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Abstract. The aim of the present paper is to introduce and study a subfamily of holomorphic
and normalized functions defined by a differential inequality. Some geometric properties of
this family of holomorphic functions and different problems of a family of such functions are
presented.

1. Introduction and preliminaries

Let A denote the family of functions f holomorphic in the open unit disc U :=
{z ∈ C : |z| < 1} of the complex plane C with the power expansion series

f (z) = z+
∞

∑
n=2

anzn, z ∈ U, (1)

and by S we denote the subfamily of A consisting of univalent functions
A function ω : U → C is called a Schwarz function if ω is analytic in U , with

ω(0) = 0 and |ω(z)| < 1 for all z ∈ U , and we denote by Ω the set of all Schwarz
functions.

For two functions f and F analytic in U we say that the function f is subordinate
to the function F , and we write f (z) ≺ F(z) , if there exists a Schwarz function ω such
that f (z) = F (ω(z)) for all z ∈ U . In particular, if the function F is univalent in U ,
then we have the following equivalence:

f (z) ≺ F(z) ⇔ f (0) = F(0) and f (U) ⊂ F(U).
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The logarithmic coefficients γn of f ∈ S are defined by the following series ex-
pansion

log
f (z)

z
= 2

∞

∑
n=1

γn( f )zn, z ∈ U, (2)

where log1 = 0. Note that we use γn instead of γn( f ) .
These coefficients play an important role for various estimates in the theory of uni-

valent functions. Thus, the idea of studying the logarithmic coefficients helped Kayu-
mov [12] to solve Brennan’s conjecture for conformal mappings. The importance of the
logarithmic coefficients follows from Lebedev-Milin inequalities [ 15, Chapter 2], see
also [16, 17], where estimates of the logarithmic coefficients were used to find bounds
on the coefficients of f . Milin [15] conjectured the inequality

n

∑
m=1

m

∑
k=1

(
k|γk|2 − 1

k

)
� 0, n = 1,2,3, . . . ,

that implies Robertson’s conjecture [23], and hence Bieberbach’s conjecture [5], which
is the famous coefficient problem of Univalent Functions Theory. L. de Branges [ 6]
established the Bieberbach’s conjecture by proving Milin’s conjecture.

Recall that we can rewrite (2) in the power series form for z ∈ U as follows:

2
∞

∑
n=1

γnzn = a2z+ a3z2 + a4z3 + . . .− 1
2

(
a2z+ a3z2 + a4z3 + . . .

)2

+
1
3

(
a2z+ a3z2 + a4z3 + · · ·)3

+ . . . ,

and equating the coefficients of zn for n = 1,2,3, it follows that⎧⎪⎪⎪⎨⎪⎪⎪⎩
2γ1 = a2,

2γ2 = a3 − 1
2

a2
2,

2γ3 = a4 −a2a3 +
1
3

a3
2.

(3)

For α ∈ [0,1) , we denote by S ∗(α) the subfamily of A consisting of all f ∈A
for which f is a starlike function of order α in U , that is,

Re
z f ′(z)
f (z)

> α, z ∈ U.

Also, for γ ∈ (0,1] , we denote by S̃ ∗(γ) the subfamily of A consisting of all f ∈ A
for which f is a strongly starlike function of order γ in U , that is,∣∣∣∣Arg

z f ′(z)
f (z)

∣∣∣∣< γπ
2

, z ∈ U.

Note that S̃ ∗(1) = S ∗(0) =: S ∗ represents the family of starlike functions in U .
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In addition, we denote by C the subfamily of close-to-convex functions in U

consisting of all f ∈ A for which

Re f ′(z) > 0, z ∈ U.

Rønning [25] (see also [26]) introduced the families of uniformly starlike and uni-
formly convex functions and studied some geometric properties of such functions. Ac-
cording to the above mentioned issues, motivated essentially by the work [ 25] we will
define a new subfamily of A as follows:

DEFINITION 1. A function f ∈ A belongs to the subclass S ∗
C of A if

Re

(
1+

z f ′′(z)
f ′(z)

)
>
∣∣ f ′(z)−1

∣∣ , z ∈ U. (4)

The identity function on U belongs to S ∗
C which implies that S ∗

C 	= /0 . Further, the

relation (4) implies Re
(

1+ z f ′′(z)
f ′(z)

)
> 0, z ∈ U , which is the well known family of

convex K functions, hence S ∗
C ⊂ K and domain form (figure) of functions in the

subclass S ∗
C is convex. Moreover, we give the following example of a function that

belongs to S ∗
C :

EXAMPLE 1. The function f (z) = z + a2z2 , z ∈ U , with a2 ∈ C , belongs to the
family S ∗

C if

|a2| � 3−√
5

4
.

Proof. For f (z) = z+a2z2 ∈ A , letting a2 =
r0

2
eiθ0 , r0 � 0, θ0 ∈ [0,2π ] , for an

arbitrary z = ρeit , with ρ ∈ [0,1) and t ∈ [0,2π ] we have

Re

(
1+

z f ′′(z)
f ′(z)

)
= 1+ Re

2a2z
1+ 2a2z

= 1+
r0ρ
(
r0ρ + cos(θ0 + t)

)
1+ 2r0ρ cos(θ + t)+ r2

0ρ2

and ∣∣ f ′(z)−1
∣∣= |2a2z| = r0ρ .

Thus, the inequality (4) is equivalent to

1+
r0ρ
(
r0ρ + cos(θ0 + t)

)
1+ 2r0ρ cos(θ0 + ρ)+ r2

0ρ2
> r0ρ ,

and setting x := cos(θ0 + t) we find the values of r0 such that

l(x,ρ) := 1+
r0ρ(r0ρ + x)

1+ 2r0ρx+ r2
0ρ2

− r0ρ > 0, for all −1 � x � 1, 0 � ρ < 1.



30 N. H. MOHAMMED, E. A. ADEGANI, T. BULBOACĂ AND N. E. CHO

Assuming that 0 � r0 � 1, it follows that l is an increasing function with respect to x ,
hence

l(−1,ρ) > 0, ρ ∈ [0,1) ⇔ 1−3r0ρ + r2
0ρ2

1− r0ρ
> 0, ρ ∈ [0,1)

⇔ r0ρ ∈
(
−∞,

3−√
5

2

)
∪
(

3+
√

5
2

,∞

)
, ρ ∈ [0,1) ⇔ r0 � 3−√

5
2

,

therefore |a2| � 3−√
5

4
and this completes the proof. �

In proving our results, we shall need the following theorem and lemmas.

LEMMA 1. [10, Theorem 2.9] If f ∈A with f ′(z) 	= 0 for all z∈U and Re
√

f ′(z)
> α , z ∈ U , for some α ∈ [1/2,1) , then

Re
f (z)

z
>

2α2 + 1
3

, z ∈ U.

From Theorem 2.1 and Remark 2.21 of [14], for γ = 1 we have:

LEMMA 2. [14, Theorem 2.1] Let p(z) = 1+
∞
∑

k=n
akzk , z ∈ U , with an 	= 0 , be an

analytic function in U . If∣∣∣∣Arg

(
δ p(z)+ β

zp′(z)
p(z)

)∣∣∣∣< π
2

(
α +

2
π

arctan

(
nαβ

δ

))
, z ∈ U,

then

|Arg p(z)| < απ
2

, z ∈ U,

for some 0 < α < 1 , β > 0 , and δ > 0 .

LEMMA 3. [19, p. 172] If ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn for all z ∈U , then |w1|�

1 and

|wn| � 1−|w1|2, n = 2,3,4, · · · .

LEMMA 4. [13, Inequality 7, p. 10] If ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn , z ∈ U , then

∣∣w2 − tw2
1

∣∣� max{1; |t|} , t ∈ C.

The result is sharp for the functions ω(z) = z2 or ω(z) = z .
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LEMMA 5. [7, Theorem 6.4, p. 195] [24, Theorem X, p. 70, Theorem XI, p. 72]

Let f (z) =
∞
∑

n=1
anzn and g(z) =

∞
∑

n=1
bnzn , z ∈ U , be two analytic functions in U , and

suppose that f (z) ≺ g(z) where g is a univalent function in U .
(i) If g is a convex function in U , then |an| � |b1| , n = 1,2,3, · · · .
(ii) If g is a starlike function in U (i.e. starlike with respect to 0), then |an| �

n|b1| , n = 1,2,3, · · · .
Taking q → 1− in the first part of Theorems 2.1 of [22] we get the next result:

LEMMA 6. [22] Suppose that f ∈ A with f ′(z) 	= 0 for all z ∈ U , has the power
series expansion of the form (1), and√

f ′(z) ≺ φ(z),

where φ(z) = 1 +
∞
∑

n=1
Anzn , z ∈ U , with A1 > 0 , is an analytic function in U . If A1 ,

A2 , and A3 satisfy the conditions

|A2
1 + 2A2| � 7A1 and

∣∣A2
1A2 + 9A1A3 −2A4

1−8A2
2

∣∣� 8A2
1,

then the second Hankel determinant satisfies

∣∣a2a4 −a2
3

∣∣� 4A2
1

9
.

The aim of the present paper is to introduce and study a subfamily of holomor-
phic and normalized functions defined by a differential inequality. Some geometric
properties and different problems for a family of such functions are presented.

2. Properties of the family S ∗
C

In this section we obtain some geometric properties of the class S ∗
C like: sub-

ordination properties, radius of starlikeness of order α , bounded rotation result and
distortion and covering theorems.

THEOREM 1. If the function f ∈ S ∗
C , then

f ′(z) ≺ 1
1− z

=: q1(z),

or

f ′(z) ≺ 1

2F1

(
2,1,2;

z
z−1

) = q1(z),

where 2F1(a,b,c;z) is the Gaussian hypergeometric function, and q 1 is the best domi-
nant of the subordination.
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Proof. Let the function f ∈ S ∗
C , and define the function p : U → C by

p(z) = f ′(z), z ∈ U.

Then, p is analytic in U , p(0) = 1, and

1+
z f ′′(z)
f ′(z)

= 1+
zp′(z)
p(z)

, z ∈ U.

Since f ∈ S ∗
C , we get

Re

(
1+

zp′(z)
p(z)

)
= Re

(
1+

z f ′′(z)
f ′(z)

)
>
∣∣ f ′(z)−1

∣∣
= |p(z)−1|� Re

(
1− p(z)

)
, z ∈ U,

and the last inequality implies

Re

(
p(z)+

zp′(z)
p(z)

)
> 0, z ∈ U,

that is equivalent to

p(z)+
zp′(z)
p(z)

≺ 1+ z
1− z

. (5)

Now, if we take in Theorem 3.3d. of [18, p. 109] the values

β := 1, γ := 0, A := 1, B := −1,

the subordination (3.3-11) of [18, p. 109] reduces to (5), and the assumptions of Theo-
rem 3.3d., i.e. Re(β + γ) = 1 > 0 and (3.3-10) of [18, p. 108] are satisfied. According
to this theorem, combined with the relations (3.3-1) of [ 18, p. 103] and (3.3-5) of [18,
p. 104], we conclude that

p(z) ≺ 1
1− z

=: q1(z) ≺ 1+ z
1− z

,

that is,

f ′(z) ≺ 1
1− z

,

and q1 is the best dominant of the subordination.
Also, according to this theorem, combined with the relations (3.3-13) and (3.3-15)

of [18, p. 110], we can rewrite the above subordination and conclude that

f ′(z) ≺ 1

2F1

(
2,1,2;

z
z−1

) = q1(z),

and q1 is the best dominant of the subordination. �
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REMARK 1. Theorem 1 could be reformulated as follows:
If the function f ∈S ∗

C , then Re f ′(z) > 1/2, z ∈U , and the right-hand side bound
1/2 cannot be enlarged.

The next result gives us the radius of starlikeness of order α for the family S ∗
C :

THEOREM 2. If the function f ∈ S ∗
C and 0 � α < 1 , then

Re
z f ′(z)
f (z)

> α, |z| < 3−2α −
√

(α −3)2 −3
1−α

.

Proof. If the function f ∈ S ∗
C , then by Remark 1 we have

Re
√

f ′(z) >
1√
2
, z ∈ U,

and using Lemma 1 for α = 1/
√

2 we get

Re
f (z)

z
>

2
3
, z ∈ U,

that is equivalent to
f (z)

z
≺ 1− 1

3 z

1− z
=: h(z). (6)

Therefore, from the definition of the subordination there exists a function ω ∈ Ω , such
that

f (z)
z

=
1− 1

3 ω(z)
1−ω(z)

, z ∈ U,

and by logarithmical differentiation we get

z f ′(z)
f (z)

−1 =
2
3 zω ′(z)

(1−ω(z))
(
1− 1

3 ω(z)
) , z ∈ U.

Since ω ∈ Ω it follows that |ω(z)| � |z| = r ∈ [0,1) for all z ∈ U , and also the well-
known inequality |ω ′(z)| �

(
1−|w(z)|2)/(1−|z|2) , z ∈ U , for Schwarz functions

holds (see also the inequality (28) of [19, p. 168]). Using these inequalities, the above
relation implies

Re
z f ′(z)
f (z)

= 1+ Re
2
3 zω ′(z)

(1−ω(z))
(
1− 1

3 ω(z)
) � 1−

2
3 |z||ω ′(z)|

|1−ω(z)| ∣∣1− 1
3 ω(z)

∣∣
� 1−

2
3 |z|
(
1−|w(z)|2)

|1−ω(z)| ∣∣1− 1
3 ω(z)

∣∣ (1−|z|2) � 1−
2
3 |z|
(
1−|ω(z)|2)

(1−|ω(z)|)(1− 1
3 |z|
)
(1−|z|2)

= 1−
2
3 |z|(1+ |ω(z)|)(

1− 1
3 |z|
)
(1−|z|2) � 1−

2
3 |z|(1+ |z|)(

1− 1
3 |z|
)
(1−|z|2)

� 1−
2
3 |z|(

1− 1
3 |z|
)
(1−|z|) � 1−

2
3 r

(1− r)(1− 1
3 r)

, |z| = r < 1.
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Now, to obtain our result we should have

Re
z f ′(z)
f (z)

� 1−
2
3 r

(1− r)
(
1− 1

3 r
) > α, |z| = r < 1,

and the right-hand side inequality is equivalent to

T (r) := (α −1)r2 + 2(3−2α)r + 3(α−1) < 0.

Since the discriminant of the above quadratic form is Δ(α) := 4
[
(α −3)2 −3

]
> 0 for

all α ∈ [0,1) , and the coefficient of r2 is α − 1 < 0 for all α ∈ [0,1) , it follows that
T (r) < 0 whenever

0 � r <
3−2α −√(α −3)2 −3

1−α
,

which proves our result. �

REMARK 2. The above theorem could be reformulated as follows:
If the function f ∈ S ∗

C and 0 � α < 1, then F(z) := f (ρz) ∈ S ∗(α) , where

ρ :=
3−2α −√(α −3)2 −3

1−α
.

The following bounded rotation property for the functions in S ∗
C holds:

THEOREM 3. If f ∈ S ∗
C with f ′′(0) 	= 0 , then

∣∣Arg f ′(z)
∣∣< α̂π

2
, z ∈ U,

where the value α̂ :� 0.6383222623 is the (unique) solution of the equation

α +
2
π

arctanα = 1.

Proof. For f ∈ S ∗
C let us define the function p : U → C by

p(z) = f ′(z) = 1+
∞

∑
k=1

ckzk, z ∈ U.

Then, p is analytic in U , with p(0) = 1, and from Remark 1 it follows that p(z) 	= 0
for all z ∈ U . Like to the proof of Theorem 1 we get that the subordination (5) holds,
which is equivalent to ∣∣∣∣Arg

(
p(z)+

zp′(z)
p(z)

)∣∣∣∣< π
2

, z ∈ U.
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Since c1 = f ′′(0)/2 	= 0, using Lemma 2 for the special case δ = β = γ = 1, we obtain

|Arg p(z)| < απ
2

, z ∈ U,

where α +
2
π

arctanα = 1. Since the function ϕ(α) := α +
2
π

arctanα − 1, α ∈ R

is increasing on R , ϕ(0) = −1 and ϕ(1) = 1/2, it follows that ϕ has a unique zero
α̂ :� 0.6383222623∈ (0,1) . �

The final result of this section represents a distortion and a covering theorem for
the family S ∗

C , respectively:

THEOREM 4. If the function f ∈ S ∗
C , then

1
1+ r

� | f ′(z)| � 1
1− r

, |z| � r < 1,

and
r(3+ r)
3(1+ r)

� | f (z)| � r(3− r)
3(1− r)

, |z| � r < 1.

Proof. Let the function f ∈ S ∗
C . For the proof of the first inequality, using Theo-

rem 1 we have

f ′(z) ≺ 1
1− z

=: q1(z).

If we let Ur := {z ∈ C : |z| < r} , by using the subordination principle, the above sub-
ordination implies

f ′
(
Ur
)⊂ q1

(
Ur
)
, (7)

for all r ∈ (0,1) . Since q1 is a circular transformation symmetric respecting the real
axis, it follows that

1
1+ r

= q1(−r) � |q1(z)| � q1(r) =
1

1− r
, |z| = r < 1, (8)

for all r ∈ (0,1) . Thus, from (7) and (8) we get the required result.
For the proof of the second inequality we will use the fact that the subordination

(6) holds, and by using the same method as the above we obtain our result. �

3. Coefficient bounds

In this section we present some problems for the coefficients of functions that
belong to the family S ∗

C . Also, the bounds of the logarithmic coefficients, of the
Fekete-Szegő functional, and of the second Hankel determinant (see [ 1, 2, 3, 8, 9, 11,
20, 27, 28]) of the functions belonging to this family are determined.
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THEOREM 5. If the function f ∈ S ∗
C has the form (1), then

|an| � 1
n
, n = 1,2,3, · · · .

Proof. If f ∈ S ∗
C , from Theorem 1 it follows that

f ′(z) ≺ q1(z).

Since q1 is a univalent and convex function in U , and f ′(z) = 1+
∞
∑

n=1
nanzn−1 , z ∈ U ,

using Lemma 5(i) we get n|an| � |q′1(0)| = 1 for n = 1,2,3, · · · . �

THEOREM 6. Let the function f ∈ S ∗
C be of the form (1). Then, the logarithmic

coefficients of f satisfy the inequalities

|γ1| � 1
4
, |γ2| � 1

6
, |γ3| � 1

8
.

Proof. If f ∈ S ∗
C , according to Theorem 1 we have

f ′(z) ≺ q1(z) =
1

1− z
.

Therefore, by the definition of the subordination, there exists a function ω ∈ Ω , with

ω(z) =
∞
∑

n=1
cnzn , z ∈ U , such that

f ′(z) = q1(ω(z)) = 1+ c1z+
(
c2 + c2

1

)
z2 +

(
c3 + 2c1c2 + c3

1

)
z3 + · · · , z ∈ U,

and equating the coefficients of the above relation it follows that⎧⎨⎩
2a2 = c1,
3a3 = c2 + c2

1,
4a4 = c3 + 2c1c2 + c3

1.
(9)

Then, by substituting values of an , n = 1,2,3, from (9) in (3), we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2γ1 =
c1

2
,

2γ2 =
8c2 + 5c2

1

24
,

2γ3 =
1
4

(
c3 +

4
3

c1c2 +
1
2

c3
1

)
.

From the first of the above relations, by applying Lemma 3 we get |γ1| � 1
4

.
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Next, applying Lemma 4 for t =
5
8

we have

|γ2| �
8
∣∣c2 + 5

8 c2
1

∣∣
48

� 1
6
.

According to [21], using the notations of [4, Lemma 5] we have

|c3 + q1c1c2 + q2c3
1| � H(q1,q2),

where H(q1,q2) is given by [4, Lemma 5]. Since for the case (q1,q2) =
(

4
3
,

1
2

)
∈ D2

we have H

(
4
3
,

1
2

)
= 1, and we obtain the estimate

|γ3| = 1
8

∣∣∣∣c3 +
4
3

c1c2 +
1
2

c3
1

∣∣∣∣� 1
8
. �

THEOREM 7. If the function f ∈ S ∗
C has the form (1), then the second Hankel

determinant satisfies the inequality∣∣a2a4 −a2
3

∣∣� 1
9
.

Proof. If f ∈ S ∗
C from Theorem 1 it follows that√

f ′(z) ≺ 1√
1− z

= e
1
2 log(1−z) =: φ(z),

where the branch of the logarithm is the main one, that is, φ(0) = 1, and

φ(z) = 1+
∞

∑
n=1

Anzn = 1+
1
2

z+
3
8

z2 +
5

16
z3 + · · · , z ∈ U.

Therefore, using Lemma 6 we obtain our result. �

THEOREM 8. Let the function f ∈S ∗
C be of the form (1). Then, the next inequal-

ities hold for the parameter μ ∈ R:

∣∣a3 − μa2
2

∣∣�
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
3
− μ

4
, for μ � 0,

1
3
, for 0 � μ � 8

3
,

μ
4
− 1

3
, for μ � 8

3 .

Proof. If f ∈ S ∗
C has the form (1), from (9) and ν =

3μ
4

−1 we get

∣∣a3 − μa2
2

∣∣= 1
3

∣∣c2 −νc2
1

∣∣ ,
and our result follows by using Lemma 4. �
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4. Conclusion

In this research we studied the family S ∗
C of holomorphic and normalized func-

tions. Further, we obtained some geometric properties of this family like: subordination
properties, radius of starlikeness of order α , bounded rotation result, and distortion and
covering theorems. In addition, we have presented some related problems for the coef-
ficients of functions that belong to the mentioned family.

Acknowledgement. The fourth author was supported by the Basic Science Re-
search Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

R E F E R E N C E S

[1] D. ALIMOHAMMADI, N. E. CHO, E. A. ADEGANI, A. MOTAMEDNEZHAD, Argument and coeffi-
cient estimates for certain analytic functions, Mathematics, 8, 1 (2020), Article ID 88.

[2] D. ALIMOHAMMADI, E. A. ADEGANI, T. BULBOACĂ, N. E. CHO, Logarithmic coefficients for
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[8] A. EBADIAN, T. BULBOACĂ, N. E. CHO, E. A. ADEGANI, Coefficient bounds and differential

subordinations for analytic functions associated with starlike functions, Rev. R. Acad. Cienc. Exactas
Fı́s. Nat. Ser. A Mat. RACSAM, 114, (2020), Article ID 128.

[9] A. EBADIAN, N. H. MOHAMMED, E. A. ADEGANI, T. BULBOACĂ, New results for some general-
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