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ON Lp INTERSECTION MEAN ELLIPSOIDS

AND AFFINE ISOPERIMETRIC INEQUALITIES

XIN CAI AND FANGWEI CHEN ∗

(Communicated by I. Perić)

Abstract. In the paper, we discussed the Lp ( p � 1) harmonic combination of convex bodies in
Rn . A variational formula for j th affine mean intersection Λ̃ j of convex bodies is established
when 1 � j � n− 1 . Using the new Lp intersection ellipsoids associated with convex bodies,
some affine isoperimetric equalities are obtained.

1. Introduction

Let K ∈Rn be a convex body, a compact convex set with a nonempty interior. The
relationship between the geometric invariants of K is very important, these geometric
quantities are mainly described by some geometric equalities or geometric inequali-
ties. Maybe the isoperimetric inequality is one of the most powerful inequalities in
convex geometry, the ellipsoid often appears in solving the isoperimetric type problems
and other extreme value problems. In particular, the Lp John ellipsoid [15], mixed Lp

John ellipsoid [7], Orlicz-John ellipsoid [21], Orlicz-Legendre ellipsoid [22] are all a
powerful tool to solve the isoperimetric types problem. The research of convex geom-
etry theory in Lp space and Orlicz space is one of the hotspots in convex geometry,
which has attracted the attention and interest of many mathematicians. In 1980s and
1990s, Firey, Lutwak and others studied the Lp Brunn-Minkowski theory and the dual
Lp Brunn-Minkowski theory, which developed the classical Brunn-Minkowski theory
in Rn (see [11, 10, 2, 12, 13, 16, 8, 14, 5, 18, 17]). The research on the relationship be-
tween the affine inequality and the ellipsoid in Euclidean space and Lp space has caused
the concern of many scholars. Recently, Hu, Xiong and Zou defined the intersection
mean ellipsoid in Euclidean space and proved some affine isoperimetric inequalities in
Euclidean space (see [6]). The projection mean ellipsoid and the connection with the
affine isoperimetric inequalities in Euclidean space are established in [23]. Inspired
by paper of Hu, Xiong and Zou [6], in this paper we study the Lp intersection mean
ellipsoid.
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Let K ∈ Rn be a convex body, a compact convex set with a nonempty interior,
denote by V (K) the volume of K in Rn , it can be represented as

V (K) =
1
n

∫
Sn−1

ρK(z,u)ndH n−1(u),

where z is an interior point of K , the radical function ρk(z,u) : Sn−1 → Rn of K with
respect to z is defined by ρk(z,u) = sup{λ > 0,z+λu∈ K} and H n−1 is the (n−1)-
dimensional Hausdorff measure on the unit sphere Sn−1 of Rn . If z is the origin, we
simply write ρk(u) = ρk(z,u) .

Let Gn. j denote the Grassman manifold of Rn , μ j is the Haar probability measure
on Gn, j , Vj(K ∩ ξ ) denotes the j -dimensional volume of intersection of K with a
subspace ξ ∈ Gn, j . The total average volume of the j -th intersection of a convex body
on Gn, j is defined by Lutwak [9], which is called the dual affine quermassintegrals
Φn− j ,

Φ̃n− j(K) =
ωn

ω j

(∫
Gn, j

Vj(K ∩ξ )ndμ j(ξ )
) 1

n

, j = 1, · · · ,n−1. (1.1)

Specially with Φ̃0(K) = Vn(K) , Φ̃n(K) = ωn . We rewrite

Λ̃ j(K) = Φ̃n− j(K), j = 1, · · · ,n−1,

for convenience. It was proved by Grinberg [4] that the j th affine mean intersections
are invariant under the volume preserving linear transforms. Moreover, he proved the
following inequality

Λ̃ j(K) � ωn− j
n V (K) j, (1.2)

for 2 � j � n− 1, equality holds if and only if K is an origin-symmetric ellipsoid.
Specially, when j = 1 and K is symmetric, inequality (1.2) becomes an identity; when
j = n−1, inequality is

V (IK) �
ωn

n−1

ωn−2
n

V (K)n−1, (1.3)

with equality if and only if K is an origin-symmetric ellipsoid. Where IK is the inter-
section body of K defined by

ρIK(u) = Vn−1(K ∩u⊥), u ∈ S
n−1.

More details see [3, 4, 11, 10].
The Lp dual mixed volume Ṽn,−p(K,L) of convex bodies K and L is defined

by Lutwak [11], which is a variation of volume V with respect to the Lp harmonic
combination K+̂pε ·L , which is

Ṽn,−p(K,L) = − p
n

d
dε

∣∣∣∣
ε=0+

V (K+̂pε ·L),

where K+̂pε ·L is defineded by ρK+̂pε·L = (ρ−p
k + ερ−p

L )−
1
p , ε > 0.
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In this paper, we discuss the Lp harmonic combination of convex bodies K and
L . In section 3, we defined the j th Lp mixed dual affine mean intersection Λ j,−p(K,L)
of convex bodies K and L by,

Λ j,−p(K,L) = − p
jΛ j(K)

d
dε

∣∣∣∣
ε=0+

Λ̃ j(K+̂pε ·L), 1 � j � n−1.

We show the j th Lp mixed dual affine mean intersection is affine invariant and can
be represent as the integral of the Lp mixed volume of K and L . In section 4, by
normalizing the j th Lp mixed dual affine mean intersection Λ j,−p(K,L) , we show that
there exists a unique origin-symmetric ellipsoid solving the constrained minimization
problem, that is

minV (E) subject to Λ j,−p(K,E) � 1.

The ellipsoid is called the j -th Lp intersection mean ellipsoid of the convex body K ,
and is denoted by S j,pK . Observe that S j,pK is closely related to Vj(K∩·) of the con-
vex body K . Moreover, we prove the following sharp affine isoperimetric inequalities.

THEOREM 1.1. Suppose that K is a convex body in Rn that contains the origin
in its interior, and 1 � j � n−1 , p � 1 . Then,

Λ̃ j(K) � ω
n− j
n

n V (S j,pK)
j
n ,

when 2 � j � n−1 , equality holds if and only if K is an origin-symmetric ellipsoid.

THEOREM 1.2. Suppose that K is an origin-symmetric convex body in Rn . Then,

V (S∗1,pK)V (K) � ω2
n ,

with equality if and only if K is an origin-symmetric ellipsoid.

THEOREM 1.3. Suppose that K is a convex body in Rn that contains the origin
in its interior. Then,

V (IK) �
ωn

n−1

ωn−2
n

V (Sn−1,pK)n−1,

with equality if and only if K is an origin-symmetric ellipsoid.

2. Preliminaries

In this paper, we work in n -dimensional Euclidean space Rn , endowed with the
standard inner product x · y and Euclidean norm ‖x‖ . Bn and Sn−1 denote the unit

ball and unit sphere, respectively, the volume of Bn is denoted by ωn = π
n
2

Γ(1+ n
2 ) . For

1 � j � n− 1, let Gn, j be the Grassmann manifold of j dimensional linear space in
Rn , write Vj for the j -dimensional volume of a convex body in Rn . The set of convex
bodies in R

n endowed with the Hausdorff metric is denoted by K n , and the set of
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convex bodies containing the origin in their interiors is denoted by K n
0 . Let K ∈ K n ,

its support function hk : Rn → R is defined by

hK(x) = max{x · y : y ∈ K}, x ∈ R
n.

It is easily seen that hK is 1-homogeneous and subadditive. For K ∈ K n
0 , the radial

function of K is defined by

ρK(x) = sup{λ > 0 : λx ∈ K}, x ∈ R
n \ {o}.

We know that ρK is positive and 1-homogeneous. Moreover, for T ∈ GL(n), we have
ρTK(x) = ρK(T−1x) . The polar body K∗ of K is defined by

K∗ = {x ∈ R
n : x · y � 1, y ∈ K},

It is easy to check that hK∗ = ρ−1
K , (TK)∗ = T−tK∗ for T ∈ GL(n) .

Let K,Ki ⊆ K n
0 , i ∈ N , then, Ki → K if and only if ρKi

δH−→ ρK uniformly on
Sn−1 , where δH(K,L) = max

u∈Sn−1
|hK(u)−hL(u)| , is the Hausdorff metric.

Let K,L ∈ K n
0 , the Lp harmonic combination λ ·K+̂pμ ·L ∈ K n

0 is defined by

ρ−p
λ ·K+̂pμ·L(x) = λ ρ−p

K (x)+ μρ−p
L (x), x ∈ R

n \ {o},

where λ ,μ > 0. Specially, λ ·K = λ− 1
p K .

Let ξ ∈ Gn, j be j -dimensional subspace (1 � j � n− 1) , then K ∩ ξ is an j -
dimensional convex body in ξ , and ρK∩ξ (u) = ρK(u), for u ∈ Sn−1 ∩ ξ . Moreover,
it is easy to show that (λ ·K+̂pμ ·L)∩ ξ = λ · (K ∩ ξ )+̂pμ · (L∩ ξ ) . The volume of
K∩ξ is

Vj(K∩ξ ) =
1
j

∫
Sn−1∩ξ

ρ j
K(u)dH j−1(u). (2.1)

The Lp (p � 1) dual mixed volume Ṽn,−p(K,L) of K,L ∈K n
0 is defined by (see [11])

Ṽn,−p(K,L) = − p
n

lim
ε→0+

V (K+̂pε ·L)−V(K)
ε

=
1
n

∫
Sn−1

ρn+p
K (u)ρ−p

L (u)dH n−1(u).

The dual Minkowski inequality says

Ṽj,−p(K∩ξ ,L∩ξ ) j � Vj(K ∩ξ ) j+pVj(L∩ξ )−p, (2.2)

with equality if and only if K∩ξ and L∩ξ are dilations. For ξ ∈ Gn, j , we have

Ṽj,−p(K ∩ξ ,L∩ξ ) =
1
j

∫
Sn−1∩ξ

ρ j+p
K (u)ρ−p

L (u)dH j−1(u). (2.3)

Let εn denote the class of n -dimensional origin-symmetric ellipsoids in Rn , if
E ∈ εn , denote by dE its maximal principle radius and uE ∈ Sn−1 be its corresponding
principal direction. Then, hE(u) � dE |u ·uE| , for u ∈ Sn−1 .

The following Lemmas will be useful in the next section.
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LEMMA 2.1. ([6]) Suppose that {Ti}i∈N ⊆ SL(n) , then

‖Ti‖→ ∞ ⇔‖T−1
i ‖→ ∞.

Therefore, {Ti}i∈N is bounded if and only if {T−1
i }i∈N is bounded.

LEMMA 2.2. ([6]) Suppose that {Ei}i∈N ⊆ εn and Vn(Ei) = a > 0 , for all i ∈ N .
Then {Ei}i∈N is bounded if and only if {E∗

i }i∈N is bounded.

The following Lemma gathers some properties of the dual affine quermassintegral
given by (1.1).

LEMMA 2.3. ([6]) Suppose K , {Ki}i⊆N ⊆ K n
0 , and 1 � j � n−1 . Then

(1) Λ̃ j(λK) = λ jΛ̃ j(K) , for λ > 0 ;

(2) Λ̃ j(TK) = |det(T )| j
n Λ̃ j(K) , for T ∈ GL(n);

(3) Λ̃ j(Ki) → Λ̃ j(K) , if Ki → K .

3. Lp mixed dual affine quermassintegrals

In this section, we will establish a variational formula of Λ̃ j(K) , which also is
called the j th affine mean intersection.

THEOREM 3.1. Suppose K,L ∈ K n
0 , 1 � j � n− 1 and p � 1 , Λ̃ j(K) be the

j th affine mean intersection of K , then

d
dε

∣∣∣∣
ε=0+

Λ j(K+̂pε ·L) = − j
p

Λ̃ j(K)

∫
Gn, j

Ṽj,−p(K ∩ξ ,L∩ξ )Vj(K ∩ξ )n−1dμ j(ξ )∫
Gn, j

Vj(K ∩ξ )ndμ j(ξ )
.

Proof. For K,L ∈ K n
0 , there exist r and R , 0 < r < R < ∞ , such that

rBn ⊆ K ⊆ RBn and rBn ⊆ L ⊆ RBn.

According to the definition of Lp harmonic combination, we have

K+̂pε ·L ⊆ K, ε > 0 and K+̂pε ·L → K, ε → 0+.

For ξ ∈ Gn, j , we have

(K+̂pε ·L)∩ξ ↗ K ∩ξ , ε → 0+.

Since Vj is continuous and positive, so

Vj
(
(K+̂pε ·L)∩ξ

)↗Vj(K ∩ξ ), ε → 0+.

By the monotone convergence theorem, we obtained that

lim
ε→0+

∫
Gn, j

Vj
(
(K+̂pε ·L)∩ξ

)n
dμ j(ξ ) =

∫
Gn, j

Vj(K∩ξ )ndμ j(ξ ). (3.1)
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In order to compute the derivation of Vj(K+̂pε ·L) , by (2.1) and (2.3), we have

lim
ε→0+

(ρ−p
K + ερ−p

L )−
j
p −ρ j

K

ε
= − j

p
ρ j+p

K ρ−p
L , on S

n−1∩ξ .

Moreover, note that

∣∣∣∣∣∣
(ρ−p

K + ερ−p
L )−

j
p −ρ j

K

ε

∣∣∣∣∣∣=
∣∣∣∣∣∣
(
ρ−p

K + ερ−p
L )−

j
p −ρ j

K

(ρ−p
K + ερ−p

L )−ρ−p
K

∣∣∣∣∣∣
∣∣∣∣∣(ρ

−p
K + ερ−p

L )−ρ−p
K

ε

∣∣∣∣∣
=

∣∣∣∣∣∣
[(ρ−p

K + ερ−p
L )−1]

j
p − [(ρ−p

K )−1]
j
p

(ρ−p
K + ερ−p

L )−ρ−p
K

∣∣∣∣∣∣ρ−p
L

� j
p

ρ j+p
K ρ−p

L � j
p
R j+pr−p, (3.2)

uniformly on Sn−1 ∩ ξ . By the Lebesgue dominated conbergence theorem and (2.3),
we have

d
dε

∣∣∣∣
ε=0+

Vj((K+̂pε ·L)∩ξ ) =
1
j

lim
ε→0+

∫
Sn−1∩ξ

(
ρ−p

K + ερ−p
L )−

j
p −ρ j

K

ε
dH j−1

= − j
p
Ṽj,−p(K∩ξ ,L∩ξ ). (3.3)

Now, we prove {ε−1[Vj((K+̂pε ·L)∩ξ )n −Vj(K ∩ξ )n] : ε > 0,ξ ∈ Gn, j} is uni-
formly bounded. By (3.2), we obtain

∣∣∣∣Vj((K+̂pε ·L)∩ξ )−Vj(K ∩ξ )
ε

∣∣∣∣� 1
j

∫
Sn−1

∣∣∣∣∣∣
(ρ−p

K + ερ−p
L )−

j
p −ρ j

K

ε

∣∣∣∣∣∣dH j−1

� j
p

ω jr
−pR j+p.

Then,

ε−1|Vj((K+̂pε ·L)∩ξ )n−Vj(K ∩ξ )n|

=
∣∣∣∣Vj((K+̂pε ·L)∩ξ )n−Vj(K ∩ξ )n

Vj((K+̂pε ·L)∩ξ )−Vj(K ∩ξ )

∣∣∣∣
∣∣∣∣Vj((K+̂pε ·L)∩ξ )−Vj(K ∩ξ )

ε

∣∣∣∣
� j

p
ω jR

p+ jr−pnVj(K∩ξ )n−1

� jn
p

ωn
j r

−pR jn+p.
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Therefore, according to the definition of Λ̃ j , formula (3.1), the above estimate and the
Lebesgue dominated convergence theorem, and (3.3), we obtain that

d
dε

∣∣∣∣
ε=0+

Λ̃ j(K+̂pε ·L) =
d
dε

∣∣∣∣
ε=0+

ωn

ω j

(∫
Gn, j

Vj((K+̂pε ·L)∩ξ )ndμ j(ξ )
) 1

n

=
ωn

nω j

(∫
Gn, j

Vj(K∩ξ )ndμ j(ξ )
) 1

n−1

× d
dε

∣∣∣∣
ε=0+

(∫
Gn, j

Vj((K+̂pε ·L)∩ξ )ndμ j(ξ )
)

= Λ̃ j(K)
(∫

Gn, j

Vj(K∩ξ )ndμ j(ξ )
)−1

×
∫

Gn, j

Vj(K ∩ξ )n−1 · d
dε

∣∣∣∣
ε=0+

Vj((K+̂pε ·L)∩ξ )dμ j(ξ )

= − j
p

Λ̃ j(K)

∫
Gn, j

Ṽj,−p(K ∩ξ ,L∩ξ )Vj(K ∩ξ )n−1dμ j(ξ )∫
Gn, j

Vj(K ∩ξ )ndμ j(ξ )
.

We obtained the desired formula. �

Specially, if we take p = 1, it becomes the Theorem 3.1 obtain in [6]. We intro-
duce the j -th affine intersection measure of K .

DEFINITION 3.1. ([6]) Suppose that K ∈K n
0 and 1 � j � n−1. The geometric

measure

μ̃ j(K,ω) =
(∫

Gn, j

Vj(K ∩ξ )ndμ j(ξ )
)−1 ∫

ω
Vj(K ∩ξ )ndμ j(ξ ),

for a Borel set ω ⊆ Gn, j is called the j -th affine intersection measure of K . The affine
intersection measure μ̃ j(K, ·) is a probability measure on Gn, j , and it is absolutely
continuous with respect to μ j . Observe that μ̃ j(λK, ·) = μ̃ j(K, ·) for λ > 0. Specially,
μ̃0(K, ·) = μ0 , μ̃n(K, ·) = μn and μ̃ j(Bn, ·) = μ j .

Now, we give the definition of the j th Lp mixed dual affine mean intersection of
K and L .

DEFINITION 3.2. Suppose that K,L ∈ K n
0 and 1 � j � n−1, p � 1. The geo-

metric inequality

Λ j,−p(K,L) =
∫

Gn, j

Ṽj,−p(K ∩ξ ,L∩ξ )
Vj(K∩ξ )

dμ̃ j(K,ξ ),

is called the j th Lp mixed dual affine mean intersection of K and L .
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Theorem 3.1 grants that

Λ j,−p(K,L) = − p

jΛ̃ j(K)
lim

ε→0+

Λ̃ j(K+̂pε ·L)− Λ̃ j(K)
ε

, (3.4)

Specially, Λ j,−p(K,K) = 1, Λn,−p(K,L) = Ṽn,−p(K,L)
Vn(K) . Therefore, the j th Lp mixed

dual affine mean intersection Λ j,−p(K,L) , 1 � j � n−1, p � 1 is an extension of the

normalized Lp dual mixed volume Ṽn,−p(K,L)
Vn(K) .

PROPOSITION 3.2. Suppose that K,L ∈ K n
0 , {Ki}i∈N and {Li}i∈N ⊂ K n

0 , and
1 � j � n−1 , p � 1 . Then,

(1) Λ j,−p(λK,μL) = λ pμ−pΛ j,−p(K,L) for λ > 0 , μ > 0 ;

(2) Λ j,−p(TK,TL) = Λ j,−p(K,L) for T ∈ GL(n);
(3) Λ j,−p(Ki,Li) → Λ j,−p(K,L) if Ki → K,Li → L.

Proof. By Definition 3.2 and formula (2.3), μ̃ j(λK, ·) = μ̃ j(K, ·) and the homo-
geneity of Vj , the first assertion follows.

The second assertion is obtained by Lemma2.3, formula (3.4) and the fact

TK+̂pε ·TL = T (K+̂pε ·L),

for T ∈ GL(n) .
According to Definition 3.1, and Definition 3.2, Λ j,−p(K,L) can be represent by

the following formula

Λ j,−p(K,L) =
(

ωn

ω j

)n

Λ̃ j(K)−n
∫

Gn, j

Ṽj,−p(K ∩ξ ,L∩ξ )Vj(K ∩ξ )n−1dμ j(ξ ).

If Ki → K and Li → L , there exists 0 < r < R < ∞ , such that rBn ⊆K,Ki,L,Li ⊆ RBn .
So Ṽj,−p(K ∩ ξ ,L∩ ξ )Vj(K ∩ ξ )n−1 � ωn

j R
jn+pr−p , which shows {Ṽj,−p(K ∩ ξ ,L∩

ξ )Vj(K ∩ξ )n−1 : i ∈ N} is uniformly bounded on Gn, j . Combining with the Lebesgue
dominated convergence theorem and Lemma2.3, assertion (3) follows. �

The following Propositions about the measure of μ j(K,ω) are obtained in [6].

PROPOSITION 3.3. ([6]) Suppose that K ∈ K n
0 , T ∈ SL(n) and 1 � j � n−1 .

Then for a Borel set ω ⊆ Gn, j , μ̃ j(TK,ω) = μ̃ j(K,T−1ω) .

PROPOSITION 3.4. ([6]) Suppose that K ∈ K n
0 , {Ki}i∈N ⊆ K n

0 and 1 � j �
n−1 . If Ki → K , then μ̃ j(Ki, ·) → μ̃ j(K, ·) weakly.
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4. Lp intersection mean ellipsoids

In this section, we define a family of new ellipsoids associated with convex bodies
according to solve the following optimization problems.

PROBLEM Pj,p . Suppose that K is a convex body in Rn that contains the origin
in its interior, 1 � j � n− 1, and p � 1. Among all origin-symmetric ellipsoids E ,
find one to solve the constrained minimization problem

min
E

V (E) subject to Λ j,−p(K,E) � 1.

PROBLEM Pj,p . Suppose that K is a convex body in Rn that contains the origin
in its interior, 1 � j � n− 1, and p � 1. Among all origin-symmetric ellipsoids E ,
find one to solve the constrained minimization problem

min
E

Λ j,−p(K,E) subject to V (E) � ωn.

Firstly, we will show the solution of Problem Pj,p and Problem Pj,p only differ
by a scale factor in the following Lemma.

LEMMA 4.1. Suppose that K ∈ K n
0 , and 1 � j � n−1 .

(1) If E0 is a solution to Problem Pj,p , then

(
ωn

V (E0)

) 1
n

E0

is a solution to P j,p .

(2) If E1 is a solution to Problem Pj,p , then

Λ j,−p(K,E1)
1
p E1

is a solution to Problem Pj,p .

Proof. (1) Assume that E ∈ {E ∈ εn : V (E) � ωn} . By Proposition 3.2, we have

Λ j,−p(K,Λ j,−p(K,E)
1
p E) = 1.

Then
V (E0) � V (Λ j,−p(K,E)

1
p E) = Λ j,−p(K,E)

n
pV (E).

Therefore, from Λ j,−p(K,E0) � 1 and Proposition 3.2, we have

Λ j,−p(K,E) �
(

V (E0)
V (E)

) p
n

�
(

V (E0)
ωn

) p
n

Λ j,−p(K,E0) = Λ j,−p

(
K,

(
ωn

V (E0)

) 1
n

E0

)
.
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On the other hand, note that V

((
ωn

V (E0)

) 1
n
E0

)
= ωn , so we obtain that

(
ωn

V (E0)

) 1
n
E0

is a solution to Problem Pj,p .

(2) Assume that E ∈ {E ∈ εn : Λ j,−p(K,E) � 1} . Since V

((
ωn

V (E)

) 1
n
E

)
= ωn ,

it follows that

Λ j,−p(K,E1) � Λ j,−p

(
K,

(
ωn

V (E)

) 1
n

E

)
=
(

V (E)
ωn

) p
n

Λ j,−p(K,E).

The above inequality can also be rewritten as

V (Λ j,−p(K,E1)
1
p E1) = Λ j,−p(K,E1)

n
pV (E1) � V (E)

ωn
Λ j,−p(K,E)

n
pV (E1) � V (E).

Because Λ j,−p(K,Λ j,−p(K,E1)
1
p E1) = 1, so we obtain that Λ j,−p(K,E1)

1
p E1 is a so-

lution to Problem Pj,p . �

LEMMA 4.2. Suppose that K ∈ K n
0 and 1 � j � n−1 . Then

(1) min{V(E) : E ∈ εn,Λ j,−p(K,E) � 1}= min{V (E) : E ∈ εn,Λ j,−p(K,E) = 1};
(2) min{Λ j,−p(K,E) : E ∈ εn,V (E) � ωn} = min{Λ j,−p(K,E) : E ∈ εn,V (E) =

ωn}.

Proof. (1) Set A = min{V(E) : E ∈ εn,Λ j,−p(K,E) � 1} , and B = min{V (E) :
E ∈ εn,Λ j,−p(K,E) = 1} . Given an ellipsoid E0 ∈ A with Λ j,−p(K,E0) < 1. By
Proposition 3.2, we have

Λ j,−p(K,Λ j,−p(K,E0)
1
p E0) = 1.

That is the ellipsoid Λ j,−p(K,E0)
1
p E0 ∈ A . Since

V (Λ j,−p(K,E0)
1
p E0) = Λ j,−p(K,E0)

n
pV (E0) < V (E0).

That means E0 cannot be a minimum of A , then we prove the equivalence.
The same method can be applied in the second assertion. So we complete the

proof. �
In order to prove the existence of the solution of Problem Pj,p , we need the fol-

lowing Lemma see ([19, 20]).

LEMMA 4.3. Let f is a continuous function on Sn−1 , ξ ⊂Gn, j be a j -dimensional
subspace of Gn, j , 1 � j � n−1 . Then

1
nωn

∫
Sn−1

f (u)dH n−1(u) =
∫

Gn, j

1
jω j

∫
Sn−1∩ξ

f (v)dH j−1(v)dμ j(ξ ), (4.1)
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Now we can give the existence of the solution of Problem Pj,p .

THEOREM 4.4. Their exists a solution to Problem Pj,p .

Proof. If K ∈ K n
0 , there exists r and R (0 < r < R < ∞) , such that rBn ⊆ K ⊆

RBn . If E is an origin-symmetric ellipsoid, by Definition 3.2, formula (2.2), (2.3),
(4.1) and the fact that

∫
Sn−1 |u ·v|pdH n−1(v) < ∞ for u ∈ Sn−1 , we have the following

computation

Λ j,−p(K,E) =

∫
Gn, j

Ṽj,−p(K ∩ξ ,E ∩ξ )Vj(K∩ξ )n−1dμ j(ξ )∫
Gn, j

Vj(K ∩ξ )ndμ j(ξ )

�
∫
Gn, j

Ṽj,−p(K ∩ξ ,E ∩ξ )Vj(rBn∩ξ )n−1dμ j(ξ )∫
Gn, j

Vj(RBn∩ξ )ndμ j(ξ )

=
( r

R

) jn 1
r jω j

∫
Gn, j

1
j

∫
Sn−1∩ξ

ρ j+p
K ρ−p

E dH j−1(u)dμ j(ξ )

�
( r

R

) jn
rpdp

E∗

∫
Gn, j

1
jω j

∫
Sn−1∩ξ

|u ·uE∗|pdH j−1(u)dμ j(ξ )

=
( r

R

) jn
rpdp

E∗
1

nωn

∫
Sn−1∩ξ

|u ·uE∗|pdH n−1(u). (4.2)

Thus, for many minimizing sequence of ellipsoids {Ei}i∈N ⊆ εn for Problem Pj,p ,
when i is sufficiently large, then

Λ j,−p(K,Ei) � Λ j,−p(K,Bn) < ∞. (4.3)

From above estimate, we can know the maximal principle radius sequence {dE∗
i
}i∈N

is bounded. And V (Ei) = ωn , i ∈ N , and Lemma2.2, we obtain that any minimizing
sequence of ellipsoids {Ei}i∈N for Problem Pj,p is bounded. By the Blaschke selec-
tion theorem, there exists a convergent subsequence {Eik}i∈N converging to an origin-
symmetric ellipsoid E0 . From the continuity of volume, we have V (E0) = ωn > 0.
This implies that E0 is non degenerate, and E0 is a solution to Problem Pj,p . This
completes the proof. �

THEOREM 4.5. There exists a unique solution to Problem Pj,p .

Proof. Assume that E1,E2 ∈ εn,E1 �= E2 are solutions of Problem Pj,p . We as-
sume that Ei = TiBn , Ti is symmetric and positive definite with det(Ti) = 1, i = 1,2.
And T1 �= λT2 for all λ > 0, according to the Minkowski inequality for symmetric and
positive definite matrices, it follows that

det

(
T−p
1 +T−p

2

2

) 1
n

>
1
2
det(T−p

1 )
1
n +

1
2
det(T−p

2 )
1
n = 1.
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Let

T−p
3 = det

(
T−p
1 +T−p

2

2

)− 1
n T−p

1 +T−p
2

2
,and E3 = T3B

n.

So, T3 ∈ SL(n) , and for all u ∈ Sn−1 , we have

ρ−p
E3

(u) = |T−p
3 u|

= det

(
T−p
1 +T−p

2

2

)−1 ∣∣∣∣∣T
−p
1 u+T−p

2 u

2

∣∣∣∣∣
<

∣∣∣∣∣T
−p
1 u+T−p

2 u

2

∣∣∣∣∣� 1
2
|T−p

1 u|+ 1
2
|T−p

2 u|

=
1
2

ρ−p
E1

(u)+
1
2

ρ−p
E2

(u).

Therefore, from (2.3) and Definition 3.2, we have

Λ j,−p(K,E3) <
1
2

Λ j,−p(K,E1)+
1
2

Λ j,−p(K,E2)

= Λ j,−p(K,E1) = Λ j,−p(K,E2).

But the fact that T3 ∈ SL(n) and the assumption on E1 and E2 , we obtain

Λ j,−p(K,E3) � Λ j,−p(K,E1) = Λ j,−p(K,E2).

which contradicts the above assumption. This completes the proof. �
According to Theorem4.4 and Theorem4.5, we introduce the following ellipsoids.

DEFINITION 4.1. Let K ∈ K n
0 and 1 � j � n− 1, p � 1. Among all origin-

symmetric ellipsoids, the unique ellipsoid that solves the constrained minimization
problem

min
E

V (E) sub ject to Λ j,−p(K,E) � 1,

is called the Lp intersection mean ellipsoid of order j of K , and denoted by S j,p(K) .
Among all origin-symmetric ellipsoids, the unique ellipsoid that solves the con-

strained minimization problem

min
E

Λ j,−p(K,E) sub ject to V (E) = ωn,

is called the normalized Lp intersection mean ellipsoid of order j of K , and denoted
by S j,p(K) .

COROLLARY 4.6. Suppose that K ∈ K n
0 and 1 � j � n− 1, p � 1 . Then for

T ∈ GL(n) ,
S j,p(TK) = T (S j,pK).
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Proof. According to Definition 4.1 and Proposition3.2, if T ∈ GL(n) , we have

Λ j,−p(K,T−1(S j,p(TK))) = Λ j,−p(TK,S j,p(TK)) � 1.

So V (S j,pK) �V (T−1(S j,p(TK))) . Then we have V (T (S j,pK)) �V (S j,p(TK)) . Since

Λ j,−p(TK,T (S j,pK))= Λ j,−p(K,S j,pK)� 1, then T (S j,pK)∈{E ∈ εn : Λ j,−p(TK,E)�
1} . From Theorem4.5, it follows that S j,p(TK)= T (S j,pK) , we complete the proof. �

COROLLARY 4.7. Suppose that K ∈ K n
0 and 1 � j � n− 1, p � 1 . Then for

E ∈ εn , we have
S j,pE = E

Proof. By Corollary 4.6, it suffices to prove that S j,pBn = Bn . Let S j,pBn = TBn ,
T ∈ GL(n) . By Lemma2.3, we have

Λ̃ j(S j,pB
n) = |detT | j

n Λ̃ j(Bn).

By Lemma4.2 and Lemma5.2, we have

1 = Λ j,−p(Bn,S j,pB
n) �

(
Λ̃ j(Bn)

Λ̃ j(S j,pBn)

) p
j

=
(

1
|detT |

) p
n

=
(

V (Bn)
V (S j,pBn)

) p
n

.

Hence, V (Bn) � V (S j,pBn) . On the other hand Λ j,−p(Bn,Bn) = 1, we have Bn ∈ {E ∈
εn : Λ j,−p(Bn,E) � 1} . From Theorem4.5, we have S j,pBn = Bn . �

LEMMA 4.8. Suppose that K,{Ki}i∈N ∈ K n
0 and 1 � j � n−1, p � 1 . If Ki →

K , then {S j,pK, S j,pKi, i ∈ N} is bounded from above.

Proof. Since Ki ∈K n
0 ,Ki →K ∈K n

0 , there exists r and R , 0 < r < R < ∞ , such
that

rBn ⊆ K ⊆ RBn, and rBn ⊆ Ki ⊆ RBn,

for all i ∈ N .
Since S j,pK ∈ εn ,by (4.2), we have

Λ j,−p(K, S j,pK) �
( r

R

) jn
rpdp

S
∗
j,pK

1
nωn

∫
Sn−1

|u ·u∗E|pdH n−1(u)

Here, S
∗
j,pK is the polar body of S j,pK . from Definition 4.1, we have

Λ j,−p(K, S j,pK) � Λ j,−p(K,Bn) �
(

R
r

) jn+p

Therefore, it follows that

d
S
∗
j,pK

�
(

nωn∫
Sn−1 |u ·u∗E|pdH n−1(u)

) 1
p
(

R2 jn+p

r2 jn+2p

) 1
p

For S
∗
j,pKi, i ∈ N , the proof is similar. Thus, we have {S j,pK, S j,pKi, i ∈ N} is bounede

from above. It completes the proof. �
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THEOREM 4.9. Suppose that K,Ki ∈ K n
0 , i ∈ N and 1 � j � n− 1, p � 1 . If

Ki → K , then

lim
i→∞

S j,pKi = S j,pK.

Proof. From Lemma4.8, there exists a constant 0 < R < ∞ , such that all the el-
lipsoids S j,pK, S j,pKi, i ∈ N are in the set

ε = {E ∈ εn : V (E) = ωn and E ⊆ RBn}

By the compactness of εn , the boundedness of {K,Ki , i ∈ N} and Proposition 3.2(3),
it follows that

lim
i→∞

Λ j,−p(Ki,E) = Λ j,−p(K,E), uni f ormly in E ∈ εn.

By Definition 4.1, we have

lim
i→∞

Λ j,−p(Ki, S j,pKi) = lim
i→∞

min
E∈εn

Λ j,−p(Ki,E)

= min
E∈εn

lim
i→∞

Λ j,−p(Ki,E)

= min
E∈εn

Λ j,−p(K,E)

= Λ j,−p(K, S j,pK). (4.4)

If we assume E0 �= S j,pK . Since {S j,pKi}i∈N ⊆ εn , from the compactness of εn , the
Blaschke selection theorem and E0 �= S j,pK , we can know there exists a convergent
subsequence {S j,pKik}k∈N such that S j,pKik → E0 ∈ εn , but E0 �= S j,pK . So

Λ j,−p(K,E0) = Λ j,−p(K, lim
k→∞

S j,pKik)

= lim
k→∞

Λ j,−p(K, S j,pKik)

= lim
k→∞

Λ j,−p(Kik , S j,pKik )

= Λ j,−p(K, S j,pK).

Therefore, by Definition 4.1, we have S j,pK = E0 , which is a contradiction. That is,

limi→∞ S j,pKi = S j,pK . From this limit, (4.4) and S j,pK = Λ j,−p(K, S j,pK)
1
p S j,pK , we

have

lim
i→∞

S j,pKi = lim
i→∞

Λ j,−p(Ki, S j,pKi)
1
p S j,pKi = Λ j,−p(K, S j,pK)

1
p S j,pK = S j,pK,

the desired statement is obtained. This completes the proof. �
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5. New sharp affine isoperimetric inequalities

In the section, we will give some new sharp affine isoperimetric inequalities for
j th Lp mixed dual affine mean intersection and Lp intersection mean ellipsoids. The
following Lemma will be useful.

LEMMA 5.1. ([1]) Suppose that K,L ∈ K n
0 and 2 � j � n− 1 . If K ∩ ξ is a

dilate of L∩ξ for each ξ ∈ Gn, j , then K is a dilate of L.

Now we give the inequality of the j th Lp mixed dual affine mean intersection of
K and L .

LEMMA 5.2. Suppose that K L ∈ K n
0 and 1 � j � n−1, p � 1 . We have

Λ j,−p(K,L) �
(

Λ̃ j(K)
Λ̃ j(L)

) p
j

.

When 2 � j � n−1 , equality holds if and only if K is a dilate of L. Moreover, if K,L
are origin-symmetric, we have

Λ1,−p(K,L) �
(

V (K)
V (L)

) p
n

,

equality holds if and only if K is a dilate of L.

Proof. By Definition 3.1, formula (2.2), the dual Minkowski inequality, the Jensen
inequality, Definition 3.2 and the definition of Λ̃ j , we have

Λ j,−p(K,L) =
∫

Gn, j

Ṽj,−p(K ∩ξ ,L∩ξ )
Vj(K ∩ξ )

dμ̃ j(K,ξ )

�
∫

Gn, j

Vj(K ∩ξ )
j+p

j Vj(L∩ξ )−
p
j

Vj(K ∩ξ )
dμ̃ j(K,ξ )

=
∫

Gn, j

(
Vj(L∩ξ )n

Vj(K ∩ξ )n

)− p
jn

dμ̃ j(K,ξ )

�
(∫

Gn, j

Vj(L∩ξ )n

Vj(K ∩ξ )n dμ̃ j(K,ξ )
)− p

jn

=

(∫
Gn, j

Vj(L∩ξ )n

Vj(K∩ξ )n

(∫
Gn, j

Vj(K ∩ξ )ndμ j(ξ )
)−1

Vj(K ∩ξ )ndμ j(ξ )

)− p
jn

=

( ∫
Gn, j

Vj(L∩ξ )ndμ j(ξ )∫
Gn, j

Vj(K∩ξ )ndμ j(ξ )

)− p
jn

=
(

Λ j(K)
Λ j(L)

) p
j

.
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With equalities conditions for each ξ ∈ Gn, j , there is some λξ > 0, such that L∩
ξ = λξ (K ∩ ξ ) , and

Vj(L∩ξ )
Vj(K∩ξ ) is a constant on Gn, j . So we know λξ is a constant

on Gn, j , and K ∩ ξ is a dilate of L∩ ξ , for each ξ ∈ Gn, j . By Lemma 5.1, when
2 � j � n− 1, we have K is a dilate of L . Secondly, suppose that j = 1 and K,L
are origin-symmetric. For ξ ∈ Gn,1, ξ = Ru for some u ∈ Sn−1 , then Sn−1 ∩ ξ =
{−u,u}, V1(K∩ξ ) = 2ρK(u) . By the dual Minkowski inequality, we have

Λ1,−p(K,L) =

∫
Gn,1

Ṽ1,−p(K ∩ξ ,L∩ξ )V1(K ∩ξ )n−1dμ1(ξ )∫
Gn,1

V1(K ∩ξ )ndμ1(ξ )

=
∫
Sn−1 ρn+p

k (u)ρ−p
L (u)dH n−1(u)∫

Sn−1 ρn
k (u)dH n−1(u)

=
Ṽn,−p(K,L)

V (K)
�
(

V (K)
V (L)

) p
n

.

With equality if and only if K is a dilate of L . It completes the proof. �

THEOREM 5.3. Suppose that K ∈ K n
0 and 1 � j � n−1, p � 1 . We have

Λ̃ j(K) � ω
n− j
n

n V (S j,pK)
j
n .

When 2 � j � n−1 , equality holds if and only if K is an origin-symmetric ellipsoid.

Proof. According to Lemma 4.2 and Lemma 5.2, we have

1 = Λ j,−p(K,S j,pK) �
(

Λ̃ j(K)
Λ̃ j(S j,pK)

) p
j

.

Thus, Λ̃ j(K) � Λ̃ j(S j,pK) . When 2 � j � n−1, equality holds if and only if K is an
origin-symmetric ellipsoid. For S j,pK ∈ εn , from Theorem 4.5,we have

V

((
V (S j,pK)

ωn

) 1
n

Bn

)
= V (S j,pK)), then

(
V (S j,pK)

ωn

) 1
n

Bn = S j,pK,

by Lemma 2.3 and the fact Λ̃ j(Bn) = ωn , we have

Λ̃ j(S j,pK) = Λ̃ j

((
V (S j,pK)

ωn

) 1
n

Bn

)
=
(

V (S j,pK)
ωn

) j
n

Λ̃ j(Bn) = ω
n− j
n

n V (S j,pK)
j
n .

It completes the proof. �

THEOREM 5.4. Suppose that K is an origin-symmetric convex body in Rn . Then

V (S∗1,pK)V (K) � ω2
n ,

with equality if and only if K is an origin-symmetric ellipsoid.
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Proof. From Definition 4.1 and Lemma 5.2, it follows that

1 = Λ1,−p(K,S1,pK) �
(

V (K)
V (S1,pK)

) p
n

.

Thus, V (K)�V (S1,pK) , with equality if and only if K is an origin-symmetric ellipsoid.
For S1,pK ∈ εn , by the Blaschke-Santal ó inequality, we have

V (S∗1,pK)V (K) � V (S∗1,pK)V (S1,pK) = ω2
n .

It completes the proof. �

THEOREM 5.5. Suppose that K ∈ K n
0 . Then,

V (IK) �
ωn

n−1

ωn−2
n

V (Sn−1,pK)n−1,

with equality if and only if K is an origin-symmetric ellipsoid.

Proof. For K ∈ K n
0 , by the definition of Λ̃n−1(K) , it follows that

Λ̃n−1(K) =
ωn

ωn−1

(∫
Gn,n−1

Vn−1(K ∩ξ )ndμn−1(ξ )
) 1

n

=
ωn

ωn−1

(
1

nωn

∫
Sn−1

Vn−1(K∩u⊥)ndH n−1(u)
) 1

n

=
ωn

ωn−1

(
1

nωn

∫
Sn−1

ρn
IK(u)dH n−1(u)

) 1
n

=
ω

n−1
n

n

ωn−1
V (IK)

1
n .

From Definition 4.1 and Lemma 5.2, we have

1 = Λn−1,−p(K,Sn−1,pK) �
(

Λ̃n−1(K)
Λ̃n−1(Sn−1,pK)

) p
n−1

=
(

V (IK)
V (I(Sn−1,pK))

) p
n(n−1)

.

Thus, V (IK) � V (I(Sn−1,pK)) , with equality if and only if K is an origin-symmetric
ellipsoid. Since Sn−1,pK ∈ εn , by the fact that IE = ωn−1

ωn
V (E)E∗ (see, e. g. [4]), and

the Blaschke-Santal ó inequality, we have

V (I(Sn−1,pK)) =
ωn

n−1

ωn
n

V (Sn−1,pK)nV (S∗n−1,pK) =
ωn

n−1

ωn−2
n

V (Sn−1,pK)n−1.

It completes the proof. �
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