A SIMPLE COUNTEREXAMPLE FOR THE PERMANENT-ON-TOP CONJECTURE

Hoang Anh Tran
(Communicated by S. Varošanec)

Abstract

The permanent-on-top conjecture (POT) was an important conjecture on the largest eigenvalue of the Schur power matrix of a positive semi-definite Hermitian matrix, formulated by Soules. The conjecture claimed that for any positive semi-definite Hermitian matrix H, $\operatorname{per}(H)$ is the largest eigenvalue of the Schur power matrix of the matrix H. After half a century, the POT conjecture has been proven false by the existence of counterexamples which are checked with the help of computer. It raises concerns about a counterexample that can be checked by hand (without the need of computers). A new simple counterexample for the permanent-on-top conjecture is presented which is a complex matrix of dimension 5 and rank 2.

1. Introduction and notations

The symbol S_{n} denotes the symmetric group on n objects. The permanent of a square matrix is a vital function in linear algebra that is similar to the determinant. For an $n \times n$ matrix $A=\left(a_{i j}\right)$ with complex coefficients, its permanent is defined as $\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}$. By \mathscr{H}_{n} we mean the set of all $n \times n$ positive semi-definite Hermitian matrices. The Schur power matrix of a given $n \times n$ matrix $A=\left(a_{i j}\right)$, denoted by $\pi(A)$, is a $n!\times n!$ matrix with the elements indexed by permutations $\sigma, \tau \in S_{n}$:

$$
\pi_{\sigma \tau}(A)=\prod_{i=1}^{n} a_{\sigma(i) \tau(i)} .
$$

Conjecture 1. The permanent-on-top conjecture (POT) [9]: Let H be an $n \times n$ positive semi-definite Hermitian matrix, then $\operatorname{per}(H)$ is the largest eigenvalue of $\pi(H)$.

In 2016, Shchesnovich provided a 5 -square, rank 2 counterexample to the perma-nent-on-top conjecture with the help of computer [8].

[^0]DEFINITION 1. For an $n \times n$ matrix $A=\left(a_{i j}\right)$, let d_{A} be a function $S_{n} \rightarrow \mathbb{C}$ defined by

$$
d_{A}(\sigma)=\prod_{i=1}^{n} a_{\sigma(i) i}
$$

This function is also called the "diagonal product" function [1]. Then we can define $\operatorname{det}(A)=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sign}(\sigma)} d_{A}(\sigma)$ and $\operatorname{per}(A)=\sum_{\sigma \in S_{n}} d_{A}(\sigma)$.

For any n-square matrix A and $I, J \subset[n], A[I, J]$ denotes the submatrix of A consisting of entries which are the intersections of i-th rows and j-th columns where $i \in I, j \in J$. We define $A(I, J)=A\left[I^{c}, J^{c}\right]$.

In this paper, we shall study the properties of the spectrum of the Schur power matrix by examining the spectra of the matrices $\mathscr{C}_{k}(A)$ which are defined in the manner:

For any $1 \leqslant k \leqslant n$, the matrix $\mathscr{C}_{k}(A)$ is a matrix of size $\binom{n}{k} \times\binom{ n}{k}$ with its (I, J) entry (I and J are k-element subsets of $[n]$) defined by $\operatorname{per}(A[I, J]) \cdot \operatorname{per}\left(A\left[I^{c}, J^{c}\right]\right)$. There is another conjecture on these matrices $\mathscr{C}_{k}(A)$ which states that:

Conjecture 2. Pate's conjecture [7]: Let A be an $n \times n$ positive semi-definite Hermitian matrix and k be a positive integer number less than n, then the largest eigenvalue of $\mathscr{C}_{k}(A)$ is $\operatorname{per}(A)$.

Pate's conjecture is weaker than the permanent-on-top conjecture POT because it is well-known that every eigenvalue of \mathscr{C}_{k} is also an eigenvalue of the Schur power matrix. In the case $k=1$, in [1], it was conjectured that $\operatorname{per}(A)$ is necessarily the largest eigenvalue of $\mathscr{C}_{1}(A)$ if $A \in \mathscr{H}_{n}$. Stephen W. Drury has provided an 8 -square matrix as a counterexample for this case in the paper [2]. Besides, Bapat and Sunder raise a question as follows:

Conjecture 3. Bapat \& Sunder conjecture: Let A and $B=\left(b_{i j}\right)$ be $n \times n$ positive semi-definite Hermitian matrices, then

$$
\operatorname{per}(A \circ B) \leqslant \operatorname{per}(A) \prod_{i=1}^{n} b_{i i}
$$

where $A \circ B$ is the entrywise product (Hadamard product).
The Bapat \& Sunder conjecture is weaker than the permanent-on-top conjecture and has been proved false by a counterexample which is a positive semi-definite Hermitian matrix of order 7 proposed by Drury [3]. In the present paper, a new simple counterexample for the permanent-on-top conjecture and Pate's conjecture is presented. It has size 5×5 and rank 2 .

Conjecture 4. The Lieb permanent dominance conjecture 1966 [4]: Let H be a subgroup of the symmetric group S_{n} and let χ be a character of degree m of H. Then

$$
\frac{1}{m} \sum_{\sigma \in H} \chi(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)} \leqslant \operatorname{per}(A)
$$

holds for all $n \times n$ positive semi-definite Hermitian matrix A.

The permanent dominance conjecture is weaker than the permanent-on-top conjecture and still open. The POT conjecture was proposed by Soules in 1966 as a strategy to prove the permanent dominance conjecture.

DEFINITION 2. The elementary symmetric polynomials in n variables $x_{1}, x_{2}, \ldots, x_{n}$ are e_{k} for $k=0,1, \ldots, n$. In this paper, we define $e_{k}\left(x_{i}\right)$ for $i=1,2, \ldots, n$ to be the elementary symmetric polynomial of degree k in $n-1$ variables obtained by erasing variable x_{i} from the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and, for any subset $I \subset[n]$, the notation $e_{k}[I]$ denote the elementary symmetric polynomial of degree k in $|I|$ variables x_{i} 's, $i \in I$.

2. Associated matrices

We define the associated matrix of a matrix representation $W: S_{n} \rightarrow G L_{N}(\mathbb{C})$ with respect to a $n \times n$ matrix A by:

$$
M_{W}(A)=\sum_{\sigma \in S_{n}} d_{A}(\sigma) W(\sigma)
$$

Proposition 2.1. The Schur power matrix of a given $n \times n$ Hermitian matrix A is the associated matrix of the left-regular representation with respect to A.

Proof. Take a look at the (σ, τ) entry of $M_{L}(A)$ which is

$$
\sum_{\eta \in S_{n}, \eta \circ \tau=\sigma} d_{A}(\eta)=d_{A}\left(\sigma \circ \tau^{-1}\right)=\prod_{i=1}^{n} a_{\sigma(i) \tau(i)}
$$

the right side is the (σ, τ) entry of $\pi(A)$.
Let us now consider two important matrices $\mathscr{C}_{1}(A)$ and $\mathscr{C}_{2}(A)$ that shall appear frequently from now on.

DEFINITION 3. Let $\mathscr{N}_{k}: S_{n} \rightarrow G L_{\binom{n}{k}}(\mathbb{C})$ be the matrix representation given by the permutation action of S_{n} on $\binom{[n]}{k}$.

Proposition 2.2. For any $n \times n$ Hermitian matrix A, the matrix $\mathscr{C}_{k}(A)$ is the matrix $M_{\mathscr{N}_{k}}(A)$.

We obtain directly the statement that every eigenvalue of matrix $M_{\mathscr{N}_{k}}(A)$ is an eigenvalue of the associated matrix of the left-regular representation which is the Schur power matrix. Consequently, Pate's conjecture is weaker than the permanent-on-top conjecture(POT).

3. Several properties of the Schur power matrix and $\mathscr{C}_{1}(A)$ in rank 2 case

The main object of this section is $n \times n$ positive semi-definite Hermitian matrices of rank 2. We know that every matrix $A \in \mathscr{H}_{n}$ of rank 2 can be written as the sum $v_{1} v_{1}^{*}+v_{2} v_{2}^{*}$ where v_{1} and v_{2} are two column vectors of order n.

Definition 4. A matrix $A \in \mathscr{H}_{n}$ is called "formalizable" if A can be written in the form $v_{1} v_{1}^{*}+v_{2} v_{2}^{*}$ and every element of v_{1} vector is non-zero.

DEFINITION 5. The formalized matrix A^{\prime} of a given formalizable matrix A defined in the manner: if $A=v_{1} v_{1}^{*}+v_{2} v_{2}^{*}$ and $v_{1}=\left(a_{1}, \ldots, a_{n}\right)^{T}, a_{i} \neq 0 \forall i=1, \ldots, n$; $v_{2}=\left(b_{1}, \ldots, b_{n}\right)^{T}$ then $A^{\prime}=v_{3} v_{3}^{*}+v_{4} v_{4}^{*}$ where $v_{3}=(1, \ldots, 1)^{T}$ and $v_{4}=\left(\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{n}}{a_{n}}\right)^{T}$.

Proposition 3.1. Let $A \in \mathscr{H}_{n}$ be a formalizable matrix, then

$$
\pi(A)=\prod_{i=1}^{n}\left|a_{i}\right|^{2} \pi\left(A^{\prime}\right)
$$

Proof. We compare the (σ, τ)-th entries of two matrices.

$$
\begin{aligned}
\pi_{\sigma \tau}(A) & =\prod_{i=1}^{n}\left(a_{\sigma(i)} \overline{a_{\tau(i)}}+b_{\sigma(i)} \overline{b_{\tau(i)}}\right)=\prod_{i=1}^{n}\left|a_{i}\right|^{2} \prod_{i=1}^{n}\left(1+\frac{b_{\sigma(i)}}{a_{\sigma(i)}} \overline{\overline{b_{\tau(i)}}} \overline{\overline{a_{\tau(i)}}}\right) \\
& =\prod_{i=1}^{n}\left|a_{i}\right|^{2} \pi_{\sigma \tau}\left(A^{\prime}\right) .
\end{aligned}
$$

REMARK 1. The same result will be obtained with the matrices $\mathscr{C}_{k}(A)$ and $\mathscr{C}_{k}\left(A^{\prime}\right)$. It is obvious to see that if the matrix A is a counterexample for the permanent-on-top conjecture and Pate's conjecture then so is A^{\prime}. Assume that we have an unformalizable matrix $B \in \mathscr{H}$ of rank 2 that is a counterexample for the permanent-on-top conjecture and Pate's conjecture. That also implies that there is a column vector x such that the following inequality holds

$$
\frac{x^{*} \pi(B) x}{\|x\|^{2}}>\operatorname{per}(B)
$$

By continuity and $B=v v^{*}+u u^{*}$, we can change slightly the zero elements of the vector v such the the inequality remains. Therefore, if the permanent-on-top conjecture or Pate's conjecture is false for some positive semi-definite Hermitian matrix of rank 2 then so is the permanent-on-top conjecture and Pate's conjecture for some formalizable matrices. That draws our attention to the set of all formalizable matrices.

For any $n \times n$ positive semi-definite Hermitian matrix A of rank 2 there exist two eigenvectors of v and u of A such that $A=v v^{*}+u u^{*}$. Let u_{i}, v_{i} be the i-th row elements of v and u respectively for $i=\overline{1, n}$. In the case A has a zero row then $\operatorname{per}(A)=0$ and the Schur power matrix and matrices $\mathscr{C}_{k}(A)$ of A are all zero matrices, there is nothing to discuss. Otherwise, every row of A has a non-zero element (so does
every column since A is a Hermitian matrix) which means that for any $i=\overline{1, n}$, the inequalities $\left|v_{i}\right|^{2}+\left|u_{i}\right|^{2}>0$ hold. Besides, A can be rewritten in the form

$$
\begin{gathered}
(\sin (x) v+\cos (x) u)(\sin (x) v+\cos (x) u)^{*}+(\cos (x) v-\sin (x) u)(\cos (x) v-\sin (x) u)^{*} \\
\forall x \in[0,2 \pi]
\end{gathered}
$$

and the system of n equations $\sin (x) v_{i}+\cos (x) u_{i}=0, i=\overline{1, n}$ takes finite solutions in the interval $[0,2 \pi]$. Therefore, there exists $x \in[0,2 \pi]$ satisfying that $(\sin (x) v+$ $\cos (x) u)$ has every element different from 0 . Hence, every rank 2 positive semi-definite Hermitian that has no zero-row is formalizable. Several properties about the formalized matrices are presented below.

Let $H \in \mathscr{H}_{n}$ be a formalizable matrix of the form $H=v v^{*}+u u^{*}$ where $v=$ $(1, \ldots, 1)^{T}$ and $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. We recall quickly the Kronecker product [10].

Definition 6. The Kronecker product (also known as tensor product or direct product) of two matrices A and B of sizes $m \times n$ and $s \times t$, respectively, is defined to be the $(m s) \times(n t)$ matrix

$$
A \otimes B=\left(\begin{array}{ccc}
a_{11} B & a_{12} B & \ldots \\
a_{1 n} B \\
a_{21} B & a_{22} B & \ldots \\
a_{2 n} B \\
\vdots & \vdots & \vdots \\
a_{n 1} B & a_{n 2} B & \ldots \\
a_{n n} B
\end{array}\right) .
$$

LEmma 1. The upper bound of rank of the Schur power matrix of rank 2: If A is $n \times n$ of rank 2 then rank of $\pi(A)$ is not larger than $2^{n}-n$.

Proof. We observe that $\operatorname{rank}(A)=2$ implies that $\operatorname{dim}(\operatorname{Im}(A))=2$ and $\operatorname{dim}(\operatorname{Ker}(A))$ $=n-2$. Let $\langle w, t\rangle$ be an orthonormal basis of the orthogonal complement of $\operatorname{Ker}(A)$ in \mathbb{C}^{n}, then denote $v=A w, u=A t$. Thus, A can be rewritten in the form $v w^{*}+u t^{*}$ where $v=\left(a_{1}, \ldots, a_{n}\right)^{T}, u=\left(b_{1}, \ldots, b_{n}\right)^{T}$. It is obvious that $\operatorname{Im}(A)=\langle v, u\rangle$. Let us denote the Kronecker product of n copies of the matrix A by $\otimes^{n} A$. The mixed-product property of Kronecker product implies that $\operatorname{Im}\left(\otimes^{n} A\right)=\left\langle\left\{\otimes_{i=1}^{n} t_{i}, t_{i} \in\{v, u\}\right\}\right\rangle$. Furthermore, the Schur power matrix of A is a diagonal submatrix of $\otimes^{n} A$ obtained by deleting all entries of $\otimes^{n} A$ that are products of entries of A having two entries in the same row or column. Let define the function f in the manner that

$$
f:\left\{\otimes_{i=1}^{n} t_{i}, t_{i} \in\{v, u\}\right\} \rightarrow \widetilde{V}
$$

and the σ-th element of $f\left(\otimes_{i=1}^{n} \alpha_{i}\right)$ vector of order $n!$ is $\prod_{i=1}^{n} t_{i}(\sigma(i))$ where $t_{i}(j)$ is the j-th row element of the column vector t_{i}. Let $\mathscr{B}=\left\{f\left(\otimes_{i=1}^{n} t_{i}\right), t_{i} \in\{v, u\}\right\}$ then \mathscr{B} is a generator of $\operatorname{Im}(\pi(A))$ since $\pi(A)$ is a principal matrix of $\otimes^{n} A$ and $\operatorname{Im}\left(\otimes^{n} A\right)=$ $\left\langle\left\{\otimes_{i=1}^{n} t_{i}, t_{i} \in\{v, u\}\right\}\right\rangle$. We partition \mathscr{B} into disjoint sets S_{k}
$k=0,1, \ldots, n, S_{k}=\left\{f\left(\otimes_{i=1}^{n} t_{i}\right), t_{i} \in\{v, u\}, \mathrm{v}\right.$ appears k times in the Kronecker product $\}$.

Hence, for any $k=1,2, \ldots, n$ the σ-th row element of the sum vector $\sum_{w \in S_{k}} w$ is

$$
\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\ 1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}} \prod_{j=1}^{k} a_{\sigma\left(i_{j}\right)} \prod_{t=k+1}^{n} b_{\sigma\left(i_{t}\right)}=\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\ 1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}} \prod_{j=1}^{k} a_{i_{j}} \prod_{t=k+1}^{n} b_{i_{t}}
$$

and $S_{0}=\left\{(1,, 1, \ldots, 1)^{T}\right\}$. Therefore, for any $k=1, \ldots, n$ then $S_{0} \cup S_{k}$ is linearly dependent. Hence, by deleting an arbitrary element of each set $S_{k}, k=1, \ldots, n$, then it still remains a generator of $\operatorname{Im}(\pi(H))$. Thus

$$
\operatorname{rank}(\pi(A))=\operatorname{dim}(\operatorname{Im}(\pi(A))) \leqslant|\mathscr{B}|-n=2^{n}-n
$$

Lemma 2. The permanent of a formalized matrix [5]:

$$
\operatorname{per}(H)=\sum_{k=0}^{n} k!(n-k)!\left|e_{k}\right|^{2}
$$

Proof. We show that

$$
\begin{aligned}
\operatorname{per}(H) & =\sum_{\sigma \in S_{n}} \prod_{i=1}^{n}\left(1+x_{i} \overline{x_{\sigma(i)}}\right) \\
& =n!+\sum_{\sigma \in S_{n}} \sum_{k=1}^{n} \sum_{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n} x_{i_{1}} \ldots x_{i_{k}} \overline{x_{\sigma\left(i_{1}\right)} \ldots x_{\sigma\left(i_{k}\right)}} \\
& =n!+\sum_{k=1}^{n} \sum_{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n} x_{i_{1}} \ldots x_{i_{k}} \overline{\sum_{\sigma \in S_{n}} x_{\sigma\left(i_{1}\right)} \ldots x_{\sigma\left(i_{k}\right)}} \\
& =n!+\sum_{k=1}^{n} \sum_{k!(n-k)!x_{i_{1}} \ldots x_{i_{l}} \overline{e_{k}}} k \ldots<i_{k} \leqslant n \\
& =\sum_{k=0}^{n} k!(n-k)!\left|e_{k}\right|^{2} .
\end{aligned}
$$

We use the elementary symmetric polynomials to examine entries of $\mathscr{C}_{1}(H)$ with the (i, j)-th entry defined by $\left(1+x_{i} \overline{x_{j}}\right) \cdot \operatorname{per}(H(i \mid j))$ and

$$
\begin{aligned}
\operatorname{per}(H(i \mid j)) & =\sum_{\sigma \in S_{n} ; \sigma(i)=j} \prod_{j \neq i}\left(1+x_{l} \overline{x_{\sigma(l)}}\right) \\
& =\sum_{\sigma \in S_{n} ; \sigma(i)=j} \sum_{k=0}^{n-1} \sum_{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n ; i_{m} \neq i} x_{\forall m=1, \ldots, k} x_{i_{1}} \ldots x_{i_{k}} \overline{x_{\sigma\left(i_{1}\right)} \ldots x_{\sigma\left(i_{k}\right)}} \\
& =\sum_{k=0}^{n} \sum_{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n, i_{m} \neq i} k!(n-1-k)!x_{i_{1}} \ldots x_{i_{l}} \overline{e_{k}\left(x_{j}\right)} \\
& =\sum_{k=0}^{n-1} k!(n-1-k)!e_{k}\left(x_{i}\right) \overline{e_{k}\left(x_{j}\right)} .
\end{aligned}
$$

And notice that

$$
e_{k}=x_{i} e_{k-1}\left(x_{i}\right)+e_{k}\left(x_{i}\right) \forall k=1, \ldots, n
$$

Then

$$
\begin{aligned}
\frac{\operatorname{per}(H)}{n}= & \frac{1}{n} \sum_{k=0}^{n} k!(n-k)!\left|e_{k}\right|^{2} \\
= & (n-1)!\left(\left|e_{0}\right|^{2}+\left|e_{n}\right|^{2}\right) \\
& +\sum_{k=1}^{n-1} \frac{k!(n-k)!}{n}\left(x_{i} e_{k-1}\left(x_{i}\right)+e_{k}\left(x_{i}\right)\right) \overline{\left(x_{j} e_{k-1}\left(x_{j}\right)+e_{k}\left(x_{j}\right)\right)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(1+x_{i} \overline{x_{j}}\right) \cdot \operatorname{per}(H(i \mid j))-\frac{\operatorname{per}(H)}{n} \\
= & \sum_{k=1}^{n-1}\left(k!(n-1-k)!-\frac{k!(n-k)!}{n}\right) e_{k}\left(x_{i}\right) \overline{e_{k}\left(x_{j}\right)} \\
& +\left((k-1)!(n-k)!-\frac{k!(n-k)!}{n}\right) x_{i} e_{k-1}\left(x_{i}\right) \overline{x_{j} e_{k-1}\left(x_{j}\right)} \\
& -\frac{k!(n-k)!}{n}\left(x_{i} e_{k-1}\left(x_{i}\right) \overline{e_{k}\left(x_{j}\right)}+\overline{x_{j} e_{k-1}\left(x_{j}\right)} e_{k}\left(x_{i}\right)\right) \\
= & \sum_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n}\left(k e_{k}\left(x_{i}\right)-(n-k) x_{i} e_{k-1}\left(x_{i}\right)\right)\left(k \overline{e_{k}\left(x_{j}\right)}-(n-k) \overline{x_{j} e_{k-1}\left(x_{j}\right)}\right) \\
= & \sum_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n}\left(n e_{k}\left(x_{i}\right)-(n-k) e_{k}\right)\left(\overline{n e_{k}\left(x_{j}\right)-(n-k) e_{k}}\right) .
\end{aligned}
$$

Therefore, we have the following proposition.
Proposition 3.2. The matrix $\mathscr{C}_{1}(H)$ can be rewritten in the form

$$
\mathscr{C}_{1}(H)=\frac{\operatorname{per}(H)}{n} v v^{*}+\sum_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n} v_{k} v_{k}^{*}
$$

where $v=(1, \ldots, 1)^{T}$ of order n, for $k=1, \ldots, n-1, v_{k}=(\ldots, \underbrace{n e_{k}\left(x_{i}\right)-(n-k) e_{k}}_{i \text {-th element }}, \ldots)^{T}$.
Proposition 3.3. For any $k=1, \ldots, n-1,\left\langle v, v_{k}\right\rangle=0$.
Proof.

$$
\begin{aligned}
\left\langle v, v_{k}\right\rangle & =\sum_{i=1}^{n}\left(n e_{k}\left(x_{i}\right)-(n-k) e_{k}\right) \\
& =n \sum_{i=1}^{n} e_{k}\left(x_{i}\right)-n(n-k) e_{k} \\
& =0
\end{aligned}
$$

PROPOSITION 3.4. The rank of $\mathscr{C}_{1}(H)$ is the cardinality of the set $\left\{x_{i}, i=\overline{1, n}\right\}$. In formula, $\operatorname{rank}\left(\mathscr{C}_{1}(H)\right)=\left|\left\{x_{i}, i=\overline{1, n}\right\}\right|$.

Proof. For the i-th element of v_{k}, we have

$$
n e_{k}\left(x_{i}\right)-(n-k) e_{k}=k e_{k}-n x_{i} e_{k-1}\left(x_{i}\right)=k e_{k}+n \sum_{j=1}^{k}(-1)^{j} e_{k-j} x_{i}^{j}
$$

which leads us to a conclusion that $\left\langle v, v_{1}, \ldots, v_{n-1}\right\rangle=\left\langle p_{0}, \ldots, p_{n-1}\right\rangle$ where

$$
p_{j}=(\ldots, \underbrace{x_{i}^{j}}_{\text {i-th element }}, \ldots)^{T}
$$

which is equal to $\left|\left\{x_{i}, i=\overline{1, n}\right\}\right|$ by the determinantal formula of Vandermonde matrices.

PROPOSITION 3.5. The determinant of $\mathscr{C}_{1}(H)$ is given by

$$
\operatorname{det}\left(\mathscr{C}_{1}(H)\right)=\frac{\operatorname{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)!(n-1-k)!\cdot \prod_{i<j}\left|x_{i}-x_{j}\right|^{2}
$$

Proof. Case 1: There are indices i and j such that $x_{i}=x_{j}$ then $\operatorname{rank}\left(\mathscr{C}_{1}(H)\right)<n$ that is equivalent to $\operatorname{det}\left(\mathscr{C}_{1}(H)\right)=0$.

Case 2: x_{i} 's are distinct then $\left\{v, v_{1}, \ldots, v_{n-1}\right\}$ makes a basis of \mathbb{C}^{n}. Therefore, $\mathscr{C}_{1}(H)$ is similar to the Gramian matrix of n vectors $\left\{\sqrt{\frac{\operatorname{per}(H)}{n}} v ; \sqrt{\frac{(k-1)!(n-1-k)!}{n}} v_{k}\right.$, $k=\overline{1, n-1}\}$. Thus

$$
\begin{aligned}
\operatorname{det}\left(\mathscr{C}_{1}(H)\right) & =\operatorname{det}\left(G\left(\sqrt{\frac{\operatorname{per}(H)}{n}} v ; \sqrt{\frac{(k-1)!(n-1-k)!}{n}} v_{k}, k=\overline{1, n-1}\right)\right) \\
& =\frac{\operatorname{per}(H)}{n} \prod_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n} \cdot \operatorname{det}\left(G\left(v, v_{1}, \ldots, v_{n-1}\right)\right)
\end{aligned}
$$

And from the proof of proposition 3.4, we obtain that

$$
\left(v, v_{1}, \ldots, v_{n-1}\right)=\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)\left(\begin{array}{cccc}
1 \ldots & k e_{k} & \ldots & (n-1) e_{n-1} \\
0 \ldots(-1)^{2} n e_{k-1} & \ldots & (-1)^{2} n e_{n-2} \\
\cdot . & \cdot & \cdot & \cdot \\
\cdot \cdot & \cdot & \cdot & \cdot \\
. \cdot & \cdot & \cdot & \cdot \\
0 \ldots & \cdots & (-1)^{j} n e_{k-j} & \cdots \\
\cdot . & \cdot & \cdot & \cdot \\
\cdot . & \cdot & \cdot & \cdot \\
\cdot . & \cdot & \cdot & \cdot \\
0 \ldots & \cdots & \cdots & (-1)^{n-1} n
\end{array}\right) .
$$

The matrix in the right side is the transition matrix given by

$$
\text { The }(i, j) \text {-th entry }= \begin{cases}(-1)^{i} n e_{j-i} & \text { if } i>1 \\ (j-1) e_{j-1} & \text { if } i=1 \text { and } j>1 \\ 1 & \text { if }(i, j)=(1,1)\end{cases}
$$

with convention that $e_{0}=1 ; e_{t}=0$ if $t<0$. Moreover, we observe that the transition matrix is an upper triangular matrix with the absolute value of diagonal entries equal to n except the $(1,1)$-th entry equal to 1 and $\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)$ is a Vandermonde matrix. Hence

$$
\begin{aligned}
\operatorname{det}\left(\mathscr{C}_{1}(H)\right) & =\frac{\operatorname{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)!(n-1-k)!\cdot \operatorname{det}\left(G\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)\right) \\
& =\frac{\operatorname{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)!(n-1-k)!\cdot\left|\operatorname{det}\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)\right|^{2} \\
& =\frac{\operatorname{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)!(n-1-k)!\cdot \prod_{i<j}\left|x_{i}-x_{j}\right|^{2}
\end{aligned}
$$

The right side is also equal to 0 if there are indices $i \neq j$ such that $x_{i}=x_{j}$. Hence the equality holds in both cases.

REMARK 2. From the proposition 3.5, we are able to calculate the determinant of $\mathscr{C}_{1}(H)$ of any positive semi-definite Hermitian matrix H of rank 2 in the way:

Let A be an $n \times n$ positive semi-definite Hermitian matrix of rank 2 then A can be written in the form $v v^{*}+u u^{*}$ with v_{i}, u_{i} are the i-th elements of v and u respectively. Then the following formula for the determinant of $\mathscr{C}_{1}(H)$ is achieved.

Theorem 1. Let $H=v v^{*}+u u^{*}$ be an $n \times n$ positive semi-definite Hermitian matrix then:

$$
\operatorname{det}\left(\mathscr{C}_{1}(H)\right)=\frac{\operatorname{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)!(n-1-k)!\cdot \prod_{i<j}\left|v_{i} u_{j}-v_{j} u_{i}\right|^{2}
$$

where v_{i} and u_{i} are i-th elements of the vector v and u respectively.

4. A counterexample for the conjectures 1 and 2 in the case $n=5$

Let us take the values of u_{i} 's and v_{i} 's, $a \in \mathbb{R}$

$$
u_{1}=a i, u_{2}=-a, u_{3}=-a i, u_{4}=a, u_{5}=0, v_{i}=1 \forall i=1, \ldots, 5
$$

then $e_{1}=e_{2}=e_{3}=e_{5}=0, e_{4}=-a^{4}$.
For any matrix of the form, the spectrum of $\mathscr{C}_{1}(H)$ is determined clearly by the mentioned above properties and theorems.

By lemma 3.1, $\operatorname{rank}(\pi(H)) \leqslant 2^{5}-5=27$ which means that there are at most 27 positive eigenvalues.

By lemma 3.2,

$$
\begin{aligned}
\operatorname{per}(H) & =120+24\left|e_{1}\right|^{2}+12\left|e_{2}\right|^{2}+12\left|e_{3}\right|^{2}+24\left|e_{4}\right|^{2}+120\left|e_{5}\right|^{2} \\
& =120+24 a^{8}
\end{aligned}
$$

and the proposition 3.2 implies that

$$
\mathscr{C}_{1}(H)=\frac{\operatorname{per}(H)}{5} v v^{*}+\frac{6}{5} v_{1} v_{1}^{*}+\frac{2}{5} v_{2} v_{2}^{*}+\frac{2}{5} v_{3} v_{3}^{*}+\frac{6}{5} v_{4} v_{4}^{*}
$$

where

$$
v_{1}=\left(\begin{array}{c}
-5 a i \\
5 a \\
5 a i \\
-5 a \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
-5 a^{2} \\
5 a^{2} \\
-5 a^{2} \\
5 a^{2} \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
5 a^{3} i \\
5 a^{3} \\
-5 a^{3} i \\
-5 a^{3} \\
0
\end{array}\right), \quad v_{4}=\left(\begin{array}{c}
a^{4} \\
a^{4} \\
a^{4} \\
a^{4} \\
-4 a^{4}
\end{array}\right)
$$

Notice that $\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is orthogonal, thus those vectors are eigenvectors of $\mathscr{C}_{1}(H)$ corresponding to the eigenvalues

$$
\begin{gathered}
\operatorname{per}(H)=120+24 a^{8}, \quad \frac{6}{5}\left\|v_{1}\right\|^{2}=120 a^{2}, \quad \frac{2}{5}\left\|v_{2}\right\|^{2}=40 a^{4}, \\
\frac{2}{5}\left\|v_{3}\right\|^{2}=40 a^{6}, \quad \frac{6}{5}\left\|v_{4}\right\|^{2}=24 a^{8} .
\end{gathered}
$$

We replace $a^{2}=c$, then $\operatorname{tr}(\pi(H))=120(1+c)^{4}$. The spectrum of $\mathscr{C}_{1}(H)$ is

$$
\left\{120+24 c^{4}, 120 c, 40 c^{2}, 40 c^{3}, 24 c^{4}\right\}
$$

Moreover, every eigenvalue of $\mathscr{C}_{1}(H)$ except $\operatorname{per}(H)$ is an eigenvalue of $\pi(H)$ with multiplicity at least 4 and, every eigenvalue of $\mathscr{C}_{2}(H)$ except eigenvalues of $\mathscr{C}_{1}(H)$ is an eigenvalue of $\pi(H)$ with multiplicity at least 5 . Therefore, if we can calculate the sum and the sum of squares of at most 2 unknown positive eigenvalues of $\pi(H)$, then the spectrum is determined. We compute the trace of $\mathscr{C}_{2}(H)$. The $(i, j)(i, j)$-th diagonal entry of $\mathscr{C}_{2}(H)$ is given by

$$
\begin{aligned}
& \operatorname{per}(H[\{i, j\},\{i, j\}]) \cdot \operatorname{per}(H(\{i, j\},\{i, j\})) \\
& =\left(2+\left|e_{1}[\{i, j\}]\right|^{2}+2\left|e_{2}[\{i, j\}]\right|^{2}\right) \\
& \left.\left.\quad \times\left.\left(6+2 \mid e_{1}\left[\{i, j\}^{c}\right]\right)\right|^{2}+2\left|e_{2}\left[\{i, j\}^{c}\right]\right|^{2}+6 \mid e_{3}[\{i, j\}\}^{c}\right]\left.\right|^{2}\right)
\end{aligned}
$$

Hence, we use the table to represent all the diagonal entries of $\mathscr{C}_{2}(H)$.

Coordinates	Values
$(1,2)(1,2)$	$\left(2+2 c+2 c^{2}\right)\left(6+4 c+2 c^{2}\right)$
$(1,3)(1,3)$	$\left(2+2 c^{2}\right)\left(6+2 c^{2}\right)$
$(1,4)(1,4)$	$\left(2+2 c+2 c^{2}\right)\left(6+4 c+2 c^{2}\right)$
$(1,5)(1,5)$	$(2+c)\left(6+2 c+2 c^{2}+6 c^{3}\right)$
$(2,3)(2,3)$	$\left(2+2 c+2 c^{2}\right)\left(6+4 c+2 c^{2}\right)$
$(2,4)(2,4)$	$\left(2+2 c^{2}\right)\left(6+2 c^{2}\right)$
$(2,5)(2,5)$	$(2+c)\left(6+2 c+2 c^{2}+6 c^{3}\right)$
$(3,4)(3,4)$	$\left(2+2 c+2 c^{2}\right)\left(6+4 c+2 c^{2}\right)$
$(4,5)(4,5)$	$(2+c)\left(6+2 c+2 c^{2}+6 c^{3}\right)$
$\operatorname{tr}\left(\mathscr{C}_{2}(H)\right)$	$120+48 c^{4}+104 c^{3}+152 c^{2}+120 c$

Furthermore, we use the symmetric polynomials to calculate the sum of all squares of eigenvalues.

$$
\begin{aligned}
\operatorname{tr}\left(\pi(H)^{2}\right) & =\sum_{\sigma \in S_{5}} \sum_{\tau \in S_{5}}\left|\prod_{i=1}^{5}\left(1+u_{\sigma(i)} \overline{u_{\tau(i)}}\right)\right|^{2} \\
& =120 \sum_{\sigma \in S_{5}}\left|\prod_{i=1}^{5}\left(1+u_{i} \overline{u_{\sigma(i)}}\right)\right|^{2}
\end{aligned}
$$

We know that $u_{5}=0$, and for $k=1, \ldots, 4$ we have $u_{k}=a \cdot i^{k}$ with $a^{2}=c$ then

$$
\begin{aligned}
& \operatorname{tr}\left(\pi(H)^{2}\right) \\
= & 120 \sum_{\sigma \in S_{5}}\left|\prod_{i=1}^{5}\left(1+u_{i} \overline{u_{\sigma(i)}}\right)\right|^{2} \\
= & 120\left(\sum_{k=1}^{4} \sum_{\sigma \in S_{5},}\left|\prod_{\sigma(k)=5}\left(1+u_{j} \overline{u_{\sigma(j)}}\right)\right|^{2}+\sum_{\sigma \in S_{5}, 5},{ }_{\sigma(5)=5}\left|\prod_{i=1}^{4}\left(1+u_{i} \overline{u_{\sigma(i)}}\right)\right|^{2}\right) \\
= & 120\left(\sum_{k=1}^{4} \sum_{\sigma \in S_{5}, \sigma(k)=5}\left|\prod_{j \neq k, 5}\left(1+c . i^{j-\sigma(j)}\right)\right|^{2}+\sum_{\sigma \in S_{5}, \sigma(5)=5}\left|\prod_{j=1}^{4}\left(1+c . i^{j-\sigma(j)}\right)\right|^{2}\right) .
\end{aligned}
$$

LEMMA 3. By the fundamental theorem of symmetric polynomials and $e_{1}=e_{2}=$ $e_{3}=e_{5}=0$ then every monomial symmetric polynomial in 5 variables of degree nondivisible by 4 takes $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ as a root.

The lemma 4.1 reduces the sums

$$
\begin{aligned}
& \sum_{k=1}^{4} \sum_{\sigma \in S_{5}, \sigma(k)=5}\left|\prod_{j \neq k, 5}\left(1+c \cdot i^{j-\sigma(j)}\right)\right|^{2} \\
= & \sum_{k=1}^{4} \sum_{\sigma \in S_{5}, \sigma(k)=5}\left(1+c^{2}\right)^{3}+\left(1+c^{2}\right) c \sum_{j \neq k, 5} 2 \operatorname{Re}\left(i^{j-\sigma(j)}\right) \\
& +\left(1+c^{2}\right) c^{2} \sum_{i_{1}<i_{2} \neq k, 5}\left(i^{i_{1}-\sigma\left(i_{1}\right)}+i^{\sigma\left(i_{1}\right)-i_{1}}\right)\left(i^{i_{2}-\sigma\left(i_{2}\right)}+i^{\sigma\left(i_{2}\right)-i_{2}}\right) \\
& +c^{3} \prod_{j \neq k, 5}\left(i^{j-\sigma(j)}+i^{\sigma(j)-j}\right) \\
= & 96\left(1+c^{2}\right)^{3}+\sum_{k=1}^{4} \sum_{\sigma \in S_{5}, \sigma(k)=5} c^{2}\left(1+c^{2}\right) 2 \operatorname{Re}\left(\sum_{i_{1}<i_{2} \neq k, 5} i^{i_{1}-i_{2}+\sigma\left(i_{2}\right)-\sigma\left(i_{1}\right)}\right) \\
= & 96\left(1+c^{2}\right)^{3}+\sum_{k=1}^{4} c^{2}\left(1+c^{2}\right) \operatorname{Re}\left(\sum_{i_{1} \neq i_{2} \neq k, 5} e^{i_{1}-i_{2}} \sum_{\sigma \in S_{5}, \sigma(k)=5} i^{\sigma\left(i_{2}\right)-\sigma\left(i_{1}\right)}\right)
\end{aligned}
$$

combine with

$$
\sum_{\sigma \in S_{5}, \sigma(k)=5} i^{\sigma\left(i_{2}\right)-\sigma\left(i_{1}\right)}=2 \sum_{\alpha=1}^{4} i^{\alpha} \sum_{\beta \neq \alpha} i^{\beta}=-2.4=-8
$$

We attain

$$
\begin{aligned}
& \sum_{k=1}^{4} \sum_{\sigma \in S_{5}, \sigma(k)=5}\left|\prod_{j \neq k, 5}\left(1+c \cdot i^{j-\sigma(j)}\right)\right|^{2} \\
= & 96\left(1+c^{2}\right)^{3}-8 c^{2}\left(1+c^{2}\right) \sum_{k=1}^{4} \operatorname{Re}\left(\sum_{i_{1} \neq i_{2} \neq k, 5} e^{i_{1}-i_{2}}\right) \\
= & 96\left(1+c^{2}\right)^{3}+64 c^{2}\left(1+c^{2}\right) .
\end{aligned}
$$

The lemma 4.1 also reduces the sum

$$
\begin{aligned}
& \sum_{\sigma \in S_{5}, \sigma(5)=5}\left|\prod_{i=1}^{4}\left(1+c \cdot i^{j-\sigma(j)}\right)\right|^{2}=\sum_{\sigma \in S_{4}}\left|\prod_{i=1}^{4}\left(1+c \cdot i^{j-\sigma(j)}\right)\right|^{2} \\
& =\sum_{\sigma \in S_{4}}\left|1+c^{4}+c^{3} \sum_{i=1}^{4} i^{\sigma(j)-j}+c \sum_{i=1}^{4} i^{j-\sigma(j)}+c^{2} \sum_{j_{1}<j_{2}} i^{j_{1}+j_{2}-\sigma\left(j_{1}\right)-\sigma\left(j_{2}\right)}\right|^{2} \\
& =24\left(1+c^{4}\right)^{2}+\left(c^{6}+c^{2}\right) \sum_{\sigma \in S_{4}}\left|\sum_{i=1}^{4} i^{j-\sigma(j)}\right|^{2}+c^{4} \sum_{\sigma \in S_{4}}\left|\sum_{j_{1}<j_{2}} i^{j_{1}+j_{2}-\sigma\left(j_{1}\right)-\sigma\left(j_{2}\right)}\right|^{2}
\end{aligned}
$$

We compute each part separately by the lemma 4.1

$$
\begin{aligned}
& \sum_{\sigma \in S_{4}}\left|\sum_{i=1}^{4} i^{j-\sigma(j)}\right|^{2}=24 \cdot 4-8 \sum_{j_{1} \neq j_{2}} i^{j_{1}-j_{2}}=96+32=128 \\
& \sum_{\sigma \in S_{4}}\left|\sum_{j_{1}<j_{2}} i^{j_{1}+j_{2}-\sigma\left(j_{1}\right)-\sigma\left(j_{2}\right)}\right|^{2} \\
& =\sum_{\sigma \in S_{4}}\left(\binom{4}{2}+\frac{1}{4} \sum_{\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\{1,2,3,4\}} i^{\sigma\left(i_{1}\right)+\sigma\left(i_{2}\right)-\sigma\left(i_{3}\right)-\sigma\left(i_{4}\right)+i_{3}+i_{4}-i_{1}-i_{2}}\right. \\
& \left.\quad+2 \sum_{j_{1} \neq j_{2}} i^{j_{1}-j_{2}+\sigma\left(j_{2}\right)-\sigma\left(j_{1}\right)}\right) \\
& =144+2 \sum_{\left(i_{1}, i_{2}, i_{3}, i_{4}\right)} i^{i_{3}+i_{4}-i_{1}-i_{2}}-16 \sum_{j_{1} \neq j_{2}} i^{j_{1}-j_{2}}=208-4 \sum_{j_{1} \neq j_{2}} i^{2 j_{1}+2 j_{2}}=224 .
\end{aligned}
$$

Thus, we obtain $\operatorname{tr}\left(\pi(H)^{2}\right)=120\left(24\left(1+c^{4}\right)^{2}+128\left(c^{6}+c^{2}\right)+224 c^{4}+96\left(1+c^{2}\right)^{3}+\right.$ $\left.64 c^{2}\left(1+c^{2}\right)\right)$.

Hence, the spectrum of $\pi(H)$ is

- $\operatorname{per}(H)=120+24 c^{4}$ of multiplicity 1
- $120 c, 40 c^{2}, 40 c^{3}, 24 c^{4}$ of multiplicity 4
- $64 c^{3}, 112 c^{2}$ of multiplicity 5
- 0 of multiplicity 93 .

We observe that $c=2$ is a solution of the inequality $120+24 c^{4}-64 c^{3}<0$. Therefore, the matrix $H=v v^{*}+u u^{*}$ where $v=(1, \ldots, 1)^{T}, u=2(i,-1,-i, 1,0)^{T}$ is a counterexample to the permanent-on-top conjecture (POT).

$$
H=\left(\begin{array}{ccccc}
3 & 1-2 i & -1 & 1+2 i & 1 \\
1+2 i & 3 & 1-2 i & -1 & 1 \\
-1 & 1+2 i & 3 & 1-2 i & 1 \\
1-2 i & -1 & 1+2 i & 3 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The spectrum of this counterexample is also given by above calculations:

- $\operatorname{per}(H)=504$ of multiplicity 1
- $240,160,320,384$ of multiplicity 4
- 512 and 448 of multiplicity 5
- 0 of multiplicity 93

Once, I have the counterexample, a shorter way to prove the matrix H is a counterexample for Pate's conjecture in the case $n=5$ and $k=2$ is available by Tensor product. For the purposes of this paper let us describe the tensor product of vector spaces in terms of bases:

DEfinition 7. Let V and W be vector spaces over \mathbb{C} with bases $\left\{v_{i}\right\}$ and $\left\{w_{i}\right\}$, respectively. Then $V \otimes W$ is the vector space spanned by $\left\{v_{i} \otimes w_{j}\right\}$ subject to the rules:

$$
\begin{aligned}
& \left(\alpha v+\alpha^{\prime} v^{\prime}\right) \otimes w=\alpha(v \otimes w)+\alpha^{\prime}\left(v^{\prime} \otimes w\right) \\
& v \otimes\left(\alpha w+\alpha^{\prime} w^{\prime}\right)=\alpha(v \otimes w)+\alpha^{\prime}\left(v \otimes w^{\prime}\right)
\end{aligned}
$$

for all $v, v^{\prime} \in V$ and $w, w^{\prime} \in W$ and all scalars α, α^{\prime}.
If \langle,$\rangle is an inner product on V$ then we can define an inner product \langle,$\rangle on V \otimes V$ in the manner:

$$
\left\langle v_{i_{1}} \otimes v_{i_{2}}, v_{i_{3}} \otimes v_{i_{4}}\right\rangle=\left\langle v_{i_{1}}, v_{i_{3}}\right\rangle\left\langle v_{i_{2}}, v_{i_{4}}\right\rangle
$$

for any $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}, v_{i_{4}}$ vectors.
On $\mathbb{C}[x, y]$, we consider the inner product, and the resulting Euclidean norm $|\cdot|$, such that monomials are orthogonal and $\left|x^{n} y^{k}\right|^{2}=n!k!$.

Proposition 4.1. The permanent of the Gram matrix of any l-forms $f_{j} \in \mathbb{C} x \oplus$ $\mathbb{C} y$ is $\left|\Pi f_{j}\right|^{2}$.

Proof. We prove the generalization of the statement which states that if $f_{1}, f_{2}, \ldots, f_{n}$, $g_{1}, g_{2}, \ldots, g_{n}$ be $2 n 1$-forms and A be an $n \times n$ matrix with (i, j)-th entry $\left\langle f_{i}, g_{j}\right\rangle$, then

$$
\operatorname{per}(A)=\left\langle\prod_{i=1}^{n} f_{i}, \prod_{i=1}^{n} g_{i}\right\rangle
$$

Let $f_{i}=\alpha_{i} x+\beta_{i} y, g_{i}=\alpha_{i}^{\prime} x+\beta_{i}^{\prime} y$ for any $i \in\{1,2, \ldots, n\}$.
We compute each side of the equality:
The left side is

$$
\begin{aligned}
\operatorname{per}(A) & =\sum_{\sigma \in S_{n}} \prod_{i=1}^{n}\left\langle f_{i}, g_{\sigma(i)}\right\rangle=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n}\left\langle\alpha_{i} x+\beta_{i} y, \alpha_{\sigma(i)}^{\prime} x+\beta_{\sigma(i)}^{\prime} y\right\rangle \\
& =\sum_{\sigma \in S_{n}} \prod_{i=1}^{n}\left(\alpha_{i} \cdot \overline{\alpha_{\sigma(i)}}+\beta_{i} \cdot \overline{\beta_{\sigma(i)}^{\prime}}\right) \\
& =\sum_{\sigma \in S_{n}} \sum_{k=0}^{n} \sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}} \alpha_{i_{1}} \ldots \alpha_{i_{k}} \beta_{i_{k+1} \ldots \beta_{i_{n}}} \overline{\alpha_{\sigma\left(i_{1}\right)}^{\prime} \ldots \alpha_{\sigma i_{k}}^{\prime} \beta_{\sigma\left(i_{k+1}\right)}^{\prime} \ldots \beta_{\sigma\left(i_{n}\right)}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{k=0}^{n} k!(n-k)!\left(\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}} \alpha_{i_{1}} \ldots \alpha_{i_{k}} \beta_{i_{k+1}} \ldots \beta_{i_{n}}\right) \\
& \times\left(\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}} \frac{\alpha_{1}^{\prime} \ldots \alpha_{i_{k}}^{\prime} \beta_{i_{k+1}}^{\prime} \ldots \beta_{i_{n}}^{\prime}}{k}\right)
\end{aligned}
$$

and the right side is

$$
\begin{aligned}
& \left\langle\prod_{i=1}^{n} f_{i}, \prod_{i=1}^{n} g_{i}\right\rangle \\
= & \left\langle\sum_{k=0}^{n} x^{k} y^{n-k} \sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}} \alpha_{i_{1}} \ldots \alpha_{i_{k}} \beta_{i_{k+1}} \ldots \beta_{i_{n}},\right. \\
& \left.\sum_{k=0}^{n} x^{k} y^{n-k} \sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}}^{\sum} \alpha_{i_{1}}^{\prime} \ldots \alpha_{i_{k}}^{\prime} \beta_{i_{k+1}}^{\prime} \ldots \beta_{i_{n}}^{\prime}\right\rangle \\
= & \sum_{k=0}^{n} k!(n-k)!\left(\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}}^{\sum_{i_{1}} \ldots \alpha_{i_{k}}} \beta_{i_{k+1}} \ldots \beta_{i_{n}}\right) \\
& \times\left(\underset{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
1 \leqslant i_{k+1}<\ldots<i_{n} \leqslant n}}{\sum_{1}^{\prime} \ldots \alpha_{i_{k}}^{\prime} \beta_{i_{k+1}}^{\prime} \ldots \beta_{i_{n}}^{\prime}}\right) .
\end{aligned}
$$

Let $f_{j}=x+y i^{j} \sqrt{2}(j=1,2,3,4)$ and $f_{5}=x$. Their Gram matrix is the given matrix H with per $H=\left|f_{1} f_{2} f_{3} f_{4} f_{5}\right|^{2}=\left|x^{5}-4 x y^{4}\right|^{2}=5!+16 \cdot 4!=504$ (according to the proposition 4.1). When $\{p, q, r, s, t\}=\{1,2,3,4,5\}$, define $F_{p, q}=f_{p} f_{q} \otimes f_{r} f_{s} f_{t}$ and an inner product on $\mathbb{C}[x, y] \otimes \mathbb{C}[x, y]$ as the definition 4.1. It is obvious that $\mathscr{C}_{2}(H)$ of H is the Gram matrix of the ten tensors $F_{p, q}$ with $\{p, q, r, s, t\}=\{1,2,3,4,5\}, p<q$, and $r<s<t$. We observe that

$$
\begin{aligned}
& (1+i) F_{41}+(-1+i) F_{12}+(-1-i) F_{23}+(1-i) F_{34}-2 i F_{51}+2 F_{52}+2 i F_{53}-2 F_{54} \\
= & 16 \sqrt{2} x^{2} \otimes y^{3}-32 \sqrt{2} x y \otimes x y^{2}+16 \sqrt{2} y^{2} \otimes x^{2} y
\end{aligned}
$$

whose norm squared is

$$
2^{9} \cdot 2!3!+2^{11} \cdot 2!+2^{9} \cdot 2!\cdot 2!=512 \cdot 24
$$

while the norm squared of the coefficient vector is

$$
|1+i|^{2}+|-1+i|^{2}+|-1-i|^{2}+|1-i|^{2}+|-2 i|^{2}+2^{2}+|2 i|^{2}+|-2|^{2}=24
$$

Therefore, a linear operator mapping eight orthonormal vectors to $F_{12}, F_{23}, F_{34}, F_{41}$, $F_{51}, F_{52}, F_{53}, F_{54}$ has norm at least $\sqrt{512}$, so the Gram matrix of these eight tensors, which is an 8 -square diagonal submatrix of $\mathscr{C}_{2}(H)$, has norm (=largest eigenvalue) at least 512 , whence so does $\mathscr{C}_{2}(H)$ itself. In fact, the norm of $\mathscr{C}_{2}(H)$ is 512 .

REFERENCES

[1] R. B. Bapat, V. S. Sunder, An extremal property of the permanent and the determinant, Linear Algebra Appl. 76, (1986), 153-163.
[2] Stephen Drury, A counterexample to a question of Bapat \& Sunder, Math. Inequal. Appl. 21, (2018), no. 2, 517-520.
[3] Stephen Drury, A counterexample to a question of Bapat \& Sunder, Electron. J. Linear Algebra 31, (2016), 69-70.
[4] E. H. Lieb, Proofs of some conjectures on permanents, J. Math. and Mech. 16, (1966), 127-134.
[5] ADAM W. MARCUS, A determinantal identity for the permanent of a rank 2 matrix, August 30, 2016, https://www.epflepf.com/adam/papers/rank2perms.pdf.
[6] MAXIM NAZAROV, J. TAYLOR, Representation theory of the symmetric group [Lecture notes], (2007).
[7] Thomas H. Pate, (1-ABRN), On permanental compounds, Linear Algebra Appl. 429, (2008), no. 5-6, 1093-1101.
[8] V. S. ShCHESNOVICH, The permanent-on-top conjecture is false, Linear Algebra Appl. 490, (2016), 196-201.
[9] G. Soules, Matrix Functions and the Laplace expansion theorem, PhD Dissertation (University of California, Santa Barbara, 1966).
[10] Fuzhen Zhang, Matrix Theory, Basic Results and Techniques, 2nd Edition, Springer (2011), 117120.
[11] FuZhen Zhang, An update on a few permanent conjectures, Special Matrices 4, 2016, 305-316.

[^1]
[^0]: Mathematics subject classification (2020): 20G05, 15A15, 15A18, 15A03, 47A80.
 Keywords and phrases: POT conjecture, positive semi-definite Hermitian matrices, representation theory, permanent.

 I wish to thank my supervisor E. Frenkel Péter for his assistance during the time I study the topic.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

