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HARNACK INEQUALITIES FOR FUNCTIONAL SDES DRIVEN BY

SUBORDINATE MULTIFRACTIONAL BROWNIAN MOTION

ZHI LI, LITAN YAN AND LIPING XU ∗

(Communicated by J. Jakšetić)

Abstract. Being base on the Girsanov theorem for multifractional Brownian motion, which can
be constructed by the multifractional derivative operator, we establish the Harnack inequalities
for a class of stochastic functional differential equations driven by subordinate multifractional
Brownian motion by an approximation technique.

1. Introduction

The dimension-free Harnack inequality with powers introduced in [37] and the
log-Harnack inequality introduced in [31] have attracted more and more attentions be-
cause of its extensive applications in stochastic analysis, such as strong Feller property
and contractivity properties (see [29, 30, 38]); heat kernel estimates (see [16, 34, 40,
42]); transportation-cost inequalities and properties of invariant measures (see [3, 25,
41]). Up to now, the dimension-free Harnack inequality and log-Harnack inequality
have been intensively investigated for various stochastic (partial) differential equations
driven by several different kinds of noise. We can refer to [2, 4, 18, 35, 39, 43, 48].

Very recently, by using the coupling argument, the Girsanov transformations and
an approximation argument, Deng and Huang [11] established Harnack inequalities for
the following stochastic differential equation driven by subordinate Brownian motion

X(t) = ξ +
∫ t

0
b(X(s))ds+

∫ t

0
F(Xs)ds+BS(t), t � 0,

where B = {Bt}t�0 is a d -dimensional Brownian motion, S = {S(t)}t�0 is a subor-
dinator and independent of B . The theory of subordinate Brownian motion recently
received increasing attentions since they may describe some mathematical models in
finance. There also exists several results on the Harnack inequality for subordinate
Brownian and the time changed Brownian motion. For example, Rao et al, [28] and
Mimica and Kim [23] studied the Harnack inequality for subordinate Brownian mo-
tion; Deng [13] established the Harnack inequalities for the inhomogeneous semigroup
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associated with a class of SDEs with Lévy noise containing a subordinate Brownian
motion.

It is a natural question whether one can still establish the Harnack inequality when
the driving noise is a more general, maybe non-Markovian process. As far as I know
that the fractional Brownian motion (in short fBm) becomes the standard Brownian
motion when H = 1/2, and the fBm WH neither is a semimartingale nor a Markov
process if H �= 1/2. However, the fBm WH , H > 1/2 is a long-memory process and
presents an aggregation behavior. The long-memory property makes fBm as a potential
candidate to model noise in mathematical finance (see [8]); in biology (see [6, 10]);
in communication networks (see, for instance [44]); the analysis of global tempera-
ture anomaly [32] electricity markets [36] etc. There are several frontier works on the
Harnack inequalities for stochastic (partial) differential equations driven by fractional
Brownian motion, see [14, 15, 19, 45, 46, 47].

However, there is only a few result on the stochastic differential equations driven
by subordinate fBm and we can only find that Deng and Schilling [12] established Har-
nack inequalities for stochastic differential equations driven by subordinat fBm with
H ∈ (0,1/2) and Li and Yan [21] established Harnack inequalities for stochastic dif-
ferential equations driven by subordinat fBm with H ∈ (1/2,1) . On the other hand,
the Hurst parameter H of the fractional Brownian motion can be dependent on time
(e.g. [26]). The process was named multifractional Brownian motion, referring to the
fact that the fractional parameter H was a function depending on time taking values
between 0 and 1. As showed in the literature (see [20, 26]), multifractional Brownian
motion seems to be a more flexible model than fractional Brownian motion. The multi-
fractional Brownian motion possesses the good feature of fractional Brownian motion,
such as Hölder continuity (see [7, 27]); self-similarity (see [24]) and long rang de-
pendence (see [1]) etc. But, the multifractional Brownian motion is a non-stationary
stochastic process which makes it more intricate to deal with stochastic differential
equations driven by multifractional Brownian motion.

In connection with the above discussions, in this paper, we are interested in the
following stochastic differential equation (SDE):

X(t) = ξ +
∫ t

0
b(X(s))ds+

∫ t

0
F(Xs)ds+Bh

S(t), t � 0, (1)

where Bh is a multifractional Brownian motion with regularity function h valued on
(0,1) , and S = {S(t)}t�0 is a subordinator and independent of Bh . We will discuss the
multifractional derivative operator which acts as the inverse of the multifractional inte-
gral operator by using the variable order fractional calculus so that we can obtain the
Girsanov theorem for the multifractional Brownian motion. As a result, we can estab-
lish the Harnack inequalities for a class of stochastic functional differential equations
driven by subordinate multifractional Brownian motion by an approximation technique.

The rest of this paper is organized as follows. In Section 2, we introduce some
necessary notations and preliminaries. In Section 3, we devote ourselves to establish
the Harnack inequalities for SDEs (1).
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2. Preliminaries

2.1. Multifractional calculus

In this subsection, we will give meaning to the multifractional calculus. Many
references in fractional analysis refer to this concept as fractional calculus of variable
order, as the idea is to let the order of integration (or differentiation) be dependent on
time (or possibly space, but for our application, time will be sufficient), see for example
[33, 34] and the references therein. We will use the word multifractional calculus for
the concept of fractional calculus of variable order, as this is coherent with the notion
of multifractional stochastic processes.

DEFINITION 1. (Multifractional Riemann-Liouville integrals) For 0 < c < d , as-
sume f ∈ L1([c,d]) , and α : [c,d] → [a,b] ⊂ (0,∞) is a differentiable function. We
define the left multifractional Riemann Liouville integral operator Iα

c+ by

(Iα
c+ f )(x) =

1
Γ(α(x))

∫ x

c
(x− y)α(x)−1 f (y)dy.

And define the space Iα
c+Lp([0,T ]) as the image of Lp([0,T ]) under the operator Iα

c+ .

By the definition of the space Iα
c+Lp([0,T ]) , we have that for all g∈ Iα

c+Lp([0,T ]) ,
g(c) = 0. Indeed, since g = Iα

c+ f , we must have Iα
c+ f (c) = 0 regardless of the function

α . In the same way, some authors also proposed to generalize the fractional derivative
i.e.

Dα
c+ f (x) =

1
Γ(1−α(x))

d
dx

∫ x

c

f (t)
(x− t)α(x) dt.

However, by generalizing the fractional derivative in this way, the authors found that
the derivative is no longer the inverse of the integral operator, but one rather finds that

Dα
c+Iα

c+ = I +K,

where I is the identity, and under some conditions K is a compact operator. By solving
Abel’s integral equation, often used to motivate the definition of the fractional derivative
in the case of constant regularity function, Harang et al. [17] defined the multifractional
derivative of a function g ∈ Iα

c+Lp([0,T ]) as the inverse operation of Iα
c+ , such that if

g ∈ Iα
c+Lp([0,T ]) then there exists a unique f ∈ Lp which satisfies g = Iα

c+ f , i.e, they
defined the fractional derivative Dα

c+g = f .
Let �(m)[a,b] denote the m-simplex. That is, define �(m)[a,b] to be given by

�(m)[a,b] = {(s1, · · · ,sm)|a � s1 < · · · < sm � b}.
Denote by Cβ ([0,T ];R) the space of β -Hölder continuous functions f : [0,T ] → R ,
equipped with the norm

‖ f‖β = | f (0)|+ sup
s �=t∈[0,T ]

| f (t)− f (s)|
|t− s|β < ∞.
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In addition, for a∈ [0,T ] let us define Cβ
α ([0,T ];R) to be the subspace of Cβ ([0,T ];R)

such that f ∈Cβ ([0,T ];R) , f (a) = 0. Let α be a C1 regularity function with values in
[a,b] ⊂ (0,1) . We define the space of locally Hölder continuous functions f : [0,T ] →
R by the norm

‖ f‖α(·);[0,T ] := | f (0)|+ sup
st∈[0,T ]

| f (t)− f (s)|
|t− s|max(α(x),α(y)) < ∞.

We denote this space by Cα(·)([0,T ];R) . Moreover denote by Cα(·)
0 ([0,T ];R) the space

of locally Hölder continuous functions which start in 0.

For g∈Cα(·)+ε
0 ([0,T ];R) with α ∈C1([0,T ], [a,b]) for [a,b]⊂ (0,1) , ε < 1−α∗

and α∗ = supt∈[0,T ] α(t) , the functional G0 evaluated in g defined by

G0(g)(x) =
1

B(α(x),1−α(x)
d
dx

(∫ x

0

Γ(α(t))g(t)
(x− t)α(t) dt

)
,

where B(·, ·) is the Beta function. Let α ∈C1([0,T ],(0,1)) . Define

F(s,x) :=
∫ 1

0
U(s,x;τ)dτ,

where U(s,x;τ) = α ′(s+ τ(x− s))× (ln(τ)− ln(1− τ))
(

τ
1−τ

)α(s+τ(x−s))
.

Harang et al. [17] gave the following explicit representation of this multifractional
derivative.

PROPOSITION 1. The multifractional derivative can be represented in Lp([0,T ])
as the infinite sequence of integrals

Dα
0+g(x)= G0(g)(x)+

∞

∑
m=1

∫
�(m)(0,x)

G0(g)(sm+1)F(sm+1,sm)×·· ·×F(s1,x)dsm+1 · · ·ds1,

for any g ∈ Cα(·)+ε
0 ([0,T ];R) with α ∈ C1([0,T ], [a,b]) for [a,b] ⊂ (0,1) , ε < 1−

α∗ . Furthermore, assume that for some p > 1 , the regularity function α satisfies the
inequality with α∗ = inf0�t�T α(t) ,

(α∗ + ε −α(0))× p > −1.

Then we have the estimate

|Dα
0+g(x)| � C(T,ε,α,x)‖g‖α(·)+ε;[0,T ],

where x→C(T,ε,α,x) is an Lp function for any p satisfying the inequality and hence
Dα

0+g ∈ Lp([0,T ]) .
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2.2. Multifractional Brownian motion

In this subsection, we give some preliminary results on the multifractional Brow-
nian motion with Riemann Liouville. The multifractional Brownian motion was first
proposed in the 1990’s by Peltier and Vehel in [26] and independently by Benassi et
al. in [5]. The process is non-stationary and on very small time steps it behaves like a
fractional Brownian motion. However, by letting the Hurst parameter in the fractional
Brownian motion be a function of time, the Hölder regularity of the process is depend-
ing on time, and therefore it makes more sense to talk about local regularities rather
than global. The process was initially proposed as a generalization with respect to the
fBm representation given by Mandelbrot and Van-Ness, that is, the mBm was defined
by

B̃h
t = c(ht)

∫ 0

−∞
(t − s)ht− 1

2 − (−s)ht− 1
2 dBs + c(ht)

∫ t

0
(t − s)ht− 1

2 dBs =: B̃(1),h
t + B̃(2),h

t ,

where {Bt}t∈[0,T ] is a real valued Brownian motion, and h : [0,T ] → (0,1) is a con-

tinuous function. Notice in the above representation that B̃(1),h
t is always measurable

with respect to the filtration F̃0 (generated by the Brownian motion), as the stochastic

process only “contributes” from −∞ to 0. Therefore, we can think of B̃(2),h
t as the only

part which contributes to the stochasticity of B̃h
t when t > 0. The reason why one also

considers the process B̃(1),h
t when analyzing regular fractional Brownian motions (in

the case h(t) = H) is to ensure stationarity of the process. However, when we are con-
sidering the generalization B̃h

t above, when h is not constant, we do not get stationary
of the process even though we consider the a representation as the one above. We are

therefore inclined to choose B̃(2),h
t to be the multifractional noise we consider in this

article due to its very simplistic nature. This multifractional process is often called in
the literature the Riemann-Liouville multifractional Brownian motion, inspired by the
original definition of the fractional Brownian motion defined by Lévy in the 1940’s.
The Riemann-Liouville multifractional Brownian motion was first analyzed by Lim in
[22], and is well suited to the use of multifractional calculus, constructed above, in
the analysis of differential equations driven by this process. In this subsection we will
recite some of the basic properties of the Riemann-Liouville multifractional Brownian
motion from [22].

DEFINITION 2. Let {Bt}t∈[0,T ] be a one dimensional Brownian motion on a fil-
tered probability space (Ω,F ,P) , and let h : [0,T ] → [a,b] ⊂ (0,1) be a C1 func-
tion. We define the Riemann Liouville multifractional Brownian motion (RLmBm)
{Bh

t }t∈[0,T ] by

Bh
t =

1

Γ(ht + 1
2)

∫ t

0
(t− s)ht− 1

2 dBs; t � 0,

where Γ(·) is the Gamma function. The function h is called the regularity function of
Bh· .

The following proposition on the Girsanov theorem for RLmBm can be found in
Harang et al. [17].
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PROPOSITION 2. Let {Bh
t }t∈[0,T ] be a RLmBm with regularity function h ∈

C1([0,T ], [a,b]) for [a,b] ⊂ (0,1/2) , 0 < ε < 1−h∗ and h∗ = supt∈[0,T ] h(t) . Assume
that

(i)
∫ ·
0 usds ∈Ch(·)+ 1

2 +ε([0,T ]) ⊆ Ih+ 1
2 L2([0,T ]) , a.s.

(ii) E[Z(T )] = 1 for Z(T ) := exp
(∫ T

0 D
h+ 1

2
0+
(∫ ·

0 us
)
(r)dBr− 1

2

∫ T
0

∣∣Dh+ 1
2

0+
(∫ ·

0 us
)
(r)
∣∣2dr

)
.

Then the stochastic process

B̃h
t = Bh

t +
∫ t

0
usds

is an RLmBm under the measure P̃ defined by

dP̃
dP

= Z(T ).

Let S = {S(t)}t�0 be a subordinator (without killing), i.e. a nondecreasing Lévy
process in [0,∞) starting at S(0)= 0. Due to the independent and stationary increments
property, it is uniquely determined by the Laplace transform

Ee−uS(t) = e−tφ(u), u > 0, t � 0,

where the characteristic (Laplace) exponent φ : (0,∞) → (0,∞) is a Bernstein function
with φ(0+) := limu→0 φ(u) = 0, i.e. a C∞ -function such that (−1)n−1φ (n) � 0 for all
n ∈ N . Every such φ has a unique Lévy-Khintchine representation

φ(u) = κu+
∫
(0,∞)

(1− e−ux)ν(dx), u > 0, (2)

where κ � 0 is the drift parameter and ν is a Lévy measure on (0,∞) satisfying∫
(0,∞)

(1∧ x)ν(dx) < ∞.

It is clear that φ̃ := φ(u)− κu is the Bernstein function of the subordinator S̃(t) =
S(t)−κt having zero drift and Lévy measure ν .

3. Harnack inequality for (1)

Fix a constant r > 0. Denote by L the family of all right continuous functions
f : [−r,0] → R

d with left limits equipped with the norm ‖ · ‖2

‖ f‖2
2 :=

∫ 0

−r
| f (s)|2ds+ | f (0)|2.

For f : [−r,∞)→R
d , we will denote ft ∈L , t � 0, the corresponding segment process

by
ft(s) := f (t + s), s ∈ [−r,0].

Throughout this paper we assume that the coefficients b , F satisfy the following Hy-
pothesis:
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(H) There exist constants K ∈ R and K1 � 0 such that

〈x− y,b(x)−b(y)〉� K|x− y|2, x,y ∈ R
d ,

and
|F(ξ )−F(η)| � K1‖ξ −η‖2, ξ ,η ∈ L .

REMARK 1. The Hypothesis (H) ensures the existence, uniqueness and non-exp-
losion of the solution to (1.1). Indeed, letting L(t) = Bh

S(t) , b̂(t,x) = b(x + L(t)) and

F̂(t,ξ ) = F(ξ +Lt) , one has

〈x− y, b̂(t,x)− b̂(t,y)〉 � K|x− y|2, x,y ∈ R
d , t � 0

and
|F̂(t,ξ )− F̂(t,η)| � K1‖ξ −η‖2, ξ ,η ∈ L , t � 0.

Then the following ordinary functional differential equation

dX̂(t) = b̂(t, X̂(t))dt + F̂(t, X̂t)dt

has a unique solution which does not explode in finite time; setting X(t) := X̂(t)+L(t) ,
we know that (1) has a unique non-explosive solution.

For ξ ∈ L , let Xξ
t be the solution to (1) with X0 = ξ . Let Pt be the semigroup

associated to Xξ
t , i.e.

Pt f (ξ ) = E f (Xξ
t ), t � 0, f ∈ Bb(L ), (3)

where Bb(L ) denotes the set of all bounded measurable functions on L .

THEOREM 1. Let {Bh
t }t∈[0,T ] be a RLmBm with regularity function h ∈

C1([0,T ], [a,b]) for [a,b] ⊂ (0,1/2) , 0 < ε < 1− h∗ and h∗ = supt∈[0,T ] h(t) , and
T > r . If the Hypothesis (H) holds. Then,

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

PT log f (η) � logPT f (ξ )+C1(T,K,K1,κ ,h,ε)‖ξ −η‖2
2

+C2(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2;

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
PT f (η)

)p
�PT f p(ξ )exp

[ p
2(p−1)2

(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C2(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2
)]

,
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where

C1(T,K,K1,κ ,h,ε) =
2K2

1T 1−2h∗−2ε

κ2

∥∥∥C(T,ε,h+
1
2
, ·
)∥∥∥2

L2

and

C2(T,K,K1,κ ,h,ε,r)

= T 1−2h∗−2ε
∥∥∥C(T,ε,h+

1
2
, ·
)∥∥∥2

L2

( (e2K(T−r)−1)K2
1

Kκ2 +2
(∫ T−r

0
e−2KtdS(t)

)−2)
.

For a measurable space (E,F ) , let P(E) denote the family of all probability
measures on (E,F ) . For μ ,ν ∈ P(E) , the entropy Ent(ν|μ) is defined by

Ent(ν|μ) :=
{∫

ln dν
dμ dν, ν � μ ,

+∞, otherwise.

The total variation distance ‖μ −ν‖var is defined by

‖μ −ν‖var := sup
A∈F

|μ(A)−ν(A)|.

By Pinsker’s inequality (see [9]),

‖μ −ν‖2
var � 1

2
Ent(ν|μ), μ ,ν ∈ P(E).

For ξ ∈ L , let PT (ξ , ·) be the distribution of Xξ
T . The following corollary is a

direct consequence of Theorem 1, see [39] for the proof.

COROLLARY 1. Let the assumptions in Theorem 1 hold. Then the following as-
sertions hold.

(i) For any ξ ,η ∈ L and PT (ξ , ·) is equivalent to PT (η , ·) and

Ent(PT (ξ , ·)|PT (η , ·)) �C1(T,K,K1,κ ,h,ε)‖ξ −η‖2
2

+C2(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2,
which together with Pinsker’s inequality implies that

2‖PT (ξ , ·)−PT (η , ·)‖2
var �C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C2(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2,

(ii) For any p > 1 , ξ ,η ∈ L

PT

{(dPT (ξ , ·)
dPT (η , ·)

)1/(p−1)}
(ξ ) �E

{
exp
[ p
2(p−1)2

(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C2(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2
)]}

.
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Let � : [0,∞)→ [0,∞) be a sample path of S , which is a non-decreasing and càdlàg
function with �(0) = 0. By (H) and the same explanation as in the Remark 1, for any
ξ ∈L , the following functional SDE has a unique non-explosive solution with X �

0 = ξ :

dX �(t) = b(X �(t))dt +F(X �
t )dt +dBh

�(t). (4)

We denote the solution by X �,ξ
t . Let

P�
t f (ξ ) = E f (X �,ξ

t ), t � 0, f ∈ Bb(L ). (5)

PROPOSITION 3. Let {Bh
t }t∈[0,T ] be a RLmBm with regularity function h ∈

C1([0,T ], [a,b]) for [a,b] ⊂ (0,1/2) , 0 < ε < 1− h∗ and h∗ = supt∈[0,T ] h(t) , and
T > r . If the Hypothesis (H) holds. Then,

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

P�
T log f (η) � logP�

T f (ξ )+
(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C3(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2
)
;

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
P�

T f (η)
)p

�P�
T f p(ξ )exp

[ p
2(p−1)2

(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C3(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2
)]

,

where

C3(T,K,K1,κ ,h,ε,r) =T 1−2h∗−2ε
∥∥∥C(T,ε,h+

1
2
, ·
)∥∥∥2

L2

·
((e2K(T−r)−1)K2

1

Kκ2 +2
(∫ T−r

0
e−2Ktd�(t)

)−2)
.

For ε ∈ (0,1) , consider the following regularization of � :

�ε :=
1
ε

∫ t+ε

t
�(s)ds+ εt =

∫ t

0
�(εs+ t)ds+ εt, t � 0.

It is clear that for each ε ∈ (0,1) , the function �ε is a absolutely continuous, strictly
increasing and satisfies for any t � 0

�ε(t) ↓ � as ε ↓ 0. (6)

For ξ ∈ L , let X �ε ,ξ
t be the solution to the following functional SDE with initial value

ξ :
dX �ε ,ξ (t) = b(X �ε ,ξ (t))dt +F(X �ε ,ξ )dt +dBh

�ε(t)−�ε (0). (7)

The associated semigroup is denoted by P�ε
t . Note that this SDE is indeed driven by

fBm and thus the method of coupling and Girsanov’s transformation can be used to
establish the dimension-free Harnack inequalities for P�ε

t .
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PROPOSITION 4. Let {Bh
t }t∈[0,T ] be a RLmBm with regularity function h ∈

C1([0,T ], [a,b]) for [a,b] ⊂ (0,1/2) , 0 < ε < 1− h∗ and h∗ = supt∈[0,T ] h(t) , and
T > r . If the Hypothesis (H) holds. Then,

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

P�ε
T log f (η) � logP�ε

T f (ξ )+
(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C4(T,K,K1,κ ,h,ε,r,ε)|ξ (0)−η(0)|2
)
;

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
P�ε

T f (η)
)p

�P�ε
T f p(ξ )exp

[ p
2(p−1)2

(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C4(T,K,K1,κ ,h,ε,r,ε)|ξ (0)−η(0)|2
)]

,

where

C4(T,K,K1,κ ,h,ε,r,ε) =T 1−2h∗−2ε
∥∥∥C(T,ε,h+

1
2
, ·
)∥∥∥2

L2

·
((e2K(T−r) −1)K2

1

Kκ2 +2
(∫ T−r

0
e−2Ktd�ε(t)

)−2)
.

Proof. First of all, we will construct coupling as follows. Let Yt solve the equation

dY (t) =b(Y (t))dt +F(X �ε ,ξ
t )dt + λ (t)I[0,τ)(t)

X �ε ,ξ (t)−Y(t)
|X �ε ,ξ (t)−Y(t)| |ξ (0)−η(0)|d�ε(t)

+dBh
�ε(t)−�ε (0)

(8)

with Y0 = η , where

λ (t) :=
e−Kt∫ T−r

0 e−2Ksd�ε(s)
, t � 0,

and
τ := T ∧ inf{t � 0;X �ε ,ξ (t) = Y (t)}

is the coupling time. It is clear that (X �ε ,ξ (t),Y (t)) is well defined for t < τ . By (H),
we have

d|X �ε ,ξ (t)−Y(t)| � K|X �ε ,ξ (t)−Y(t)|dt−λ (t)|ξ (0)−η(0)|d�ε(t), t ∈ [0,τ).

Thus, for t ∈ [0,τ) ,

|X �ε ,ξ (t)−Y(t)| �eKt |ξ (0)−η(0)|
(
1−

∫ t

0
e−Ksλ (s)d�ε(s)

)
� eKt ∫ T−r

t e−2Ksd�ε(s)∫ T−r
0 e−2Ksd�ε(s)

|ξ (0)−η(0)|

=:γ(t)|ξ (0)−η(0)|.

(9)
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If τ(ω) > T − r for some ω ∈ Ω , we can take t = T − r in the above inequality to get

0 < |X �ε ,ξ (t)(ω)−Y(t)(ω)| � 0,

which is absurd. Therefore, τ � T − r . Letting Y (t) = X �ε ,ξ (t) for t ∈ [τ,T ] , Y (t)
solves (8) for t ∈ [τ,T ] . In particular, X �ε ,ξ

T =YT . Moreover, by (9) and τ � T − r , we
have

|X �ε ,ξ (t)−Y(t)|2 � |ξ (0)−η(0)|2γ(t)2I[0,T−r](t), t ∈ [0,T ]. (10)

Denote by ζ ε : [�ε(0),∞) → [0,∞) the inverse function of �ε . Then �ε(ζ ε (t)) = t for
t � �ε(0) , ζ ε (�ε(t)) = t for t � 0, and t → ζ ε (t) is absolutely continuous and strictly
increasing. Let

Ψ(u) := Φ◦ ζ ε(u+ �ε(0)),

where

Φ(u) := [F(X �ε ,ξ
u )−F(Yu)]

1
(�ε)′(u)

+ λ (u)I[0,τ)(u)
X �ε ,ξ (u)−Y(u)
|X �ε ,ξ (u)−Y(u)| |ξ (0)−η(0)|.

Let

vt = D
h+ 1

2
0+

(∫ ·

0
Ψ(u)du

)
(t).

Next, we will check that the process
∫ ·
0 Ψ(u)du satisfies condition (i) and (ii) in the

Proposition 2. First we will show (i), i.e.
∫ ·
0 Ψ(u)du ∈ I

h+ 1
2

0+ L2([0,T ]) , which is equiv-
alent to showing v ∈ L2([0,T ]) . By the Proposition 1, we know that

|vt | � C
(
T,ε,h+

1
2
,t
)∥∥∥∫ ·

0
Ψ(u)du

∥∥∥
h(·)+ 1

2 +ε;[0,T ]
,

where t →C(T,ε,h+ 1
2 ,t) ∈ L2([0,T ]) since (h∗+ε −h(0))×2 > −1 for some small

ε > 0. By (10) and a simple calculation we can also shows
∥∥∥∫ ·0 Ψ(u)du

∥∥∥
h(·)+ 1

2 +ε;[0,T ]
∈

L2([0,T ]) . A simple calculation shows
∫ �ε (T )−�ε(0)
0 |Ψ(u)|2du < ∞ . Then, by using

h ∈ (0,1/2) we have
∫ ·
0 Φ(u)du ∈ IH+1/2

0+ (L2([0, �ε(T )− �ε(0)];Rd)) . Therefore, the
following stochastic integral defines a martingale

Mt := −
∫ t

0
〈vs,dBs〉, t � 0,

where B = {Bt}t�0 is a d -dimensional standard Brownian motion. By the Proposition
1, we know that

|vs| � C
(
T,ε,h+

1
2
,s
)∥∥∥∫ ·

0
Ψ(u)du

∥∥∥
h(·)+ 1

2 +ε;[0,T ]
,

and this yields for any s ∈ [0, �ε(T )− �ε(0)] ,

|vs| � C
(
T,ε,h+

1
2
,s
)
T

1
2−h∗−ε max

u∈[0,T ]
|Φ(u)|.
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Recalling that � is an sample path of the subordinator S with drift parameter κ � 0,
one have

(�ε)′(t) =
�(t + ε)− �(t)

ε
+ ε > κ ,

and therefore

|vs| � C
(
T,ε,h+

1
2
,s
)
T

1
2−h∗−ε max

u∈[0,T ]

(K
κ
‖X �ε ,ξ

u −Yu‖2 + λ (u)|ξ (0)−η(0)|
)
.

On the other hand, by view of the definition of ‖ · ‖2 we have for all t � 0

‖X �ε ,ξ
t −Yt‖2

2 =
∫ 0

−r
|X �ε ,ξ (t + s)−Y(t + s)|2ds+ |ξ (0)−η(0)|2

=
∫ t

t−r
|X �ε ,ξ (s)−Y (s)|2ds+ |ξ (0)−η(0)|2

�
∫ 0

−r
|ξ (s)−η(s)|2ds+

∫ t

0
|X �ε ,ξ (s)−Y (s)|2ds+ |ξ (0)−η(0)|2

=‖ξ −η‖2
2 +

∫ t

0
|X �ε ,ξ (s)−Y (s)|2ds.

Then, by (10) we have for all t � 0

‖X �ε ,ξ
t −Yt‖2

2 �‖ξ −η‖2
2 + |ξ (0)−η(0)|2

∫ T−r

0
γ(s)2ds

�‖ξ −η‖2
2 +

e2K(T−r) −1
2K

|ξ (0)−η(0)|2,
(11)

where in the last inequality we have used γ(s) � eKs for s∈ [0,T −r] . By the definition
of λ (t) , it is easy to see that for all t � 0

|λ (t)| �
(∫ T−r

0
e−2Ktd�ε(t)

)−1
. (12)

Thus, by (11) and (12) the compensator of the martingale Mt satisfies for all t � 0,

〈M〉t =
∫ t

0
|vs|2ds

�
(

2K2
1‖ξ −η‖2

2

κ2 +

(
(e2K(T−r)−1)K2

1

Kκ2 +2
(∫ T−r

0
e−2Ktd�ε(t)

)−2
)

· |ξ (0)−η(0)|2
)

T 1−2h∗−2ε
∫ t

0
C2
(

T,ε,h+
1
2
,s

)
ds

� 2K2
1T 1−2h∗−2ε

κ2

∥∥∥C(T,ε,h+
1
2
, ·
)∥∥∥2

L2
‖ξ −η‖2

2 +T1−2h∗−2ε
∥∥∥C(T,ε,h+

1
2
, ·
)∥∥∥2

L2

·
(

(e2K(T−r) −1)K2
1

Kκ2 +2
(∫ T−r

0
e−2Ktd�ε(t)

)−2
)
|ξ (0)−η(0)|2

=C1(T,K,K1,κ ,h,ε)‖ξ −η‖2
2 +C4(T,K,K1,κ ,h,ε,r,ε)|ξ (0)−η(0)|2.

(13)
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Let

R := exp
[
M(�ε(T ))− 1

2
〈M〉�ε (T )−�ε(0)

]
.

By Novikov’s criterion, we have ER = 1. According to Girsanov’s theorem, B̃t :=∫ t
0 Ψ(u)du+Bt is a d -dimensional Brownian motion and B̃h

t :=
∫ t
0 Ψ(u)du+Bh

t is a
d -dimensional multifractional Brownian motion with h ∈ (0,1/2) under the new prob-
ability measure RP . Rewrite (8) as

dY (t) = b(Y (t))dt +F(Yt)dt +dB̃h
�ε(t)−�ε (0).

Thus, the distribution of {Yt}0�t�T under RP coincides with that of {X �ε ,η
t } under P ;

in particular, it holds that for any f ∈ Bb(L ) ,

E f (X �ε ,η
T ) = ERP f (YT ) = E[R f (YT )] = E[R f (X �ε ,ξ

t )]. (14)

By (14) and the Young inequality, and the observation that

logR = −
∫ �ε(T )−�ε (0)

0
〈vs,dBs〉− 1

2

∫ �ε (T)−�ε (0)

0
|vs|2ds

= −
∫ �ε(T )−�ε (0)

0
〈vs,dB̃s〉+ 1

2
〈M〉�ε (T )−�ε(0),

we get that, for any f ∈ Bb(L ) with f � 1,

P�ε
T log f (η) =E log f (X �ε ,η

T )

=E[R log f (X �ε ,ξ
T )]

� logE f (X �ε ,ξ
T )+E[R logR]

= logP�ε
T f (ξ )+ERP logR

= logP�ε
T f (ξ )+

1
2

ERP〈M〉�ε (T )−�ε(0).

Combining this with (13), we obtain the desired log-Harnack inequality.

Next, we prove the second assertion of the proposition. For any non-negative
f ∈ Bb(L ) we can obtain from (14) and the Hölder’s inequality

(P�ε
T f )p(η) =(E f (X �ε ,η

T ))p

=(E[R f (X �ε ,ξ
T )])p

�P�ε
T f p(ξ ) · (E[Rp/(p−1)])p−1.

(15)
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Furthermore, by (13) we get

Rp/(p−1) = exp
[ p

p−1
M�ε(T )−�ε(0)−

p
2(p−1)

〈M〉�ε (T )−�ε(0)

]
= exp

[ p
2(p−1)2 〈M〉�ε (T )−�ε(0)

]
· exp

[ p
p−1

M�ε (T )−�ε(0)−
p2

2(p−1)2 〈M〉�ε (T)−�ε (0)

]
� exp

[ p
2(p−1)2

(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C4(T,K,K1,κ ,h,ε,r,ε)|ξ (0)−η(0)|2
)]

· exp
[ p

p−1
M�ε (T)−�ε (0)−

p2

2(p−1)2 〈M〉�ε (T )−�ε(0)

]
,

and noting the fact that exp
[

p
p−1M�ε (T)−�ε (0)− p2

2(p−1)2 〈M〉�ε (T )−�ε(0)

]
, 0 � t � T is a

martingale with mean 1 due to Novikov’s criterion. Then, we have

E

[
Rp/(p−1)

]
� exp

[ p
2(p−1)2

(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C4(T,K,K1,κ ,h,ε,r,ε)|ξ (0)−η(0)|2
)]

.

Inserting this estimate into (15), we get the power-Harnack inequality. �

Proof of Proposition 3. Fix T > r . By a standard approximation argument, we
may assume that f ∈Cb(L ) .

Step 1: First, we assume that b is globally Lipschitzian: there exists a constant
C > 0 such that

|b(x)−b(y)|� C|x− y|, x,y ∈ R
d .

By the Lipschitz continuity of b and F , and noting that |X �ε ,ξ (u)−X �,ξ (u)|� ‖X �ε ,ξ (u)
−X �,ξ (u)‖2 , we have for t � 0

|X �ε ,,ξ (t)−X �,ξ (t)| �C
∫ t

0
|X �ε ,ξ (u)−X �,ξ(u)|du+K1

∫ t

0
‖X �ε ,ξ

u −X �,ξ
u ‖2du

+ |Bh
�ε(t)−�ε (0)−Bh

�(t)|

�(C+K1)
∫ t

0
‖X �ε ,ξ (u)−X �,ξ (u)‖2du+ |Bh

�ε(t)−�ε (0)−Bh
�(t)|.

By the Hölder’s inequality we have for t ∈ [0,T ]

|X �ε ,ξ (t)−X �,ξ (t)|2 �2(C+K1)t
∫ t

0
‖X �ε ,ξ (u)−X �,ξ (u)‖2

2du+2|Bh
�ε(t)−�ε (0)−Bh

�(t)|2

�2(C+K1)T
∫ t

0
‖X �ε ,ξ (u)−X �,ξ (u)‖2

2du+2|Bh
�ε(t)−�ε (0)−Bh

�(t)|2.
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Applying the Lemma 3.3 of [11] with g(ε)(t) = |X �ε ,ξ (t)− X �,ξ (t)| and h(ε)(t) =
2|Bh

�ε(t)−�ε (0)−Bh
�(t)|2 , we conclude that X �ε ,ξ

T → X �,ξ
T in L as ε ↓ 0, and so

lim
ε↓0

P�ε
T f = P�

T f , f ∈Cb(L ).

Since � is of bounded variation, it is easy to get from (6) that

lim
ε↓0

∫ T−r

0
e−2Ktd�ε(t) =

∫ T−r

0
e−2Ktd�(t).

Letting ε ↓ 0 in the Proposition 4, we obtain the desired results.
Step 2: For the general case, we shall make use of the approximation argument

proposed in [39]. Let
b̃(x) := b(x)−Kx, x ∈ R

d .

Then b̃ satisfies the dissipative condition:

〈b̃(x)− b̃(y),x− y〉 � 0, x,y ∈ R
d ,

and it is easy to see that the mapping id− εb : R
d → R

d is injective for any ε > 0. For
ε > 0, let b̃(ε) be the Yoshida approximation of b̃ , i.e.

b̃(ε)(x) :=
1
ε

[(
id− εb

)−1
(x)− x

]
, x ∈ R

d .

Then b̃(ε) is dissipative and globally Lipschitzian, |b̃(ε)| � |b̃| and limε↓0 b̃(ε) = b̃ . Let
b(ε)(x) := b̃(ε)(x)+Kx . Then b(ε) is also Lipschitzian and

〈x− y,b(ε)(x)−b(ε)(y)〉 � K|x− y|2, x,y ∈ R
d .

Let X �,(ε),ξ
t solve the SDE (1.1) with b replaced by b(ε) and X �,(ε),ξ

0 = ξ ∈L . Denote

by P�,(ε)
t the associated semigroup. Due to the first step of the proof, the statements of

the Proposition 3.1 hold with P�
t replaced by P�,(ε)

t . If

lim
ε↓0

P�,(ε)
T f = P�

T f , f ∈Cb(L ), (16)

we complete the proof by applying the Proposition 3 with P�
t replaced by P�,(ε)

t and
letting ε ↓ 0. Indeed, noticing that

d|X �ε ,ξ (t)−X �,ξ (t)|2
=2〈X �ε ,ξ (t)−X �,ξ (t),b(ε)(X �ε ,ξ (t))−b(ε)(X �,ξ (t))〉dt

+2〈X �ε ,ξ (t)−X �,ξ (t),b(ε)(X �,ξ (t))−b(X �,ξ (t))〉dt

+2〈X �ε ,ξ (t)−X �,ξ (t),F (ε)(X �ε ,ξ
t )−F(ε)(X �,ξ

t )〉dt

�(2K +1)|X �ε ,ξ (t)−X �,ξ (t)|2dt + |b(ε)(X �,ξ (t))−b(X �,ξ (t))|2dt

+2K1‖X �ε ,ξ
t −X �,ξ

t ‖2
2dt

�(2|K|+2K1 +1)‖X �ε ,ξ
t −X �,ξ

t ‖2
2dt + |b(ε)(X �,ξ (t))−b(X �,ξ (t))|2dt,
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one has for t ∈ [0,T ]

|X �ε ,ξ (t)−X �,ξ (t)|2

�(2|K|+2K1 +1)
∫ t

0
‖X �ε ,ξ

s −X �,ξ
s ‖2

2ds+
∫ t

0
|b(ε)(X �,ξ (s))−b(X �,ξ (s))|2ds

=(2|K|+2K1 +1)
∫ t

0
‖X �ε ,ξ

s −X �,ξ
s ‖2

2ds+
∫ t

0
|b̃(ε)(X �,ξ (s))− b̃(X �,ξ (s))|2ds.

Applying the Lemma 3.3 of [11] with g(ε)(t) = |X �ε ,ξ (t)− X �,ξ (t)| and h(ε)(t) =∫ t
0 |b̃(ε)(X �,ξ (s))− b̃(X �,ξ (s))|2ds , we know that X �ε ,ξ

T → X �,ξ
T in L as ε ↓ 0, and

thus (16) follows. �

Proof of Theorem 3.1. Since the processes S and Bh are independent, we have

PT f (·) = E

[
P�

T f (·)|� = S
]
, f ∈ Bb(L ). (17)

By the first assertion of the Proposition 3, for all f ∈ Bb(L ) with f � 1,

PT log f (η) =E

[
P�

T log f (η)|� = S
]

�E

[
P�

T log f (ξ )|� = S
]
+C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C2(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2,
which, together with the Jensen’s inequality and (17), implies the log-Harnack in-
equality. Analogously, by the second assertion of Proposition 3, for all non-negative
f ∈ Bb(L )

PT f (η) =E

[
P�

T f (η)|� = S
]

�E

[
(P�

T f p(ξ ))1/p exp
[ 1
2(p−1)

(
C1(T,K,K1,κ ,h,ε)‖ξ −η‖2

2

+C3(T,K,K1,κ ,h,ε,r)|ξ (0)−η(0)|2
∣∣∣
�=S

)]]
.

It remains to use the Hölder inequality and (17) to derive the power-Harnack inequal-
ity. �
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