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NORM OF THE DISCRETE CESÀRO OPERATOR MINUS IDENTITY

GORD SINNAMON

(Communicated by J. Jakšetić)

Abstract. The norm of C− I on �p , where C is the Cesàro operator, is shown to be 1/(p− 1)
when 1 < p � 2 . This verifies a recent conjecture of G. J. O. Jameson. The norm of C− I on
�p is also determined when 2 < p < ∞ . The two parts together answer a question raised by
G. Bennett in 1996. Operator norms in the continuous case, Hardy’s averaging operator minus
identity, are already known. Norms in the discrete and continuous cases coincide.

The Cesàro operator, C , maps a sequence (xn) to (yn) , where

yn =
1
n

n

∑
k=1

xk.

Hilbert space methods, see [7], show that the operator norm of C− I , as a map on � 2 ,
is 1. The question of determining the exact norm of C− I as a map on � p was posed
in 1996 by Grahame Bennett as Problem 10.5 in [4]. Recently, Jameson [9] answered
the question in the case p = 4/3 by showing that ‖C− I‖ �4/3 = 3. He conjectured that
‖C− I‖�p = 1/(p− 1) for 1 < p � 2. In Theorems 2 and 4, Jameson’s method for
the case p = 4/3 is extended and used to verify his conjecture and to answer Bennett’s
question for the index range 1 < p � 2.

Jameson also gave the upper bound ‖C − I‖ �4 � 31/4 for the operator norm of
C − I when p = 4. In Theorems 8 and 10 we extend the bound to all p > 2 and
show it is best possible. This completes the following answer to Bennett’s question: If
1 < p � ∞ , then

‖C− I‖�p =

⎧⎪⎨
⎪⎩

1/(p−1), 1 < p � 2;

m−1/p
p , 2 < p < ∞;

2, p = ∞.

Here mp is the minimum value taken by the function pt p−1 + (1 − t)p − t p on the
interval [0, 1

2 ] . See Definition 6 and Lemma 7 below. The minimum value m p is easy
to compute when p = 3 and p = 4; the former gives ‖C− I‖ �3 = (2−√

2)−1/3 and
the latter recovers Jameson’s upper bound. The result ‖C − I‖ �∞ = 2 appears in [9,
Proposition 1].
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Hardy’s averaging operator takes a function x on (0,∞) to Px(s) = 1
s

∫ s
0 x . Many

results for P− I were first obtained from work on the Beurling-Ahlfors transform on
radial functions. For background and references, see [ 10]. The operator P− I has been
studied as a map on Lp = Lp(0,∞) , on the positive cone of L p , and on the cone of
positive, decreasing functions on L p . Results for weighted Lp , see [5], and weak-Lp ,
see [6], are also known. For background and additional references, see [ 11]. Special
cases of these general results reveal that the values for ‖C− I‖ �p , stated above, coincide
with those for ‖P− I‖Lp .

In corollaries following the main theorems below, we imitate the proofs for C− I
to give analogous proofs for P− I . These quick, elementary proofs recover the known
values of ‖P− I‖Lp in the case 1 < p < 2 (see [1, Theorem 4.1], [2, Theorem 5.3], and
[12, (3.13)]) and the case 2 < p (see [10, (1.2)]).

In what follows we consider only real-valued sequences and functions, but, as is
well known, extending a linear operator from real to complex values does not change
its �p or Lp operator norm.

In several of the arguments below, it is important that the power functions involved
be defined on all of R . Let

E =
{

2i
2 j+1 : i, j ∈ Z

}∩ (2,∞),

a dense subset of [2,∞) . If p ∈ E , the function t → t p is twice continuously differen-
tiable on R , it is non-negative, its derivative is strictly increasing and the Mean Value
Theorem implies that for all a,b ∈ R ,

pap−1(b−a) � bp−ap � pbp−1(b−a). (1)

To investigate C− I in the case 1 < p < 2 it is convenient to work instead with the
transpose Cesàro operator, CT , in the case 2 < p < ∞ . The transpose maps a sequence
(xn) ∈ �p to the sequence (yn) , where

yn =
∞

∑
k=n

xk

k
.

Since ‖C− I‖�p = ‖CT − I‖
�p′ , the conjecture ‖C− I‖p = p′ − 1 for 1 < p < 2 may

be equivalently stated as ‖CT − I‖�p = p−1 for p � 2. (Here and throughout, 1/p+
1/p′ = 1).

LEMMA 1. Let p ∈ E . For all t ∈ R ,

(p−1)pp−2t p +(t + 1)p− p(t + 1)p−1t � pp−2(p−1)1−p.

Proof. Since p > 2, pp−2 > 1 so the left-hand side of the inequality goes to infin-
ity as |t| does. Its derivative is p(p−1)t((pt) p−2− (t + 1)p−2) , which vanishes if and
only if t = 0 or t +1 =±pt . This derivative goes from positive to negative as t crosses
0 so there is a local maximum at t = 0. The other critical points are t = 1/(p−1) and
t = −1/(p+ 1) , so the minimum value taken by the left-hand side is the smaller of,

pp−2(p−1)1−p and pp−2(2p−1)(p+ 1)1−p.
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To complete the proof we show that the first of these is smaller. This is equivalent
to showing that h(p) = (p− 1)(log(p + 1)− log(p− 1))− log(2p− 1) � 0. Since
h(2) = 0 it suffices to show that h′(p) � 0 for p > 2. Since 1

s lies below its secant on

[p−1, p+1] , we have 1
s � 2p−s

p2−1
. Thus log(p+1)− log(p−1)�

∫ p+1
p−1

2p−s
p2−1

ds = 2p
p2−1

.

Also, 2p−1 � p2 −1 so

h′(p) � 2p
p2 −1

+(p−1)
( 1

p+ 1
− 1

p−1

)
− 2

p2 −1
= 0. �

Now we are ready to show that ‖CT − I‖�p � p−1 for p ∈ E . The proof follows
the method of [9, Theorem 2].

THEOREM 2. Let p ∈ E , let (xn) ∈ �p be a real sequence, and set yn = ∑∞
k=n

xk
k .

Then
∞

∑
n=1

(yn − xn)p � (p−1)p
∞

∑
n=1

xp
n .

Proof. By Hölder’s inequality, the sum defining yN converges absolutely and

|yN | �
∞

∑
n=N

|xn|
n

�
( ∞

∑
n=N

xp
n

)1/p( ∞

∑
n=N

n−p′
)1/p′ ∼

( ∞

∑
n=N

xp
n

)1/p
N−1/p.

Therefore, as N → ∞ ,

N

∑
n=1

(
nyp

n+1 − (n−1)yp
n

)
= Nyp

N+1 → 0.

Note that for all n , xn = n(yn − yn+1) . For each n , (1) implies

nyp
n+1 − (n−1)yp

n = yp
n −n(yp

n − yp
n+1) � yp

n − pyp−1
n n(yn − yn+1) = yp

n − pyp−1
n xn.

Now let zn = yn − xn and set c = pp−2(p−1)1−p . If zn 	= 0 we may let t = xn/zn

and apply Lemma 1 in the form (t + 1)p− p(t + 1)p−1t � c(1− (p−1)pt p) to get

yp
n − pyp−1

n xn = zp
n

(
(1+t)p− p(1+t)p−1t

)
� czp

n

(
1−(p−1)pt p) = c(zp

n −(p−1)pxp
n).

If zn = 0, then yn = xn and the same inequality holds, as

yp
n − pyp−1

n xn = −(p−1)xp
n � −pp−2(p−1)xp

n = c(zp
n − (p−1)pxp

n).

Summing over n , we have

c
N

∑
n=1

(
zp
n − (p−1)pxp

n

)
�

N

∑
n=1

(
nyp

n+1 − (n−1)yp
n

) → 0

as N → ∞ and we conclude that
∞

∑
n=1

zp
n � (p−1)p

∞

∑
n=1

xp
n . �

The proof simplifies in the continuous case, where instead of the transpose Cesàro
operator we work with the dual averaging operator P T .
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COROLLARY 3. Let p∈E , let x∈ Lp , and set y(s) = PT x(s) =
∫ ∞

s x(θ ) dθ
θ . Then∫ ∞

0 (y− x)p � (p−1)p ∫ ∞
0 xp .

Proof. It suffices to establish the result for functions x in a dense subset of L p

so suppose x is continuous and compactly supported in (0,∞) . Then y = P T x satisfies
lims→0+ sy(s)p = 0 = lims→∞ sy(s)p and d

ds (sy(s)
p) = y(s)p− py(s)p−1x(s) so

∫ ∞
0 (yp−

pyp−1x) = 0. Let z = y−x and c = pp−2(p−1)1−p . If z 	= 0 and t = x/z , then Lemma
1 implies

c(zp− (p−1)pxp) = czp(1− (p−1)pt p) � zp((1+ t)p− p(1+ t)p−1t) = yp− pyp−1x,

which also holds when z = 0. Integrate to get
∫ ∞

0 zp � (p−1)p ∫ ∞
0 xp . �

Next we extend Theorem 2 from p ∈ E to all p > 2 and point out a known lower
bound for ‖CT − I‖�p .

THEOREM 4. If 2 � p < ∞ then ‖CT − I‖�p = p−1 and if 1 < p � 2 then ‖C−
I‖�p = p′ −1 = 1/(p−1) .

Proof. As mentioned above, the case p = 2 is known to hold. For p > 2, Theorem
2 shows that for p ∈ E with 2 < p < ∞ , ‖CT − I‖�p � p−1. The Riesz-Thorin Theo-
rem, see [3, Corollary IV.2.3], implies that if 2 < p0 < p < p1 < ∞ , with p0, p1 ∈ E ,
then for some θ ∈ (0,1) , depending on p0 , p , and p1 ,

‖CT − I‖�p � ‖CT − I‖1−θ
�p0 ‖C− I‖θ

�p1 = (p0 −1)1−θ (p1 −1)θ � p1 −1.

Letting p1 → p through E , we get ‖CT − I‖�p � p−1.
The dual discrete Hardy inequality, [8, Theorem 331], shows that for p > 1,

‖CT‖�p = p . Therefore, ‖CT − I‖�p � ‖CT‖�p −‖I‖�p = p− 1 and we conclude that
‖CT − I‖�p = p− 1 for all p > 2. The second statement of the theorem follows from
the first by duality. �

The continuous case follows in just the same way because ‖PT‖Lp = p . See [8,
Theorem 328]. The proof is omitted.

COROLLARY 5. If 2 � p < ∞ then ‖PT − I‖Lp = p− 1 and if 1 < p � 2 then
‖P− I‖Lp = p′ −1 = 1/(p−1) .

Next we consider the case p > 2. To begin we introduce m p , essential for our
formula for the operator norm of C− I .

DEFINITION 6. Let p � 2 and set f p(t) = pt p−1 +(1− t)p− t p . Define mp to be
the minimum value of f p(t) for 0 � t � 1

2 .

LEMMA 7. If p > 2 , then f p has a unique critical point t p in (0, 1
2 ) , mp = fp(tp)

and mp is a continuous function of p. If, in addition, p ∈ E , then t p is the unique
critical point of f p on all of R and f p(t) � mp for all t ∈ R .
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Proof. On (0, 1
2) , f ′p(t) = p((p− 1)t p−2 − (1− t)p−1 − t p−1) . It extends to be

continuous on [0, 1
2 ] with f ′p(0) = −p < 0, and f ′p( 1

2 ) = p(p−2)22−p > 0. On (0, 1
2 ) ,

0 < t < 1− t so f ′′p (t) = p(p−1)((p−2)t p−3 +(1− t)p−2− t p−2) > 0.
Therefore f ′p is strictly increasing on [0, 1

2 ] , fp has a unique critical point t p in
(0, 1

2) and fp(tp) is the minimum value of f p , namely mp . For any p0 > 2, the function
(p,t) 
→ fp(t) is uniformly continuous on [2, p0]× [0, 1

2 ] . It follows that p 
→ mp is
continuous on [2,∞) .

If p ∈ E , then f p is defined on R , (1− t)p = (t −1)p , and

f ′p(t) = p((p−1)t p−2 +(t−1)p−1− t p−1) = p(p−1)
∫ t

t−1
(t p−2 − sp−2)ds.

If t � 0 then t − 1 < s < t implies |t| < |s| so t p−2 < sp−2 and we have f ′p(t) < 0.
Thus, f p is strictly decreasing on (−∞,0] . If t � 1

2 then t−1 < s < t implies |s|< t so
sp−2 < t p−2 and we have f ′p(t) > 0. Thus f p is strictly increasing on [ 1

2 ,∞) . It follows
that tp is the unique critical point of f p on R and f p(t) � mp for all t ∈ R . �

In [9, Theorem 1], the upper bound ‖C− I‖ �4 � 31/4 was proved. We employ a
similar method to extend it to an upper bound for all p > 2.

THEOREM 8. Let p∈E , let (xn)∈ �p be a real sequence, and set yn = 1
n ∑n

k=1 xk .
Then

∞

∑
k=1

(yk − xk)p � 1
mp

∞

∑
k=1

xp
k .

Proof. Fix a y0 arbitrarily and observe that (n−1)(yn−1 − yn) = yn − xn for n =
1,2, . . . . By (1),

(n−1)(yp
n−1− yp

n) � (n−1)pyp−1
n (yn−1 − yn) = pyp−1

n (yn − xn).

This becomes

nyp
n − (n−1)yp

n−1 � pyp−1
n xn − (p−1)yp

n = yp−1
n (pxn − (p−1)yn).

Take zn = yn − xn and t = yn/zn to get pxn − (p−1)yn = zn(t − p) . By Lemma 7,

nyp
n − (n−1)yp

n−1 � zp
n(t p− pt p−1) � zp

n((t −1)p−mp) = xp
n −mpz

p
n .

Summing from 1 to N gives

0 � Nyp
N =

N

∑
n=1

(nyp
n − (n−1)yp

n−1) �
N

∑
n=1

xp
n −mp

N

∑
n=1

zp
n .

Letting N → ∞ we have
∞

∑
n=1

zp
n � 1

mp

∞

∑
n=1

xp
n . �
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COROLLARY 9. Let p∈E , let x∈ Lp and set y(s) = Px(s) = 1
s

∫ s
0 x . Then

∫ ∞
0 (y−

x)p � 1
mp

∫ ∞
0 xp .

Proof. It suffices to establish the result for functions x in a dense subset of L p

so suppose x is continuous and compactly supported in (0,∞) . Then y = Px satisfies
lims→0+ sy(s)p = 0 = lims→∞ sy(s)p and d

ds (y(s)
p) = (1− p)y(s)p + py(s)p−1x(s) so∫ ∞

0 ((1− p)yp + pyp−1x) = 0. Let z = y− x . If z 	= 0 and t = y/z , then Lemma 7
implies

xp −mpz
p = zp((t −1)p−mp) � zp(t p − pt p−1) = (1− p)yp + pyp−1x,

which also holds when z = 0. Integrate to get
∫ ∞

0 zp � 1
mp

∫ ∞
0 xp . �

We again pass from p∈E to all p > 2 using the Riesz-Thorin Theorem. However,
this time the lower bound requires some work.

THEOREM 10. If p � 2 then ‖C− I‖�p = m−1/p
p .

Proof. It is easy to verify that m2 = 1, so the case p = 2 agrees with the known

result. Now suppose p > 2. Theorem 8 shows that ‖C− I‖�p � m−1/p
p for all p ∈ E .

The Riesz-Thorin theorem implies that if 2 < p0 < p < p1 < ∞ , with p0, p1 ∈ E , then
for some θ ∈ (0,1) , depending on p0 , p , and p1 ,

‖C− I‖�p � ‖C− I‖1−θ
�p0 ‖C− I‖θ

�p1 � max(m−1/p0
p0 ,m−1/p1

p1 ).

Letting p0 and p1 approach p through E , the continuity of p 
→ m p implies that

‖C− I‖�p � m−1/p
p .

To prove the reverse inequality we set r = 1/t p , where tp is the critical point from
Lemma 7, and fix an integer m > 1. Note that r > 2. Define xn = −m−r for n � m
and xn = (n−1)1−r−n1−r for n > m . Then, with yn = 1

n ∑n
k=1 xk and zn = yn − xn ,

yn =

{
−m−r, n � m;

−n−r, n � m
and zn =

{
0, n � m;

n1−r − (n−1)1−r−n−r, n > m

If n � m+ 1, then

0 < xn = (r−1)
∫ n

n−1
t−r dt � (r−1)(n−1)−r

so, employing a standard Riemann sum estimate, we get

∞

∑
n=1

|xn|p � m1−pr +(r−1)p
∞

∑
n=m+1

(n−1)−pr � m1−pr +(r−1)p (m−1)1−pr

pr−1
.

Also, if n � m+ 1, then n−1
n � m

m+1 and

−zn = r(n−1)
∫ n

n−1
t−r−1 dt � r(n−1)n−r−1 � r

m
m+ 1

n−r > 0
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so, using another standard Riemann sum estimate, we get

∞

∑
n=1

|zn|p � rp
( m

m+ 1

)p ∞

∑
n=m+1

n−pr � rp
( m

m+ 1

)p (m+ 1)1−pr

pr−1
.

We conclude that

∑∞
n=1 |zn|p

∑∞
n=1 |xn|p �

rp
(

m
m+1

)p

(pr−1)
(

m
m+1

)1−pr +(r−1)p
(

m−1
m+1

)1−pr → rp

(pr−1)+ (r−1)p

as m → ∞ . Since r = 1/tp , Lemma 7 shows that the last expression is 1/mp . This im-

plies that the operator norm of C− I on � p cannot be less than m−1/p
p , which completes

the proof. �

COROLLARY 11. If p � 2 then ‖P− I‖Lp = m−1/p
p .

Proof. The upper bound is extended from p∈E to all p > 2 just as in the last the-
orem. However, proving the reverse inequality is much simpler. With t p as in Lemma
7 and r = 1/tp , let x(s) = −1 on (0,1) and x(s) = (r−1)s−r on (1,∞) . With y = Px
and z = y−x we compute y(s) =−1 on (0,1) and y(s) =−s−r on (1,∞) ; and z(s) = 0
on (0,1) and z(s) = −rs−r on (1,∞) . Then

∫ ∞

0
|x|p = 1+

(r−1)p

pr−1
and

∫ ∞

0
|z|p =

rp

pr−1
.

It follows that
∫ ∞

0 |z|p = 1
mp

∫ ∞
0 |x|p , which gives the lower bound. �

The expressions for ‖P− I‖Lp given above and in [10] must coincide, but a direct

connection is still worth making: In [10], we find ‖P− I‖p
Lp = supα�p′

|α−1|p
p(1−α)−1+|α |p .

With t = 1/(1−α) this expression readily reduces to 1/m p for p ∈ E , by applying
Lemma 7. Equality for all p follows by continuity.

Acknowledgements. My thanks to Santiago Boza for providing references to re-
sults in the continuous case and to Graham Jameson for an improvement to the proof of
Lemma 1.
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