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Abstract. The permanent-on-top conjecture (POT) was an important conjecture on the largest
eigenvalue of the Schur power matrix of a positive semi-definite Hermitian matrix, formulated by
Soules. The conjecture claimed that for any positive semi-definite Hermitian matrix H , per(H)
is the largest eigenvalue of the Schur power matrix of the matrix H . After half a century, the
POT conjecture has been proven false by the existence of counterexamples which are checked
with the help of computer. It raises concerns about a counterexample that can be checked by
hand (without the need of computers). A new simple counterexample for the permanent-on-top
conjecture is presented which is a complex matrix of dimension 5 and rank 2.

1. Introduction and notations

The symbol Sn denotes the symmetric group on n objects. The permanent of a
square matrix is a vital function in linear algebra that is similar to the determinant.
For an n× n matrix A = (ai j) with complex coefficients, its permanent is defined as
per(A) = ∑σ∈Sn ∏n

i=1 ai,σ(i) . By Hn we mean the set of all n×n positive semi-definite
Hermitian matrices. The Schur power matrix of a given n×n matrix A = (a i j) , denoted
by π(A) , is a n!×n! matrix with the elements indexed by permutations σ ,τ ∈ S n :

πστ(A) =
n

∏
i=1

aσ(i)τ(i).

CONJECTURE 1. The permanent-on-top conjecture (POT) [9]: Let H be an n×n
positive semi-definite Hermitian matrix, then per(H) is the largest eigenvalue of π(H) .

In 2016, Shchesnovich provided a 5-square, rank 2 counterexample to the perma-
nent-on-top conjecture with the help of computer [ 8].
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DEFINITION 1. For an n×n matrix A = (ai j) , let dA be a function Sn → C de-
fined by

dA(σ) =
n

∏
i=1

aσ(i)i.

This function is also called the “diagonal product” function [ 1]. Then we can define
det(A) = ∑σ∈Sn(−1)sign(σ)dA(σ) and per(A) = ∑σ∈Sn dA(σ) .

For any n-square matrix A and I,J ⊂ [n] , A[I,J] denotes the submatrix of A
consisting of entries which are the intersections of i-th rows and j -th columns where
i ∈ I, j ∈ J . We define A(I,J) = A[Ic,Jc] .

In this paper, we shall study the properties of the spectrum of the Schur power
matrix by examining the spectra of the matrices Ck(A) which are defined in the manner:

For any 1 � k � n , the matrix Ck(A) is a matrix of size
(n

k

)× (nk) with its (I,J)
entry (I and J are k -element subsets of [n]) defined by per(A[I,J]).per(A[I c,Jc]) .
There is another conjecture on these matrices Ck(A) which states that:

CONJECTURE 2. Pate’s conjecture [7]: Let A be an n×n positive semi-definite
Hermitian matrix and k be a positive integer number less than n , then the largest eigen-
value of Ck(A) is per(A) .

Pate’s conjecture is weaker than the permanent-on-top conjecture POT because it
is well-known that every eigenvalue of Ck is also an eigenvalue of the Schur power
matrix. In the case k = 1, in [1], it was conjectured that per(A) is necessarily the
largest eigenvalue of C1(A) if A ∈ Hn . Stephen W. Drury has provided an 8-square
matrix as a counterexample for this case in the paper [2]. Besides, Bapat and Sunder
raise a question as follows:

CONJECTURE 3. Bapat & Sunder conjecture: Let A and B = (b i j) be n×n pos-
itive semi-definite Hermitian matrices, then

per(A◦B) � per(A)
n

∏
i=1

bii

where A◦B is the entrywise product (Hadamard product).

The Bapat & Sunder conjecture is weaker than the permanent-on-top conjecture
and has been proved false by a counterexample which is a positive semi-definite Hermi-
tian matrix of order 7 proposed by Drury [ 3]. In the present paper, a new simple coun-
terexample for the permanent-on-top conjecture and Pate’s conjecture is presented. It
has size 5×5 and rank 2.

CONJECTURE 4. The Lieb permanent dominance conjecture 1966 [ 4]: Let H be
a subgroup of the symmetric group Sn and let χ be a character of degree m of H . Then

1
m ∑

σ∈H
χ(σ)

n

∏
i=1

aiσ(i) � per(A)

holds for all n×n positive semi-definite Hermitian matrix A.
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The permanent dominance conjecture is weaker than the permanent-on-top con-
jecture and still open. The POT conjecture was proposed by Soules in 1966 as a strategy
to prove the permanent dominance conjecture.

DEFINITION 2. The elementary symmetric polynomials in n variables x 1,x2, . . . ,xn

are ek for k = 0,1, . . . ,n . In this paper, we define ek(xi) for i = 1,2, . . . ,n to be the
elementary symmetric polynomial of degree k in n− 1 variables obtained by erasing
variable xi from the set {x1,x2, . . . ,xn} and, for any subset I ⊂ [n] , the notation ek[I]
denote the elementary symmetric polynomial of degree k in |I| variables x i ’s, i ∈ I .

2. Associated matrices

We define the associated matrix of a matrix representation W : Sn → GLN(C) with
respect to a n×n matrix A by:

MW (A) = ∑
σ∈Sn

dA(σ)W (σ).

PROPOSITION 2.1. The Schur power matrix of a given n×n Hermitian matrix A
is the associated matrix of the left-regular representation with respect to A.

Proof. Take a look at the (σ ,τ) entry of ML(A) which is

∑
η∈Sn, η◦τ=σ

dA(η) = dA(σ ◦ τ−1) =
n

∏
i=1

aσ(i)τ(i)

the right side is the (σ ,τ) entry of π(A) . �

Let us now consider two important matrices C1(A) and C2(A) that shall appear
frequently from now on.

DEFINITION 3. Let Nk : Sn → GL(n
k)(C) be the matrix representation given by

the permutation action of Sn on
([n]

k

)
.

PROPOSITION 2.2. For any n× n Hermitian matrix A, the matrix Ck(A) is the
matrix MNk(A) .

We obtain directly the statement that every eigenvalue of matrix MNk (A) is an
eigenvalue of the associated matrix of the left-regular representation which is the Schur
power matrix. Consequently, Pate’s conjecture is weaker than the permanent-on-top
conjecture(POT).
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3. Several properties of the Schur power matrix and C1(A) in rank 2 case

The main object of this section is n×n positive semi-definite Hermitian matrices
of rank 2. We know that every matrix A ∈ Hn of rank 2 can be written as the sum
v1v∗1 + v2v∗2 where v1 and v2 are two column vectors of order n .

DEFINITION 4. A matrix A ∈ Hn is called “formalizable” if A can be written in
the form v1v∗1 + v2v∗2 and every element of v1 vector is non-zero.

DEFINITION 5. The formalized matrix A ′ of a given formalizable matrix A de-
fined in the manner: if A = v1v∗1 + v2v∗2 and v1 = (a1, . . . ,an)T , ai �= 0 ∀i = 1, . . . ,n ;
v2 = (b1, . . . ,bn)T then A′ = v3v∗3 +v4v∗4 where v3 = (1, . . . ,1)T and v4 = ( b1

a1
, . . . , bn

an
)T .

PROPOSITION 3.1. Let A ∈ Hn be a formalizable matrix, then

π(A) =
n

∏
i=1

|ai|2π(A′).

Proof. We compare the (σ ,τ)-th entries of two matrices.

πστ(A) =
n

∏
i=1

(aσ(i)aτ(i) +bσ(i)bτ(i)) =
n

∏
i=1

|ai|2
n

∏
i=1

(
1+

bσ(i)

aσ(i)

bτ(i)

aτ(i)

)

=
n

∏
i=1

|ai|2πστ(A′). �

REMARK 1. The same result will be obtained with the matrices Ck(A) and Ck(A′) .
It is obvious to see that if the matrix A is a counterexample for the permanent-on-top
conjecture and Pate’s conjecture then so is A ′ . Assume that we have an unformalizable
matrix B ∈ H of rank 2 that is a counterexample for the permanent-on-top conjecture
and Pate’s conjecture. That also implies that there is a column vector x such that the
following inequality holds

x∗π(B)x
‖x‖2 > per(B).

By continuity and B = vv∗+uu∗ , we can change slightly the zero elements of the vector
v such the the inequality remains. Therefore, if the permanent-on-top conjecture or
Pate’s conjecture is false for some positive semi-definite Hermitian matrix of rank 2
then so is the permanent-on-top conjecture and Pate’s conjecture for some formalizable
matrices. That draws our attention to the set of all formalizable matrices.

For any n× n positive semi-definite Hermitian matrix A of rank 2 there exist
two eigenvectors of v and u of A such that A = vv∗ + uu∗ . Let ui,vi be the i-th
row elements of v and u respectively for i = 1,n . In the case A has a zero row then
per(A) = 0 and the Schur power matrix and matrices C k(A) of A are all zero matrices,
there is nothing to discuss. Otherwise, every row of A has a non-zero element (so does
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every column since A is a Hermitian matrix) which means that for any i = 1,n , the
inequalities |vi|2 + |ui|2 > 0 hold. Besides, A can be rewritten in the form

(sin(x)v+ cos(x)u)(sin(x)v+ cos(x)u)∗ +(cos(x)v− sin(x)u)(cos(x)v− sin(x)u)∗

∀x ∈ [0,2π ]

and the system of n equations sin(x)vi + cos(x)ui = 0, i = 1,n takes finite solutions
in the interval [0,2π ] . Therefore, there exists x ∈ [0,2π ] satisfying that (sin(x)v +
cos(x)u) has every element different from 0. Hence, every rank 2 positive semi-definite
Hermitian that has no zero-row is formalizable. Several properties about the formalized
matrices are presented below.

Let H ∈ Hn be a formalizable matrix of the form H = vv∗ + uu∗ where v =
(1, . . . ,1)T and u = (x1,x2, . . . ,xn)T . We recall quickly the Kronecker product [10].

DEFINITION 6. The Kronecker product (also known as tensor product or direct
product) of two matrices A and B of sizes m×n and s× t , respectively, is defined to
be the (ms)× (nt) matrix

A⊗B =

⎛⎜⎜⎜⎝
a11B a12B . . .a1nB
a21B a22B . . .a2nB

...
...

...
an1B an2B . . .annB

⎞⎟⎟⎟⎠ .

LEMMA 1. The upper bound of rank of the Schur power matrix of rank 2: If A is
n×n of rank 2 then rank of π(A) is not larger than 2n −n.

Proof. We observe that rank(A)= 2 implies that dim(Im(A))= 2 and dim(Ker(A))
= n−2. Let 〈w, t〉 be an orthonormal basis of the orthogonal complement of Ker(A) in
Cn , then denote v = Aw, u = At . Thus, A can be rewritten in the form vw ∗+ut∗ where
v = (a1, . . . ,an)T , u = (b1, . . . ,bn)T . It is obvious that Im(A) = 〈v,u〉 . Let us denote the
Kronecker product of n copies of the matrix A by ⊗ nA . The mixed-product property
of Kronecker product implies that Im(⊗nA) = 〈{⊗n

i=1ti, ti ∈ {v,u}}〉 . Furthermore,
the Schur power matrix of A is a diagonal submatrix of ⊗ nA obtained by deleting all
entries of ⊗nA that are products of entries of A having two entries in the same row or
column. Let define the function f in the manner that

f : {⊗n
i=1ti, ti ∈ {v,u}}→ Ṽ

and the σ -th element of f (⊗n
i=1αi) vector of order n! is ∏n

i=1 ti(σ(i)) where ti( j) is
the j -th row element of the column vector t i . Let B = { f (⊗n

i=1ti), ti ∈ {v,u}} then B
is a generator of Im(π(A)) since π(A) is a principal matrix of ⊗nA and Im(⊗nA) =
〈{⊗n

i=1ti, ti ∈ {v,u}}〉 . We partition B into disjoint sets Sk

k = 0,1, . . . ,n, Sk = { f (⊗n
i=1ti), ti ∈{v,u}, v appears k times in the Kronecker product}.
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Hence, for any k = 1,2, . . . ,n the σ -th row element of the sum vector ∑w∈Sk
w is

∑
1�i1<...<ik�n

1�ik+1<...<in�n

k

∏
j=1

aσ(i j)

n

∏
t=k+1

bσ(it) = ∑
1�i1<...<ik�n

1�ik+1<...<in�n

k

∏
j=1

ai j

n

∏
t=k+1

bit

and S0 = {(1, ,1, . . . ,1)T} . Therefore, for any k = 1, . . . ,n then S0 ∪ Sk is linearly
dependent. Hence, by deleting an arbitrary element of each set S k , k = 1, . . . ,n , then
it still remains a generator of Im(π(H)) . Thus

rank(π(A)) = dim(Im(π(A))) � |B|−n = 2n −n. �

LEMMA 2. The permanent of a formalized matrix [5]:

per(H) =
n

∑
k=0

k!(n− k)!|ek|2.

Proof. We show that

per(H) = ∑
σ∈Sn

n

∏
i=1

(1+ xixσ(i))

= n!+ ∑
σ∈Sn

n

∑
k=1

∑
1�i1<...<ik�n

xi1 . . .xik xσ(i1) . . .xσ(ik)

= n!+
n

∑
k=1

∑
1�i1<...<ik�n

xi1 . . .xik ∑
σ∈Sn

xσ(i1) . . .xσ(ik)

= n!+
n

∑
k=1

∑
1�i1<...<ik�n

k!(n− k)!xi1 . . .xil ek

=
n

∑
k=0

k!(n− k)!|ek|2. �

We use the elementary symmetric polynomials to examine entries of C 1(H) with
the (i, j)-th entry defined by (1+ xix j).per(H(i| j)) and

per(H(i| j)) = ∑
σ∈Sn; σ(i)= j

∏
l �=i

(1+ xlxσ(l))

= ∑
σ∈Sn; σ(i)= j

n−1

∑
k=0

∑
1�i1<...<ik�n; im �=i ∀m=1,...,k

xi1 . . .xikxσ(i1) . . .xσ(ik)

=
n

∑
k=0

∑
1�i1<...<ik�n, im �=i

k!(n−1− k)!xi1 . . .xil ek(x j)

=
n−1

∑
k=0

k!(n−1− k)!ek(xi)ek(x j).
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And notice that
ek = xiek−1(xi)+ ek(xi) ∀k = 1, . . . ,n.

Then

per(H)
n

=
1
n

n

∑
k=0

k!(n− k)!|ek|2

= (n−1)!(|e0|2 + |en|2)

+
n−1

∑
k=1

k!(n− k)!
n

(xiek−1(xi)+ ek(xi))(x jek−1(x j)+ ek(x j)).

Hence

(1+ xix j).per(H(i| j))− per(H)
n

=
n−1

∑
k=1

(
k!(n−1− k)!− k!(n− k)!

n

)
ek(xi)ek(x j)

+
(

(k−1)!(n− k)!− k!(n− k)!
n

)
xiek−1(xi)x jek−1(x j)

− k!(n− k)!
n

(xiek−1(xi)ek(x j)+ x jek−1(x j)ek(xi))

=
n−1

∑
k=1

(k−1)!(n−1− k)!
n

(kek(xi)− (n− k)xiek−1(xi))(kek(x j)− (n− k)x jek−1(x j))

=
n−1

∑
k=1

(k−1)!(n−1− k)!
n

(nek(xi)− (n− k)ek)(nek(x j)− (n− k)ek).

Therefore, we have the following proposition.

PROPOSITION 3.2. The matrix C1(H) can be rewritten in the form

C1(H) =
per(H)

n
vv∗ +

n−1

∑
k=1

(k−1)!(n−1− k)!
n

vkv
∗
k

where v = (1, . . . ,1)T of order n, for k = 1, . . . ,n−1 , vk = (. . . ,nek(xi)− (n− k)ek︸ ︷︷ ︸
i-th element

, . . .)T .

PROPOSITION 3.3. For any k = 1, . . . ,n−1 , 〈v,vk〉 = 0 .

Proof.

〈v,vk〉 =
n

∑
i=1

(nek(xi)− (n− k)ek)

= n
n

∑
i=1

ek(xi)−n(n− k)ek

= 0. �
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PROPOSITION 3.4. The rank of C1(H) is the cardinality of the set {xi, i = 1,n} .
In formula, rank(C1(H)) = |{xi, i = 1,n}| .

Proof. For the i-th element of vk , we have

nek(xi)− (n− k)ek = kek −nxiek−1(xi) = kek +n
k

∑
j=1

(−1) jek− jx
j
i

which leads us to a conclusion that 〈v,v1, . . . ,vn−1〉 = 〈p0, . . . , pn−1〉 where

p j = (. . . , x j
i︸︷︷︸

i-th element

, . . .)T

which is equal to |{xi, i = 1,n}| by the determinantal formula of Vandermonde matri-
ces. �

PROPOSITION 3.5. The determinant of C1(H) is given by

det(C1(H)) =
per(H)

n

n−1

∏
k=1

n(k−1)!(n−1− k)! ·∏
i< j

|xi − x j|2.

Proof. Case 1: There are indices i and j such that xi = x j then rank(C1(H)) < n
that is equivalent to det(C1(H)) = 0.

Case 2: xi ’s are distinct then {v,v1, . . . ,vn−1} makes a basis of Cn . Therefore,

C1(H) is similar to the Gramian matrix of n vectors
{√

per(H)
n v;

√
(k−1)!(n−1−k)!

n vk,

k = 1,n−1
}

. Thus

det(C1(H)) = det

(
G

(√
per(H)

n
v;

√
(k−1)!(n−1− k)!

n
vk, k = 1,n−1

))

=
per(H)

n

n−1

∏
k=1

(k−1)!(n−1− k)!
n

·det(G(v,v1, . . . ,vn−1)).

And from the proof of proposition 3.4, we obtain that

(v,v1, . . . ,vn−1) = (p0, p1, . . . , pn−1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . kek . . . (n−1)en−1

0 . . . (−1)2nek−1 . . . (−1)2nen−2

. . . . .

. . . . .

. . . . .
0 . . . . . . (−1) jnek− j . . .
. . . . .
. . . . .
. . . . .
0 . . . . . . . . . (−1)n−1n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The matrix in the right side is the transition matrix given by

The (i, j)-th entry =

⎧⎪⎨⎪⎩
(−1)ine j−i if i > 1

( j−1)e j−1 if i = 1 and j > 1

1 if (i, j) = (1,1)

with convention that e0 = 1; et = 0 if t < 0. Moreover, we observe that the transition
matrix is an upper triangular matrix with the absolute value of diagonal entries equal to
n except the (1,1)-th entry equal to 1 and (p0, p1, . . . , pn−1) is a Vandermonde matrix.
Hence

det(C1(H)) =
per(H)

n

n−1

∏
k=1

n(k−1)!(n−1− k)! ·det(G(p0, p1, . . . , pn−1))

=
per(H)

n

n−1

∏
k=1

n(k−1)!(n−1− k)! · |det(p0, p1, . . . , pn−1)|2

=
per(H)

n

n−1

∏
k=1

n(k−1)!(n−1− k)! ·∏
i< j

|xi − x j|2.

The right side is also equal to 0 if there are indices i �= j such that x i = x j . Hence the
equality holds in both cases. �

REMARK 2. From the proposition 3.5, we are able to calculate the determinant of
C1(H) of any positive semi-definite Hermitian matrix H of rank 2 in the way:

Let A be an n×n positive semi-definite Hermitian matrix of rank 2 then A can be
written in the form vv∗ +uu∗ with vi,ui are the i-th elements of v and u respectively.
Then the following formula for the determinant of C 1(H) is achieved.

THEOREM 1. Let H = vv∗ + uu∗ be an n× n positive semi-definite Hermitian
matrix then:

det(C1(H)) =
per(H)

n

n−1

∏
k=1

n(k−1)!(n−1− k)! ·∏
i< j

|viu j − v jui|2

where vi and ui are i-th elements of the vector v and u respectively.

4. A counterexample for the conjectures 1 and 2 in the case n = 5

Let us take the values of ui ’s and vi ’s, a ∈ R

u1 = ai, u2 = −a, u3 = −ai, u4 = a, u5 = 0, vi = 1 ∀i = 1, . . . ,5

then e1 = e2 = e3 = e5 = 0, e4 = −a4 .
For any matrix of the form, the spectrum of C1(H) is determined clearly by the

mentioned above properties and theorems.
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By lemma 3.1, rank(π(H)) � 25 −5 = 27 which means that there are at most 27
positive eigenvalues.

By lemma 3.2,

per(H) = 120+ 24|e1|2 + 12|e2|2 + 12|e3|2 + 24|e4|2 + 120|e5|2
= 120+ 24a8

and the proposition 3.2 implies that

C1(H) =
per(H)

5
vv∗ +

6
5

v1v∗1 +
2
5

v2v∗2 +
2
5

v3v∗3 +
6
5

v4v∗4

where

v1 =

⎛⎜⎜⎜⎜⎝
−5ai

5a
5ai
−5a

0

⎞⎟⎟⎟⎟⎠ , v2 =

⎛⎜⎜⎜⎜⎝
−5a2

5a2

−5a2

5a2

0

⎞⎟⎟⎟⎟⎠ , v3 =

⎛⎜⎜⎜⎜⎝
5a3i
5a3

−5a3i
−5a3

0

⎞⎟⎟⎟⎟⎠ , v4 =

⎛⎜⎜⎜⎜⎝
a4

a4

a4

a4

−4a4

⎞⎟⎟⎟⎟⎠ .

Notice that {v,v1,v2,v3,v4} is orthogonal, thus those vectors are eigenvectors of C 1(H)
corresponding to the eigenvalues

per(H) = 120+ 24a8,
6
5
‖v1‖2 = 120a2,

2
5
‖v2‖2 = 40a4,

2
5
‖v3‖2 = 40a6,

6
5
‖v4‖2 = 24a8.

We replace a2 = c, then tr(π(H)) = 120(1+ c)4 . The spectrum of C1(H) is

{120+ 24c4,120c,40c2,40c3,24c4}.

Moreover, every eigenvalue of C1(H) except per(H) is an eigenvalue of π(H) with
multiplicity at least 4 and, every eigenvalue of C2(H) except eigenvalues of C1(H)
is an eigenvalue of π(H) with multiplicity at least 5. Therefore, if we can calculate
the sum and the sum of squares of at most 2 unknown positive eigenvalues of π(H) ,
then the spectrum is determined. We compute the trace of C2(H) . The (i, j)(i, j)-th
diagonal entry of C2(H) is given by

per(H[{i, j},{i, j}]).per(H({i, j},{i, j}))
= (2+ |e1[{i, j}]|2 + 2 |e2[{i, j}]|2)
× (6+ 2 |e1[{i, j}c])|2 + 2 |e2[{i, j}c]|2 + 6 |e3[{i, j}c]|2).
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Hence, we use the table to represent all the diagonal entries of C2(H) .

Coordinates Values

(1,2)(1,2) (2+ 2c+ 2c2)(6+ 4c+ 2c2)

(1,3)(1,3) (2+ 2c2)(6+ 2c2)

(1,4)(1,4) (2+ 2c+ 2c2)(6+ 4c+ 2c2)

(1,5)(1,5) (2+ c)(6+ 2c+ 2c2+ 6c3)

(2,3)(2,3) (2+ 2c+ 2c2)(6+ 4c+ 2c2)

(2,4)(2,4) (2+ 2c2)(6+ 2c2)

(2,5)(2,5) (2+ c)(6+ 2c+ 2c2+ 6c3)

(3,4)(3,4) (2+ 2c+ 2c2)(6+ 4c+ 2c2)

(4,5)(4,5) (2+ c)(6+ 2c+ 2c2+ 6c3)

tr(C2(H)) 120+ 48c4 + 104c3 + 152c2 + 120c

Furthermore, we use the symmetric polynomials to calculate the sum of all squares of
eigenvalues.

tr(π(H)2) = ∑
σ∈S5

∑
τ∈S5

∣∣∣∣∣ 5

∏
i=1

(1+uσ(i)uτ(i))

∣∣∣∣∣
2

= 120 ∑
σ∈S5

∣∣∣∣∣ 5

∏
i=1

(1+uiuσ(i))

∣∣∣∣∣
2

We know that u5 = 0, and for k = 1, . . . ,4 we have uk = a.ik with a2 = c then

tr(π(H)2)

= 120 ∑
σ∈S5

∣∣∣∣∣ 5

∏
i=1

(1+uiuσ(i))

∣∣∣∣∣
2

= 120

⎛⎝ 4

∑
k=1

∑
σ∈S5, σ(k)=5

∣∣∣∣∣ ∏
j �=k,5

(1+u juσ( j))

∣∣∣∣∣
2

+ ∑
σ∈S5, σ(5)=5

∣∣∣∣∣ 4

∏
i=1

(1+uiuσ(i))

∣∣∣∣∣
2
⎞⎠

= 120

⎛⎝ 4

∑
k=1

∑
σ∈S5, σ(k)=5

∣∣∣∣∣ ∏
j �=k,5

(1+ c.i j−σ( j))

∣∣∣∣∣
2

+ ∑
σ∈S5, σ(5)=5

∣∣∣∣∣ 4

∏
j=1

(1+ c.i j−σ( j))

∣∣∣∣∣
2
⎞⎠ .

LEMMA 3. By the fundamental theorem of symmetric polynomials and e 1 = e2 =
e3 = e5 = 0 then every monomial symmetric polynomial in 5 variables of degree non-
divisible by 4 takes (u1,u2,u3,u4,u5) as a root.
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The lemma 4.1 reduces the sums

4

∑
k=1

∑
σ∈S5,σ(k)=5

∣∣∣∣∣ ∏
j �=k,5

(1+ c · i j−σ( j))

∣∣∣∣∣
2

=
4

∑
k=1

∑
σ∈S5,σ(k)=5

(1+ c2)3 +(1+ c2)c ∑
j �=k,5

2Re(i j−σ( j))

+(1+ c2)c2 ∑
i1<i2 �=k,5

(ii1−σ(i1) + iσ(i1)−i1)(ii2−σ(i2) + iσ(i2)−i2)

+c3 ∏
j �=k,5

(i j−σ( j) + iσ( j)− j)

= 96(1+ c2)3 +
4

∑
k=1

∑
σ∈S5,σ(k)=5

c2(1+ c2)2Re

(
∑

i1<i2 �=k,5

ii1−i2+σ(i2)−σ(i1)

)

= 96(1+ c2)3 +
4

∑
k=1

c2(1+ c2)Re

(
∑

i1 �=i2 �=k,5

ei1−i2 ∑
σ∈S5, σ(k)=5

iσ(i2)−σ(i1)

)

combine with

∑
σ∈S5,σ(k)=5

iσ(i2)−σ(i1) = 2
4

∑
α=1

iα ∑
β �=α

iβ = −2.4 = −8.

We attain

4

∑
k=1

∑
σ∈S5,σ(k)=5

∣∣∣∣∣ ∏
j �=k,5

(1+ c · i j−σ( j))

∣∣∣∣∣
2

= 96(1+ c2)3 −8c2(1+ c2)
4

∑
k=1

Re

(
∑

i1 �=i2 �=k,5

ei1−i2

)
= 96(1+ c2)3 + 64c2(1+ c2).

The lemma 4.1 also reduces the sum

∑
σ∈S5, σ(5)=5

∣∣∣∣∣ 4

∏
i=1

(1+ c · i j−σ( j))

∣∣∣∣∣
2

= ∑
σ∈S4

∣∣∣∣∣ 4

∏
i=1

(1+ c · i j−σ( j))

∣∣∣∣∣
2

= ∑
σ∈S4

∣∣∣∣∣1+ c4 + c3
4

∑
i=1

iσ( j)− j + c
4

∑
i=1

i j−σ( j) + c2 ∑
j1< j2

i j1+ j2−σ( j1)−σ( j2)

∣∣∣∣∣
2

= 24(1+ c4)2 +(c6 + c2) ∑
σ∈S4

∣∣∣∣∣ 4

∑
i=1

i j−σ( j)

∣∣∣∣∣
2

+ c4 ∑
σ∈S4

∣∣∣∣∣ ∑
j1< j2

i j1+ j2−σ( j1)−σ( j2)

∣∣∣∣∣
2

.



A SIMPLE COUNTEREXAMPLE FOR THE PERMANENT-ON-TOP CONJECTURE 13

We compute each part separately by the lemma 4.1

∑
σ∈S4

∣∣∣∣∣ 4

∑
i=1

i j−σ( j)

∣∣∣∣∣
2

= 24 ·4−8 ∑
j1 �= j2

i j1− j2 = 96+ 32 = 128

∑
σ∈S4

∣∣∣∣∣ ∑
j1< j2

i j1+ j2−σ( j1)−σ( j2)

∣∣∣∣∣
2

= ∑
σ∈S4

((
4
2

)
+

1
4 ∑
{i1,i2,i3,i4}={1,2,3,4}

iσ(i1)+σ(i2)−σ(i3)−σ(i4)+i3+i4−i1−i2

+ 2 ∑
j1 �= j2

i j1− j2+σ( j2)−σ( j1)
)

= 144+ 2 ∑
(i1,i2,i3,i4)

ii3+i4−i1−i2 −16 ∑
j1 �= j2

i j1− j2 = 208−4 ∑
j1 �= j2

i2 j1+2 j2 = 224.

Thus, we obtain tr(π(H)2) = 120(24(1+ c4)2 + 128(c6 + c2)+ 224c4 + 96(1+ c2)3 +
64c2(1+ c2)) .

Hence, the spectrum of π(H) is

• per(H) = 120+ 24c4 of multiplicity 1

• 120c,40c2,40c3,24c4 of multiplicity 4

• 64c3,112c2 of multiplicity 5

• 0 of multiplicity 93.

We observe that c = 2 is a solution of the inequality 120+24c 4−64c3 < 0. Therefore,
the matrix H = vv∗+uu∗ where v = (1, . . . ,1)T , u = 2(i,−1,−i,1,0)T is a counterex-
ample to the permanent-on-top conjecture (POT).

H =

⎛⎜⎜⎜⎜⎝
3 1−2i −1 1+ 2i 1

1+ 2i 3 1−2i −1 1
−1 1+ 2i 3 1−2i 1

1−2i −1 1+ 2i 3 1
1 1 1 1 1

⎞⎟⎟⎟⎟⎠
The spectrum of this counterexample is also given by above calculations:

• per(H) = 504 of multiplicity 1

• 240, 160, 320, 384 of multiplicity 4

• 512 and 448 of multiplicity 5

• 0 of multiplicity 93
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Once, I have the counterexample, a shorter way to prove the matrix H is a counterex-
ample for Pate’s conjecture in the case n = 5 and k = 2 is available by Tensor product.
For the purposes of this paper let us describe the tensor product of vector spaces in
terms of bases:

DEFINITION 7. Let V and W be vector spaces over C with bases {vi} and {wi} ,
respectively. Then V ⊗W is the vector space spanned by {v i⊗wj} subject to the rules:

(αv+ α ′v′)⊗w = α(v⊗w)+ α ′(v′ ⊗w)

v⊗ (αw+ α ′w′) = α(v⊗w)+ α ′(v⊗w′)

for all v,v′ ∈V and w,w′ ∈W and all scalars α,α ′ .
If 〈,〉 is an inner product on V then we can define an inner product 〈,〉 on V ⊗V

in the manner:

〈vi1 ⊗ vi2 ,vi3 ⊗ vi4〉 = 〈vi1 ,vi3〉〈vi2 ,vi4〉
for any vi1 ,vi2 ,vi3 ,vi4 vectors.

On C[x,y] , we consider the inner product, and the resulting Euclidean norm | · | ,
such that monomials are orthogonal and |xnyk|2 = n!k! .

PROPOSITION 4.1. The permanent of the Gram matrix of any 1-forms f j ∈ Cx⊕
Cy is

∣∣∏ f j
∣∣2 .

Proof. We prove the generalization of the statement which states that if f 1, f2, . . . , fn,
g1,g2, . . . ,gn be 2n 1-forms and A be an n×n matrix with (i, j)-th entry 〈 f i,g j〉 , then

per(A) =

〈
n

∏
i=1

fi,
n

∏
i=1

gi

〉

Let fi = αix+ βiy,gi = α ′
i x+ β ′

i y for any i ∈ {1,2, . . . ,n} .
We compute each side of the equality:
The left side is

per(A) = ∑
σ∈Sn

n

∏
i=1

〈 fi,gσ(i)〉 = ∑
σ∈Sn

n

∏
i=1

〈αix+ βiy,α ′
σ(i)x+ β ′

σ(i)y〉

= ∑
σ∈Sn

n

∏
i=1

(αi ·ασ(i) + βi ·β ′
σ(i))

= ∑
σ∈Sn

n

∑
k=0

∑
1�i1<...<ik�n

1�ik+1<...<in�n

αi1 . . .αik βik+1 . . .βinα ′
σ(i1) . . .α

′
σ ik

β ′
σ(ik+1)

. . .β ′
σ(in)
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=
n

∑
k=0

k!(n− k)!

⎛⎜⎜⎝ ∑
1�i1<...<ik�n

1�ik+1<...<in�n

αi1 . . .αik βik+1 . . .βin

⎞⎟⎟⎠

×

⎛⎜⎜⎝ ∑
1�i1<...<ik�n

1�ik+1<...<in�n

α ′
1 . . .α ′

ik
β ′

ik+1
. . .β ′

in

⎞⎟⎟⎠
and the right side is〈

n

∏
i=1

fi,
n

∏
i=1

gi

〉

=

〈
n

∑
k=0

xkyn−k ∑
1�i1<...<ik�n

1�ik+1<...<in�n

αi1 . . .αik βik+1 . . .βin ,

n

∑
k=0

xkyn−k ∑
1�i1<...<ik�n

1�ik+1<...<in�n

α ′
i1 . . .α ′

ik
β ′

ik+1
. . .β ′

in

〉

=
n

∑
k=0

k!(n− k)!

⎛⎜⎜⎝ ∑
1�i1<...<ik�n

1�ik+1<...<in�n

αi1 . . .αik βik+1 . . .βin

⎞⎟⎟⎠

×

⎛⎜⎜⎝ ∑
1�i1<...<ik�n

1�ik+1<...<in�n

α ′
1 . . .α ′

ik
β ′

ik+1
. . .β ′

in

⎞⎟⎟⎠ . �

Let f j = x + yi j
√

2 ( j = 1,2,3,4) and f5 = x . Their Gram matrix is the given
matrix H with perH = | f1 f2 f3 f4 f5|2 = |x5 −4xy4|2 = 5!+16 ·4! = 504 (according to
the proposition 4.1). When {p,q,r,s,t}= {1,2,3,4,5} , define Fp,q = fp fq⊗ fr fs ft and
an inner product on C[x,y]⊗C[x,y] as the definition 4.1. It is obvious that C 2(H) of
H is the Gram matrix of the ten tensors Fp,q with {p,q,r,s, t} = {1,2,3,4,5} , p < q ,
and r < s < t . We observe that

(1+ i)F41 +(−1+ i)F12 +(−1− i)F23 +(1− i)F34−2iF51 + 2F52 + 2iF53−2F54

= 16
√

2x2 ⊗ y3 −32
√

2xy⊗ xy2 + 16
√

2y2 ⊗ x2y,

whose norm squared is

29 ·2!3!+ 211 ·2!+ 29 ·2! ·2! = 512 ·24,

while the norm squared of the coefficient vector is

|1+ i|2 + |−1+ i|2 + |−1− i|2 + |1− i|2 + |−2i|2 + 22 + |2i|2 + |−2|2 = 24.
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Therefore, a linear operator mapping eight orthonormal vectors to F12 , F23 , F34 , F41 ,
F51 , F52 , F53 , F54 has norm at least

√
512, so the Gram matrix of these eight tensors,

which is an 8-square diagonal submatrix of C2(H) , has norm (=largest eigenvalue) at
least 512, whence so does C2(H) itself. In fact, the norm of C2(H) is 512.
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