke selection theorem and $E_{0} \neq \bar{S}_{j, p} K$, we can know there exists a convergent subsequence $\left\{\bar{S}_{j, p} K_{i_{k}}\right\}_{k \in \mathbb{N}}$ such that $\bar{S}_{j, p} K_{i_{k}} \rightarrow E_{0} \in \varepsilon^{n}$, but $E_{0} \neq \bar{S}_{j, p} K$. So

$$
\begin{aligned}
\bar{\Lambda}_{j,-p}\left(K, E_{0}\right) & =\bar{\Lambda}_{j,-p}\left(K, \lim _{k \rightarrow \infty} \bar{S}_{j, p} K_{i_{k}}\right) \\
& =\lim _{k \rightarrow \infty} \bar{\Lambda}_{j,-p}\left(K, \bar{S}_{j, p} K_{i_{k}}\right) \\
& =\lim _{k \rightarrow \infty} \bar{\Lambda}_{j,-p}\left(K_{i_{k}}, \bar{S}_{j, p} K_{i_{k}}\right) \\
& =\bar{\Lambda}_{j,-p}\left(K, \bar{S}_{j, p} K\right)
\end{aligned}
$$

Therefore, by Definition 4.1, we have $\bar{S}_{j, p} K=E_{0}$, which is a contradiction. That is, $\lim _{i \rightarrow \infty} \bar{S}_{j, p} K_{i}=\bar{S}_{j, p} K$. From this limit, (4.4) and $S_{j, p} K=\bar{\Lambda}_{j,-p}\left(K, \bar{S}_{j, p} K\right)^{\frac{1}{p}} \bar{S}_{j, p} K$, we have

$$
\lim _{i \rightarrow \infty} S_{j, p} K_{i}=\lim _{i \rightarrow \infty} \bar{\Lambda}_{j,-p}\left(K_{i}, \bar{S}_{j, p} K_{i}\right)^{\frac{1}{p}} \bar{S}_{j, p} K_{i}=\bar{\Lambda}_{j,-p}\left(K, \bar{S}_{j, p} K\right)^{\frac{1}{p}} \bar{S}_{j, p} K=S_{j, p} K
$$

the desired statement is obtained. This completes the proof.

5. New sharp affine isoperimetric inequalities

In the section, we will give some new sharp affine isoperimetric inequalities for j th L_{p} mixed dual affine mean intersection and L_{p} intersection mean ellipsoids. The following Lemma will be useful.

Lemma 5.1. ([1]) Suppose that $K, L \in \mathscr{K}_{0}^{n}$ and $2 \leqslant j \leqslant n-1$. If $K \cap \xi$ is a dilate of $L \cap \xi$ for each $\xi \in G_{n, j}$, then K is a dilate of L.

Now we give the inequality of the j th L_{p} mixed dual affine mean intersection of K and L.

Lemma 5.2. Suppose that $K L \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. We have

$$
\bar{\Lambda}_{j,-p}(K, L) \geqslant\left(\frac{\tilde{\Lambda}_{j}(K)}{\tilde{\Lambda}_{j}(L)}\right)^{\frac{p}{j}}
$$

When $2 \leqslant j \leqslant n-1$, equality holds if and only if K is a dilate of L. Moreover, if K, L are origin-symmetric, we have

$$
\bar{\Lambda}_{1,-p}(K, L) \geqslant\left(\frac{V(K)}{V(L)}\right)^{\frac{p}{n}}
$$

equality holds if and only if K is a dilate of L.
Proof. By Definition 3.1, formula (2.2), the dual Minkowski inequality, the Jensen inequality, Definition 3.2 and the definition of $\tilde{\Lambda}_{j}$, we have

$$
\begin{aligned}
\bar{\Lambda}_{j,-p}(K, L) & =\int_{G_{n, j}} \frac{\tilde{V}_{j,-p}(K \cap \xi, L \cap \xi)}{V_{j}(K \cap \xi)} d \tilde{\mu}_{j}(K, \xi) \\
& \geqslant \int_{G_{n, j}} \frac{V_{j}(K \cap \xi)^{\frac{j+p}{j}} V_{j}(L \cap \xi)^{-\frac{p}{j}}}{V_{j}(K \cap \xi)} d \tilde{\mu}_{j}(K, \xi) \\
& =\int_{G_{n, j}}\left(\frac{V_{j}(L \cap \xi)^{n}}{V_{j}(K \cap \xi)^{n}}\right)^{-\frac{p}{j n}} d \tilde{\mu}_{j}(K, \xi) \\
& \geqslant\left(\int_{G_{n, j}} \frac{V_{j}(L \cap \xi)^{n}}{V_{j}(K \cap \xi)^{n}} d \tilde{\mu}_{j}(K, \xi)\right)^{-\frac{p}{j n}} \\
& =\left(\int_{G_{n, j}} \frac{V_{j}(L \cap \xi)^{n}}{V_{j}(K \cap \xi)^{n}}\left(\int_{G_{n, j}} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)\right)^{-1} V_{j}(K \cap \xi)^{n} d \mu_{j}(\xi)\right)^{-\frac{p}{j n}} \\
& =\left(\frac{\int_{G_{n, j}}}{\int_{G_{n, j}}(L \cap \xi)^{n} d \mu_{j}(\xi)}\right)^{-\frac{p}{j n}} \\
& =\left(\frac{\Lambda_{j}(K)}{\Lambda_{j}(L)}\right)^{\frac{p}{j}}
\end{aligned}
$$

With equalities conditions for each $\xi \in G_{n, j}$, there is some $\lambda_{\xi}>0$, such that $L \cap$ $\xi=\lambda_{\xi}(K \cap \xi)$, and $\frac{V_{j}(L \cap \xi)}{V_{j}(K \cap \xi)}$ is a constant on $G_{n, j}$. So we know λ_{ξ} is a constant on $G_{n, j}$, and $K \cap \xi$ is a dilate of $L \cap \xi$, for each $\xi \in G_{n, j}$. By Lemma 5.1, when $2 \leqslant j \leqslant n-1$, we have K is a dilate of L. Secondly, suppose that $j=1$ and K, L are origin-symmetric. For $\xi \in G_{n, 1}, \xi=R u$ for some $u \in \mathbb{S}^{n-1}$, then $\mathbb{S}^{n-1} \cap \xi=$ $\{-u, u\}, V_{1}(K \cap \xi)=2 \rho_{K}(u)$. By the dual Minkowski inequality, we have

$$
\begin{aligned}
\bar{\Lambda}_{1,-p}(K, L) & =\frac{\int_{G_{n, 1}} \tilde{V}_{1,-p}(K \cap \xi, L \cap \xi) V_{1}(K \cap \xi)^{n-1} d \mu_{1}(\xi)}{\int_{G_{n, 1}} V_{1}(K \cap \xi)^{n} d \mu_{1}(\xi)} \\
& =\frac{\int_{\mathbb{S}^{n-1}} \rho_{k}^{n+p}(u) \rho_{L}^{-p}(u) d \mathscr{H}^{n-1}(u)}{\int_{\mathbb{S}^{n-1}} \rho_{k}^{n}(u) d \mathscr{H}^{n-1}(u)} \\
& =\frac{\tilde{V}_{n,-p}(K, L)}{V(K)} \geqslant\left(\frac{V(K)}{V(L)}\right)^{\frac{p}{n}}
\end{aligned}
$$

With equality if and only if K is a dilate of L. It completes the proof.
THEOREM 5.3. Suppose that $K \in \mathscr{K}_{0}^{n}$ and $1 \leqslant j \leqslant n-1, p \geqslant 1$. We have

$$
\tilde{\Lambda}_{j}(K) \leqslant \omega_{n}^{\frac{n-j}{n}} V\left(S_{j, p} K\right)^{\frac{j}{n}}
$$

When $2 \leqslant j \leqslant n-1$, equality holds if and only if K is an origin-symmetric ellipsoid.
Proof. According to Lemma 4.2 and Lemma 5.2, we have

$$
1=\bar{\Lambda}_{j,-p}\left(K, S_{j, p} K\right) \geqslant\left(\frac{\tilde{\Lambda}_{j}(K)}{\tilde{\Lambda}_{j}\left(S_{j, p} K\right)}\right)^{\frac{p}{j}}
$$

Thus, $\tilde{\Lambda}_{j}(K) \leqslant \tilde{\Lambda}_{j}\left(S_{j, p} K\right)$. When $2 \leqslant j \leqslant n-1$, equality holds if and only if K is an origin-symmetric ellipsoid. For $S_{j, p} K \in \varepsilon^{n}$, from Theorem 4.5, we have

$$
\left.V\left(\left(\frac{V\left(S_{j, p} K\right)}{\omega_{n}}\right)^{\frac{1}{n}} B^{n}\right)=V\left(S_{j, p} K\right)\right), \text { then }\left(\frac{V\left(S_{j, p} K\right)}{\omega_{n}}\right)^{\frac{1}{n}} B^{n}=S_{j, p} K,
$$

by Lemma 2.3 and the fact $\tilde{\Lambda}_{j}\left(B^{n}\right)=\omega_{n}$, we have

$$
\tilde{\Lambda}_{j}\left(S_{j, p} K\right)=\tilde{\Lambda}_{j}\left(\left(\frac{V\left(S_{j, p} K\right)}{\omega_{n}}\right)^{\frac{1}{n}} B^{n}\right)=\left(\frac{V\left(S_{j, p} K\right)}{\omega_{n}}\right)^{\frac{j}{n}} \tilde{\Lambda}_{j}\left(B^{n}\right)=\omega_{n}^{\frac{n-j}{n}} V\left(S_{j, p} K\right)^{\frac{j}{n}}
$$

It completes the proof.
THEOREM 5.4. Suppose that K is an origin-symmetric convex body in \mathbb{R}^{n}. Then

$$
V\left(S_{1, p}^{*} K\right) V(K) \leqslant \omega_{n}^{2}
$$

with equality if and only if K is an origin-symmetric ellipsoid.

Proof. From Definition 4.1 and Lemma 5.2, it follows that

$$
1=\bar{\Lambda}_{1,-p}\left(K, S_{1, p} K\right) \geqslant\left(\frac{V(K)}{V\left(S_{1, p} K\right)}\right)^{\frac{p}{n}}
$$

Thus, $V(K) \leqslant V\left(S_{1, p} K\right)$, with equality if and only if K is an origin-symmetric ellipsoid.
For $S_{1, p} K \in \varepsilon^{n}$, by the Blaschke-Santaló inequality, we have

$$
V\left(S_{1, p}^{*} K\right) V(K) \leqslant V\left(S_{1, p}^{*} K\right) V\left(S_{1, p} K\right)=\omega_{n}^{2}
$$

It completes the proof.
Theorem 5.5. Suppose that $K \in \mathscr{K}_{0}^{n}$. Then,

$$
V(I K) \leqslant \frac{\omega_{n-1}^{n}}{\omega_{n}^{n-2}} V\left(S_{n-1, p} K\right)^{n-1}
$$

with equality if and only if K is an origin-symmetric ellipsoid.
Proof. For $K \in \mathscr{K}_{0}^{n}$, by the definition of $\tilde{\Lambda}_{n-1}(K)$, it follows that

$$
\begin{aligned}
\tilde{\Lambda}_{n-1}(K) & =\frac{\omega_{n}}{\omega_{n-1}}\left(\int_{G_{n, n-1}} V_{n-1}(K \cap \xi)^{n} d \mu_{n-1}(\xi)\right)^{\frac{1}{n}} \\
& =\frac{\omega_{n}}{\omega_{n-1}}\left(\frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}} V_{n-1}\left(K \cap u^{\perp}\right)^{n} d \mathscr{H}^{n-1}(u)\right)^{\frac{1}{n}} \\
& =\frac{\omega_{n}}{\omega_{n-1}}\left(\frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}} \rho_{I K}^{n}(u) d \mathscr{H}^{n-1}(u)\right)^{\frac{1}{n}} \\
& =\frac{\omega_{n}^{\frac{n-1}{n}}}{\omega_{n-1}} V(I K)^{\frac{1}{n}}
\end{aligned}
$$

From Definition 4.1 and Lemma 5.2, we have

$$
1=\bar{\Lambda}_{n-1,-p}\left(K, S_{n-1, p} K\right) \geqslant\left(\frac{\tilde{\Lambda}_{n-1}(K)}{\tilde{\Lambda}_{n-1}\left(S_{n-1, p} K\right)}\right)^{\frac{p}{n-1}}=\left(\frac{V(I K)}{V\left(I\left(S_{n-1, p} K\right)\right)}\right)^{\frac{p}{n(n-1)}}
$$

Thus, $V(I K) \leqslant V\left(I\left(S_{n-1, p} K\right)\right)$, with equality if and only if K is an origin-symmetric ellipsoid. Since $S_{n-1, p} K \in \varepsilon^{n}$, by the fact that $I E=\frac{\omega_{n-1}}{\omega_{n}} V(E) E^{*}$ (see, e. g. [4]), and the Blaschke-Santaló inequality, we have

$$
V\left(I\left(S_{n-1, p} K\right)\right)=\frac{\omega_{n-1}^{n}}{\omega_{n}^{n}} V\left(S_{n-1, p} K\right)^{n} V\left(S_{n-1, p}^{*} K\right)=\frac{\omega_{n-1}^{n}}{\omega_{n}^{n-2}} V\left(S_{n-1, p} K\right)^{n-1}
$$

It completes the proof.
Acknowledgements. The authors would like to strongly thank the anonymous referee for the very valuable comments and helpful suggestions that directly lead to improve the original manuscript.

REFERENCES

[1] Y. Burago and V. Zalgaller, Geometric Inequality, Springer, New York, 1988.
[2] W. Firey, p-means of convex bodies, Math. Scand 10 (1962), 17-24.
[3] R. Gardner, Geometric Tomography, Cambridge University Press, Cambridge, 2006.
[4] E. Grinberg, Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991), 75-86.
[5] O. Guleryuz, E. Lutwak, D. Yang, and G. Zhang, Information-theoretic inequalities for contoured probability distributions, IEEE Trans. Inf. Theory 48 (2002), 2377-2383.
[6] J. Hu, G. XIONG, AND D. Zou, Affine isoperimetric inequalities for intersection mean ellipsoids, Calc. Var. 58, 191 (2019).
[7] J. Hu, G. Xiong, and D. Zou, On mixed L_ John ellipsoids, Adv. Geom. 19 (2019), 297-312.
[8] D. Hug, E. Lutwak, D. Yang, and G. Zhang, On the L_{p} Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), 699-715.
[9] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261.
[10] E. Lutwak, The Brunn-Minkowski-Firey Theory I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), 131-150.
[11] E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294.
[12] E. Lutwak, D. Yang, and G. Zhang, A new affine invariant for polytopes and schneider's projection problem, Trans. Amer. Math. Soc. 353 (5) (2001), 1767-1779.
[13] E. Lutwak, D. Yang, and G. Zhang, Sharp affine L_{p} sobolev inequalities, J. Differential Geom. 62 (2002), 17-38.
[14] E. Lutwak, D. Yang, and G. Zhang, Moment-entropy inequalities, Ann. Probab. 32 (2004), 757-774.
[15] E. Lutwak, D. Yang, and G. Zhang, Lp John ellipsoids, Proc. Lond. Math. Soc. 90 (2005), 497-520.
[16] E. Lutwak, D. Yang, and G. Zhang, Optimal Sobolev norms and the L^{p} Minkowski problem, Int. Math. Res. Not. 2006 (2006).
[17] E. Lutwak, D. Yang, and G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), 365-387.
[18] E. Lutwak, D. Yang, and G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), 220-242.
[19] D. Ren, Topics in Integral Geometry, World Scientific, Singapore, 1994.
[20] L. SantaLó, Integral Geometry and Geometric Probability, Cambridge University Press, Cambridge, 2004.
[21] D. Zou and G. Xiong, Orlicz-John ellipsoids, Adv. Math. 265 (2014), 132-168.
[22] D. Zou and G. Xiong, Orlicz-Legendre ellipsoids, J. Geom. Anal. 26 (2016), 2474-2502.
[23] D. Zou and G. Xiong, New affine inequalities and projection mean ellipsoids, Calc. Var. 58, 44 (2019).

[^1]
[^0]: Mathematics subject classification (2020): 52A20, 52A40, 52A38.
 Keywords and phrases: L_{p} affine quermassintegral, Minkowski inequality, L_{p} intersection ellipsoid, L_{p} dual mixed volume.

 The work is supported in part by CNSF (Grant No. 11561012, 11861024), Guizhou Foundation for Science and Technology (Grant No. [2019]1055), Science and technology top talent support program of Guizhou Eduction Department (Grant No. [2017]069).

 * Corresponding author.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

