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INEQUALITIES FOR QUERMASSINTEGRALS

OF (NEW) p–PARALLEL BODIES

YINGYING LOU ∗ AND ZHENBING ZENG

(Communicated by M. A. Hernández Cifre)

Abstract. In this paper, we define a new family of convex bodies related to the family of p -
parallel bodies, which is determined by the 0-extreme normal vectors, and establish some in-
equalities for their quermassintegrals.

1. Introduction

It is well-known that the volume of convex bodies and their Minkowski sum lead
to the rich and powerful classical Brunn-Minkowski theory. The core elements of this
theory such as mixed volumes are defined by the classical Steiner formula, which states
that the volume of the Minkowski addition of a convex body K and a positive dilation
λE of a convex body E is a polynomial of degree at most n in λ :

V (K + λE) =
n

∑
i=0

(
n
i

)
Wi(K;E)λ i.

The coefficients Wi(K;E) are called relative quermassintegrals of K , which are a spe-
cial case of mixed volumes (see [11, Section 5.1]). In particular, we have W0(K;E) =
V (K) and Wn(K;E) = V (E) .

In the early 1960s, Firey [1] introduced the concept of Lp Minkowski addition of
convex bodies. If K and E are convex bodies containing the origin, λ is non-negative,
and 1 � p < ∞ , then the Lp Minkowski addition of K and λE (the so-called relative
p -outer parallel body of K relative to E ) is given by an intersection of half-spaces,

K +p λE =
⋂

u∈Sn−1

{
x ∈ R

n : x ·u � [h(K,u)p + λ ph(E,u)p]
1
p

}
,

where h(K, ·) is the support function of K and x ·u denotes the standard inner product
of x and u in R

n . When p = 1, the usual Minkowski addition is obtained.
It is known that there is no polynomial expression for the quermassintegrals of the

p -outer parallel bodies when p > 1 (see [2, Theorem 10.3]).
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Recently, A. R. Martı́nez Fernández et al. [8] introduced the following counterpart
of the Lp Minkowski addition, the so-called p-difference. If K and E are convex
bodies containing the origin, −r(K;E) � λ � 0 and 1 � p < ∞ , the p-difference of K
and |λ |E (i.e., the p -inner parallel body of K relative to E ) is defined by

K ∼p |λ |E =
⋂

u∈Sn−1

{
x ∈ R

n : x ·u � [h(K,u)p−|λ |ph(E,u)p]
1
p

}
.

Here, r(K;E) = max{r � 0 : there is x ∈ R
n with x+ rE ⊆ K} is the relative inradius

of K with respect to E . In the above definition, the convex body K needs to satisfy
the geometric assumption h(K,u)− r(K;E)h(E,u) � 0 (see [8] for further details). In

addition, we note that the convex body K +p λE has [h(K,u)p + λ ph(E,u)p]
1
p as its

support function, but the convex body K ∼p |λ |E is the Wulff shape of the function

[h(K,u)p−|λ |ph(E,u)p]
1
p . We write Kp

λ to denote the p -inner and outer parallel bod-
ies of K relative to E .

As it is well known, the smallest subset of vectors needed to determine the convex
body is the set of 0-extreme normal vectors. More precisely, it was shown in [9, (2.9)]
that

K =
⋂

u∈U0(K)

{x ∈ R
n : x ·u � h(K,u)},

where the set U0(K) denotes the set of 0-extreme normal vectors of K , i.e., those ones
that cannot be written as a positive combination of two linearly independent normal
vectors at one and the same boundary point of K .

The well known properties of the Wulff-shape (see e.g. [11, Section 7.5]) and
the fact that U0(K

p
λ ) ⊂ U0(K) (see [7, Proposition 4.1.11]) allow to see that p -inner

parallel bodies can be expressed by merely using the 0-extreme normal vectors, namely,

Kp
λ =

⋂
u∈U0(K)

{
x ∈ R

n : x ·u � [h(K,u)p−|λ |ph(E,u)p]
1
p

}
.

An alternative proof of this fact will be given in Lemma 2.
It seems reasonable to define a full system of (new) p -parallel bodies just deter-

mined by the 0-extreme normal vectors.

DEFINITION 1. Let K and E be convex bodies containing the origin, −r(K;E) �
λ < ∞ and 1 � p < ∞ . The full system of (new) p -parallel bodies is defined by

Kp(λ ) =
⋂

u∈U0(K)

{
x ∈ R

n : x ·u � [h(K,u)p + sgn(λ )|λ |ph(E,u)p]
1
p

}
.

Here, sgn denotes the usual sign function. Note that Kp
λ ⊆ Kp(λ ) for λ � 0, and

the inclusion may be strict (see Remark 1). Moreover, in the above definition, the con-
vex body K also needs to satisfy the geometric assumption h(K,u)−r(K;E)h(E,u)� 0
for −r(K;E) � λ � 0.
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In [5], the authors established upper and lower bounds for quermassintegrals of
Kp(λ ) for −r(K;E) � λ � 0. In this paper, we give lower bounds for quermassinte-
grals of Kp(λ ) with the equality conditions for λ � 0. The equality case characterizes
the tangential bodies. A convex body K containing a convex body E is called a tan-
gential body of E , if each 0-extreme support plane (see Section 2 for the detailed
definition) of K supports E . Given a convex body E , a special tangential body of E is
the relative form body K∗ (see Section 2 for the detailed definition) of a convex body
K .

THEOREM 1. Let K and E be convex bodies containing the origin, 1 � p < ∞
and let q be the Hölder conjugate of p, i.e., 1

p + 1
q = 1 . Then, for λ � 0 and all

i = 0, . . . ,n−1 ,

Wi(Kp(λ );E) �
( 1

1+ λ p

) n−i
q

Wi(K;E)

+ λ p
n−i−1

∑
k=0

( 1
1+ λ p

) k+1
q

V (K[k],Kp(λ )[n− i− k−1],K∗,E[i]). (1)

If K is a tangential body of E , then equality holds in (1) for all i = 0, . . . ,n− 1 and
1 � p < ∞ . Conversely, suppose E is regular and strictly convex. If equality holds in
(1) for some i ∈ {0, . . . ,n−1} , λ > 0 and 1 < p < ∞ , then K is a tangential body of
E .

When p = 1, the coefficients
( 1

1+λ p

) (n−i)
q and

( 1
1+λ p

) k+1
q in (1) should be under-

stood as 1.
In this theorem, there are some notions involved. V (K1, . . . ,Kn) denotes the n -

dimensional mixed volume of the convex bodies K1, . . . ,Kn . Note that Wi(K;E) =
V (K, . . .K,E, . . . ,E) , where K appears n− i times and L appears i times. For the sake
of brevity, we denote (K1[r1], . . . ,Km[rm]) ≡ (K1, . . . ,K1︸ ︷︷ ︸

r1

, . . . ,Km, . . . ,Km︸ ︷︷ ︸
rm

) .

A convex body K is called strictly convex if its boundary bdK does not contain
a segment, and regular if the supporting hyperplane (see Section 2 for the detailed
definition) of K at any boundary point is unique.

2. Background material

Let K n denote the set of convex bodies (compact, convex subsets) in the Eu-
clidean n -space R

n . Let K n
0 be the subset of K n consisting of all convex bodies

containing the origin. We denote by Sn−1 the unit sphere in R
n and by Bn the n -

dimensional unit ball. If K ∈ K n , then its support function, h(K, ·) : R
n → R , is

defined by
h(K,u) = max{x ·u : x ∈ K}, u ∈ R

n.

Obviously, for K,L ∈ K n ,

K ⊆ L if and only if h(K, ·) � h(L, ·). (2)
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Let K ∈ K n . For each u ∈ R
n \ {0} , the hyperplane

HK(u) = {x ∈ R
n : x ·u = h(K,u)}

is called the supporting hyperplane of K with outer normal u .
For K1, . . . ,Km ∈ K n and real numbers λ1, . . . ,λm � 0, the volume of the linear

combination λ1K1 + · · ·+ λmKm is a homogeneous polynomial. That is,

V (λ1K1 + · · ·+ λmKm) =
m

∑
i1=1

· · ·
m

∑
in=1

V (Ki1 , . . . ,Kin)λi1 · · ·λin ,

where V (Ki1 , . . . ,Kin) are the mixed volumes of Ki1 , . . . ,Kin ∈ K n . They are continu-
ous, non-negative, symmetric, linear and monotone (with respect to set inclusion).

For K,K1, . . . ,Kn−1 ∈ K n , the mixed volume has the integral representation (see
e.g. [11, Theorem 5.1.7])

V (K,K1, . . . ,Kn−1) =
1
n

∫
Sn−1

h(K,u)dS(K1, . . . ,Kn−1;u), (3)

where S(K1, . . . ,Kn−1; ·) is the mixed surface area measure of K1, . . . ,Kn−1 on Sn−1 .
An outer normal vector of K is called r -extreme normal vector, r = 0,1, . . . ,n−1,

if it cannot be written as a positive combination of r + 2 linearly independent normal
vectors at one and the same boundary point of K . We denote the set of r -extreme
normal vectors of K by Ur(K) . Notice that each r -extreme normal vector is also an
s-extreme one for r < s � n−1. When r = 0, we obtain the 0-extreme normal vectors.
A support plane is said to be 0-extreme if its outer normal vector is 0-extreme.

The (relative) form body K∗ of K ∈ K n with respect to E ∈ K n is defined as

K∗ =
⋂

u∈U0(K)

{x ∈ R
n : x ·u � h(E,u)}.

In the above equality, the set U0(K) can be replaced by clU0(K) because of the conti-
nuity of the support function.

3. Inequalities for quermassintegrals of Kp(λ ) for λ � 0

In order to establish some inequalities for the quermassintegrals of Kp(λ ) for
λ � 0, we invoke the following binary operation which was introduced in [8]:

a+p b =

{
sgn2(a,b)(|a|p + |b|p) 1

p if ab � 0,

sgn2(a,b)(max{|a|, |b|}p−min{|a|, |b|}p)
1
p if ab � 0,

where the function sgn2 : R×R → R is given by

sgn2(a,b) =

⎧⎨
⎩

sgn(a) = sgn(b) if ab > 0,
sgn(a) if ab � 0 and |a| � |b|,
sgn(b) if ab � 0 and |a| < |b|.

Next we list some properties of 0-extreme normal vectors, form bodies and p -
difference which will be needed later on.
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LEMMA 1. Let K,E,L,M ∈ K n
0 , and let 1 � p < ∞ . The following properties

hold:
(i) U0(K)∪U0(L) ⊆ U0(K +p L) = U0(K +p λL) for λ > 0 (see [7, Proposition

4.1.8] and [5, Lemma 3.4]).
(ii) U0(K∗)⊆ clU0(K) . If E is regular, then U0(K∗) = clU0(K) (see [4, Lemma

2.1]).
(iii) K +p L ⊆ M if and only if K ⊆ M ∼p L (see [8, Lemma 2.2 (iv)]).

In the following we prove that the definition of p -inner parallel bodies is equiva-
lent to the definition of Kp(λ ) for −r(K;E) � λ � 0.

LEMMA 2. Let K,E ∈K n
0 with h(K,u)−r(K;E)h(E,u) � 0 , and let 1 � p < ∞ .

Then, for −r(K;E) � λ � 0 ,

Kp
λ = Kp(λ ).

Proof. From the definitions of p -inner parallel body and Kp(λ ) , it is easy to
obtain that Kp

λ ⊆ Kp(λ ) .
Next we need to prove the reverse inclusion. Using the definition of Kp(λ ) , it

follows that, for all u ∈ U0(K) ,

h(Kp(λ ),u) � [h(K,u)p−|λ |ph(E,u)p]
1
p ,

which implies h(Kp(λ )+p |λ |E,u) � h(K,u) for all u ∈ U0(K) . Thus

Kp(λ )+p |λ |E =
⋂
Sn−1

{
x ∈ R

n : x ·u � h(Kp(λ )+p |λ |E,u)
}

⊆
⋂

U0(K)

{
x ∈ R

n : x ·u � h(K,u)
}

= K.

Lemma 1 (iii) ensures that Kp(λ ) ⊆ K ∼p |λ |E = Kp
λ . �

LEMMA 3. Let K,E ∈ K n
0 , and let 1 � p < ∞ . Then, for λ � 0 ,

h(Kp(λ ),u)p = h(K,u)p + λ ph(E,u)p for all u ∈ U0(K).

Proof. By the definition of Kp(λ ) , we get, for λ � 0 and all u ∈ U0(K) ,

h(Kp(λ ),u)p � h(K,u)p + λ ph(E,u)p.

On the other hand, we have

Kp(λ ) ⊇ K +p λE.

It yields that h(Kp(λ ),u)p � h(K,u)p + λ ph(E,u)p for all u ∈ Sn−1 . Thus,

h(Kp(λ ),u)p = h(K,u)p + λ ph(E,u)p for all u ∈ U0(K). �

Now we consider some important properties of Kp(λ ) for λ � 0.
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LEMMA 4. Let K,E ∈ K n
0 , and let 1 � p < ∞ . Then, for λ � 0 ,

(i) K +p λE ⊆ K +p λK∗ ⊆ Kp(λ );
(ii) r(Kp(λ );E) = r(K;E)+p λ ;
(iii) U0(Kp(λ )) ⊆ clU0(K) . If E is regular, then U0(Kp(λ )) = clU0(K) .

Proof. (i) From the definition of form body one has K +p λE ⊆ K +p λK∗ .
In the following we prove the right-hand inclusion. By the definition of Kp(λ ) ,

we have

K +p λK∗ =
⋂

u∈Sn−1

{
x ∈ R

n : x ·u � h(K +p λK∗,u)
}

=
⋂

u∈Sn−1

{
x ∈ R

n : x ·u � [h(K,u)p + λ ph(K∗,u)p]
1
p
}

⊆
⋂

u∈U0(K)

{
x ∈ R

n : x ·u � [h(K,u)p + λ ph(E,u)p]
1
p
}

= Kp(λ ).

(ii) Since r(K;E)E ⊆ K , and together with item (i) , we get (r(K;E)+p λ )E ⊆
K +p λE ⊆ Kp(λ ) , which implies r(K;E)+p λ � r(Kp(λ );E) .

On the other hand, we notice that r(Kp(λ );E)E ⊆ Kp(λ ) and hence for all u ∈
U0(K)

r(Kp(λ );E)h(E,u) � h(Kp(λ ),u) = [h(K,u)p + λ ph(E,u)p]
1
p ,

which yields

[r(Kp(λ );E)p−λ p]
1
p h(E,u) � h(K,u) for all u ∈ U0(K).

Thus

[r(Kp(λ );E)p −λ p]
1
p E =

⋂
u∈Sn−1

{
x ∈ R

n : x ·u � [r(Kp(λ );E)p −λ p]
1
p h(E,u)

}
⊆

⋂
u∈U0(K)

{
x ∈ R

n : x ·u � h(K,u)
}

= K.

Thereforewe have [r(Kp(λ );E)p−λ p]
1
p � r(K;E) and hence r(Kp(λ );E)� r(K;E)+p

λ .
(iii) From the definition of Kp(λ ) , we know that Kp(λ ) is the form body of K

with respect to E ′ = K +p λE . According to Lemma 1 (ii) , we get U0(Kp(λ )) ⊆
clU0(K) . Since E is regular, we can use Lemma 1 (i) to get

U0(E ′) = U0(K +p λE) = U0(K +p E) ⊇ U0(K)∪U0(E) = Sn−1,

which implies E ′ is regular. By Lemma 1 (ii) , we deduce U0(Kp(λ )) = clU0(K) . �
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REMARK 1. Note that the inclusion Kp
λ ⊆ Kp(λ ) for λ � 0 may be strict. In

fact, we consider K = [0,1]2 , E = B2 , and U0(K) = {(±1,0),(0,±1)} in R
2 . If

u ∈ U0(K) ,

h(K +p λB2,u) = (1+ λ p)
1
p = h(Kp(λ ),u).

Let u = (cosθ ,sinθ ) ∈ S1 \U0(K) for θ ∈ (0, π
4 ] . Then

h(K +p λB2,u) =
((√

2cos
(π

4
−θ

))p
+ λ p

) 1
p

<
√

2cos
(π

4
−θ

)
(1+ λ p)

1
p

= h(Kp(λ ),u).

By the symmetry, the same argument shows that h(K +p λB2,u) < h(Kp(λ ),u) for all
u = (cosθ ,sinθ )∈ S1\U0(K) with θ ∈ [π

4 , π
2 )∪(π

2 , 3π
4 ]∪ [ 3π

4 ,π)∪(π , 5π
4 ]∪ [ 5π

4 , 3π
2 )∪

( 3π
2 , 7π

4 ]∪ [ 7π
4 ,2π) . Thus the p -outer parallel body K +p λB2 is strictly contained in

Kp(λ ) (see Figure 1).

Figure 1: K2√
3
⊂ K1

1 ⊂ K1(1) = K2(
√

3)

The following lemma states the relationship between tangential bodies and Kp(λ )
for λ � 0.

LEMMA 5. Let K,E ∈ K n
0 , and let 1 � p < ∞ . Then K is a tangential body of

E if and only if

Kp(λ ) = (1+ λ p)
1
p K for λ � 0.

Proof. If K is a tangential body of E , then h(K,u) = h(E,u) for all u ∈ U0(K) .
Therefore, we get, for λ � 0,

Kp(λ ) =
⋂

u∈U0(K)

{
x ∈ R

n : x ·u � [h(K,u)p + λ ph(E,u)p]
1
p
}

=
⋂

u∈U0(K)

{
x ∈ R

n : x ·u � [h(K,u)p + λ ph(K,u)p]
1
p
}
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=
⋂

u∈U0(K)

{
x ∈ R

n : x ·u � (1+ λ p)
1
p h(K,u)

}
= (1+ λ p)

1
p K.

Conversely, if Kp(λ ) = (1 + λ p)
1
p K for λ � 0, then, by Lemma 3, we get, for all

u ∈ U0(K) ,

h(Kp(λ ),u) = [h(K,u)p + λ ph(E,u)p]
1
p = (1+ λ p)

1
p h(K,u),

which leads to h(K,u) = h(E,u) for all u ∈U0(K) . This implies that K is a tangential
body of E . �

REMARK 2. If K is a tangential body of E , and together with the fact that K∗ is
a tangential body of E , we deduce K = K∗ . Notice that it implies Kp(λ ) = K +p λK∗
for λ � 0.

Now we are in a position to prove Theorem 1.1.

Proof. From (3), (2), Lemma 4 (i) and Hölder’s inequality, we get, for λ � 0,

Wi(Kp(λ );E) = V (Kp(λ )[n− i],E[i])

=
1
n

∫
Sn−1

h(Kp(λ ),u)dS(Kp(λ )[n− i−1],E[i];u)

�1
n

∫
Sn−1

h(K +p λK∗,u)dS(Kp(λ )[n− i−1],E[i];u)

=
1
n

∫
Sn−1

[h(K,u)p + λ ph(K∗,u)p]
1
p dS(Kp(λ )[n− i−1],E[i];u)

�1
n

∫
Sn−1

[( 1
1+ λ p

) 1
q
h(K,u)+

( λ p

1+ λ p

) 1
q λh(K∗,u)

]
dS(Kp(λ )[n− i−1],E[i];u)

=
( 1

1+ λ p

) 1
q
V (K,Kp(λ )[n− i−1],E[i])+

λ p

(1+ λ p)
1
q

V (Kp(λ )[n− i−1],K∗,E[i])

�
( 1

1+ λ p

) 2
q
V (K[2],Kp(λ )[n− i−2],E[i])

+
( 1

1+ λ p

) 1
q λ p

(1+ λ p)
1
q

V (K,Kp(λ )[n− i−2],K∗,E[i])

+
λ p

(1+ λ p)
1
q

V (Kp(λ )[n− i−1],K∗,E[i])

� · · · �
( 1

1+ λ p

) n−i
q

Wi(K;E)

+ λ p
n−i−1

∑
k=0

( 1
1+ λ p

) k+1
q

V (K[k],Kp(λ )[n− i− k−1],K∗,E[i]). (4)
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Next we consider the equality conditions in (1). We assume that λ > 0, otherwise
the result is trivial. If equality holds in (1) for some i ∈ {0, . . . ,n−1} and 1 < p < ∞ ,
we must have ∫

Sn−1
h(Kp(λ ),u)dS(Kp(λ )[n− i−1],E[i];u)

=
∫

Sn−1
h(K +p λK∗,u)dS(Kp(λ )[n− i−1],E[i];u), (5)

and∫
Sn−1

[h(K,u)p + λ ph(K∗,u)p]
1
p dS(Kp(λ )[n− i−1],E[i];u) (6)

=
∫

Sn−1

[( 1
1+ λ p

) 1
q
h(K,u)+

( λ p

1+ λ p

) 1
q λh(K∗,u)

]
dS(Kp(λ )[n− i−1],E[i];u).

Firstly, we assume (6) holds. From Hölder’s inequality, we know that[
h(K,u)p + λ ph(K∗,u)p] 1

p �
( 1

1+ λ p

) 1
q
h(K,u)+

( λ p

1+ λ p

) 1
q λh(K∗,u).

Then we get
[
h(K,u)p+λ ph(K∗,u)p

] 1
p =

(
1

1+λ p

) 1
q h(K,u)+

( λ p

1+λ p

) 1
q λh(K∗,u) for all

u ∈ suppS(Kp(λ )[n− i−1],E[i];u) . By the equality conditions of Hölder’s inequality,

we obtain
1

1+λ p
λ p

1+λ p
= h(K,u)p

λ ph(K∗,u)p for all u ∈ suppS(Kp(λ )[n− i− 1],E[i];u) . So we get

h(K,u) = h(K∗,u) for all u ∈ suppS(Kp(λ )[n− i−1],E[i];u) .
Moreover, we assume (5) holds. By Lemma 4 (i) , we obtain h(Kp(λ ),u) =

h(K +p λK∗,u) for all u ∈ suppS(Kp(λ )[n − i− 1],E[i];u) . According to (6), we
get h(K,u) = h(K∗,u) for all u ∈ suppS(Kp(λ )[n− i− 1],E[i];u) , and hence h(K +p

λK∗,u) = (1+λ p)
1
p h(K,u) for all u∈ suppS(Kp(λ )[n− i−1],E[i];u) . Since E ∈K n

0
is regular and strictly convex, then suppS(Kp(λ )[n− i− 1],E[i]; ·) = clUi(Kp(λ )) ⊇
clU0(Kp(λ )) = clU0(K) (see [10, p. 135–136]), where the last equality is due to

Lemma 4 (iii) . From Lemma 3, one has h(Kp(λ ),u) = [h(K,u)p + λ ph(E,u)p]
1
p =

(1+ λ p)
1
p h(K,u) for all u ∈ U0(K) , and hence h(K,u) = h(E,u) for all u ∈ U0(K) .

This implies that K is a tangential body of E .
Conversely, if K is a tangential body of E , then K = K∗ . By Remark 2, we get

Kp(λ ) = K +p λK∗ , which means that equality holds in the first inequality of (4). In

addition, since K = K∗ then
1

1+λ p
λ p

1+λ p
= h(K,u)p

λ ph(K∗,u)p for all u ∈ Sn−1 , and by the equality

conditions of Hölder’s inequality, equality holds in the second inequality of (4). In
conclusion, equality holds in all the inequalities of (4). Thus equality holds in (1) for
all i = 0, . . . ,n−1 and 1 � p < ∞ . �

We note that h(Kp
λ ,u) = [h(K,u)p +λ ph(E,u)p]

1
p for λ � 0 and all u∈ Sn−1 . By

Hölder’s inequality, we get[
h(K,u)p + λ ph(E,u)p] 1

p �
( 1

1+ λ p

) 1
q
h(K,u)+

( λ p

1+ λ p

) 1
q λh(E,u),
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which implies Kp
λ ⊇ (

1
1+λ p

) 1
q K+ λ

p
q

(1+λ p)
1
q
E . Then, an analogous argument to the proof

of inequality (1) shows that

Wi(K
p
λ ;E) �

( 1
1+ λ p

) n−i
q

Wi(K;E)

+ λ p
n−i−1

∑
k=0

( 1
1+ λ p

) k+1
q

V (K[k],Kp
λ [n− i− k−1],E[i+1]). (7)

Note: For 1 < p < ∞ , the left and right-hand sides of inequality (1) are larger than
those of inequality (7), respectively, which means that there is no inclusion relationship
between the two inequalities. If p = 1 and i = 0, then (7) and (1) reduce to the relative
Steiner formula.
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