
M athematical
Inequalities

& Applications

Volume 25, Number 1 (2022), 49–72 doi:10.7153/mia-2022-25-05

GEOMETRIC HARDY INEQUALITIES VIA INTEGRATION ON FLOWS

M. PASCHALIS

(Communicated by L. D’Ambrosio)

Abstract. We introduce a geometric approach of integration along integral curves for functional
inequalities involving directional derivatives in the general context of differentiable manifolds
that are equipped with a volume form. We focus on Hardy-type inequalities and the explicit
optimal Hardy potentials that are induced by this method. We then apply the method to retrieve
some known inequalities and establish some new ones.

1. Introduction

We begin by providing some background on Hardy inequalities. The classic L p

Hardy inequality in RN reads

∫
RN

|∇ϕ(x)|pdx �
∣∣∣∣ p−N

p

∣∣∣∣
p ∫

RN

|ϕ(x)|p
|x|p dx, ϕ ∈C1

c (RN \ {0}),

and has important applications in the theory of PDEs involving singular potentials.
Without surprise, the Euclidean case of this type of inequality and its spin-offs has
been studied extensively for several decades. For an extensive reference on Hardy
inequalities, see [2].

A type of Hardy inequality that has attracted a lot of interest lately is one that
involves the distance from the boundary of a domain U ⊂ R N . In particular, such a
result should read

∫
U
|∇ϕ(x)|pdx � c

∫
U

|ϕ(x)|p
d(x)p dx, ϕ ∈C1

c (U),

where d(x) = dist(x,∂U) and c is the optimal positive constant (if any) for which the
inequality is valid. Such results are known to exist if U is convex or when U is bounded
and has Lipschitz boundary, for example. In particular, the one-dimensional case for
the interval (a,b) reads

(�)
∫ b

a
|ϕ ′(x)|pdx �

(
p−1

p

)p ∫ b

a

|ϕ(x)|p
min{x−a,b− x}p dx, ϕ ∈C1

c ((a,b)).
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In the present article, we propose a method of integration along integral curves to
obtain a “lifting” of this inequality for differentiable manifolds of arbitrary dimension
that are subject to a simple geometric condition that is satisfied in a large number of
cases. In particular, if M is an oriented differentiable manifold with positive volume
form ω and X is a non-vanishing vector field on M , we prove the optimal inequality

∫
M
|Xϕ |pω �

(
p−1

p

)p ∫
M

|ϕ |p
τ p

p
ω , ϕ ∈C1

c (M),

where τp is a suitable “boundary distance” that depends on the geometry of the config-
uration. It is worth noting that in our method τ p is calculated explicitly and is usually
highly non-trivial, except for the simplest of cases.

It has been recently pointed out to us by Y. Pinchover that a special case of this
approach also appears in [11], where the authors integrate with respect to “flow coor-
dinates” in bounded C2 Euclidean domains to specify some properties of the Hardy
constant that corresponds to the Euclidean distance, amongst other things. In this re-
spect, our work could be considered to be a generalisation of this methodology in a
broader context.

Although our results apply more generally, of special interest is the case of a Rie-
mannian manifold (M,g) , where we can apply the method to retrieve inequalities in-
volving the Riemannian gradient ∇g and the associated volume form ωg . Our method
can easily provide optimal, non-trivial Hardy potentials in a multitude of such cases, as
we demonstrate through specific examples.

2. Preliminaries

We begin by setting the context and introducing the necessary notions that will be
used throughout the rest of this work.

DEFINITION 2.1. Let M be a smooth manifold of dimension N .

1. A non-vanishing vector field X ∈ Γ(T M) is called a direction field on M . The
pair (M,X) is then called a directed space.

2. A non-vanishing N -form ω ∈ ΛN(T ∗M) is called a volume form on M .

3. A triple (M,X ,ω) that consists of a smooth manifold, a direction field and a
volume form is called a directed volume space.

In what follows and unless otherwise stated, M will stand for a non-compact,
oriented smooth manifold of dimension N , X will be a direction field and ω will be
a volume form on M . Hereafter, we will also make the implicit assumption that ω is
positive in the chosen orientation.

As usual, an integral curve on the directed space (M,X) will be a curve γ : I → M
such that γ ′ = X ◦γ . By the existence and uniqueness theorem for ODEs, for each point
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z ∈ M , there exists a unique maximal integral curve γz : Iz → M such that γz(0) = z .
The flow of X is then defined to be the smooth map

θ :
⊔

z∈M

Iz → M, θ (z,t) = γz(t).

The directed space (M,X) is said to be complete if Iz = R for all z ∈ M . The type
of spaces that will occupy our attention are essentially the opposite of complete spaces
in the following sense.

DEFINITION 2.2. A directed space is said to be traceable if Iz � R for all z ∈ M .

To get an intuitive understanding of this definition, consider the one-point com-
pactification of M with ∞ being the point at infinity. Traceable spaces are exactly the
ones in which starting at any point and following the flow of the field will take one to
∞ at finite time in at least one direction (positive or negative time).

Traceable spaces are important for our purposes because one can naturally define
a temporal distance function from infinity: if z ∈ M is a point, define

τ(z) = dist(0,∂ Iz).

Then τ : M → R is obviously well-defined and positive everywhere in the manifold,
and its value at any point is equal to the time required to reach infinity if one follows
the flow of the field starting from that point.

Each directed space (M,X) comes naturally equipped with an equivalence relation
∼ that takes two points to be equivalent if they belong to the same integral curve. The
resulting quotient space, which we denote by M/X , is called the orbit space of (M,X) ,
and in general fails to be a manifold. We will be interested in subsets of M that are
saturated with respect to this relation.

DEFINITION 2.3. Let (M,X) be a directed space.

1. A subset S ⊂ M is said to be saturated if Im(γz) ⊂ S for all z ∈ S .

2. If S ⊂ M is any subset, we define the saturation of S to be the set

θ (S) =
⋃
z∈S

Im(γz).

In other words, if a saturated subset S contains a point then it contains the entire integral
curve that point belongs to. Obviously, S is saturated if and only if S = θ (S) . Moreover,
since the flow is an open map, if S is open, so is θ (S) .

In each directed space, one can introduce, at least locally, a set of normal co-
ordinates χ = (t,s) = (t,s1, . . . ,sN−1) with the property ∂/∂ t = X . In terms of the
corresponding parametrisation ζ = χ −1 , this can be expressed equivalently as

∂tζ (t,s) = X ◦ ζ (t,s).
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Actually, this means that ζ forms a family of integral curves parametrised by s . While
it is incorrect to assume that every directed space can be covered by a single normal
coordinate chart, it is obvious that one always has an open cover of the manifold con-
sisting of saturated normal chart domains (to see this, for each point z ∈ M , pick a
normal coordinate ball B centered at z and consider θ (B)).

In normal coordinates, ω admits a local expression

ω = Ω(t,s)dt ∧ds,

with Ω being the local volume density in these coordinates. In general, Ω depends both
on s and t . Directed volume spaces in which Ω’s don’t depend on t form a special
class which is much easier to deal with for our purposes, so we give them a name.

DEFINITION 2.4. A directed volume space (M,X ,ω) is called simple if the local
volume density of ω in normal coordinates is independent of t .

We will develop a method of obtaining Hardy inequalities for directed volume
spaces regardless of whether they are simple or not. In fact, the most interesting cases
are usually non-simple. However, simple spaces, as we will see shortly, are much easier
to deal with and are the natural starting point for our line of work.

3. The simple case

First we deal with simple spaces. The derivation of a Hardy inequality is much
simpler in that case, and sets the background for the more advanced techniques that are
required to treat the general case.

Intuitively, the method we develop can be described as follows:

1. Cover the space with saturated normal coordinate charts. This way we can “write
down” the space as a parametrised family of integral curves.

2. Apply the one-dimensional Hardy inequality (�) along each curve separately.

3. Integrate over all integral curves using the normal coordinates.

At this point, we are ready to state and prove the main theorem of this section.

THEOREM 3.1. Let (M,X ,ω) be a simple and traceable directed volume space.
Then the inequality

∫
M
|Xϕ |pω �

(
p−1

p

)p ∫
M

|ϕ |p
τ p ω , ϕ ∈C1

c (M) (1)

holds for all p > 1 .

Proof. Let (U,χ) be a saturated normal coordinate chart on M with χ : U → Ũ
for some open Ũ ⊆RN−1 and let ζ = χ−1 be the corresponding parametrisation. Since
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U is saturated, Ũ must be of the form
⊔

s∈S Is for some open S ∈ RN−1 and some
intervals Is � R , so we have coordinates (t,s) where s ∈ S and t ∈ Is . Let

ω = Ω(s)dt ∧ds

in these coordinates. Moreover, we clearly have that

ζ (t,s) = γζ (0,s)(t), t ∈ Is = Iζ (0,s)

and that
τ ◦ ζ (t,s) = dist(t,∂ Is).

Now, it is clear that ϕ ◦ζ (·,s)∈C1
c (Is) for all s∈ S . Applying the one-dimensional

Hardy inequality (�) on ϕ ◦ ζ (·,s) for fixed s we get

∫
Is
|∂t(ϕ ◦ ζ )(t,s))|pdt �

(
p−1

p

)p ∫
Is

|ϕ ◦ ζ (t,s)|p
dist(t,∂ Is)p dt,

which by the properties of normal coordinates is equivalent to

∫
Is
|Xϕ ◦ ζ (t,s)|pdt �

(
p−1

p

)p ∫
Is

|ϕ ◦ ζ (t,s)|p
τ p ◦ ζ (t,s)

dt.

Multiplying both sides by Ω(s) (which is positive by assumption), integrating over S
and applying Fubini’s theorem yields

∫
S

∫
Is
|Xϕ ◦ ζ (t,s)|pΩ(s)dtds �

(
p−1

p

)p ∫
S

∫
Is

|ϕ ◦ ζ (t,s)|p
τ p ◦ ζ (t,s)

Ω(s)dtds,

which, in terms of differential forms, is the same as

∫
Ũ
|Xϕ ◦ ζ |pΩdet �

(
p−1

p

)p ∫
Ũ

|ϕ ◦ ζ |p
τ p ◦ ζ

Ωdet .

The diffeomorphic invariance formula for integration on forms (see the Appendix) then
yields ∫

U
|Xϕ |pω �

(
p−1

p

)p ∫
U

|ϕ |p
τ p ω .

To complete the proof, let {(U j,χ j)} j∈J be an atlas of M that consists of saturated
normal charts as above. The collection {U j} j∈J is then an open cover of M , and
therefore an open cover of supp(ϕ) . Furthermore, supp(ϕ) , being compact, must have
a finite subcover {U1, . . . ,Un} . For the final step, consider the saturated open sets
W1, . . . ,Wn , defined as

W1 = U1, Wk = Uk \
k−1⋃
l=1

Ul.

The collection {(Wk,χk)} and its corresponding parametrisations then satisfy the con-
ditions of Lemma A.2 and the proof is finished. �
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In some cases, the last argument can be replaced by a partition of unity argument.
This would require that we project an open cover onto M/X , and then assume a parti-
tion of unity for the projected cover. However, this assumption is not always valid, as
M/X need not be Hausdorff.

Another, more important point is to note that the constant that appears in the theo-
rem is optimal. Seeing that this is so is rather straightforward: simply pick a sequence
ϕε such that supp(ϕε ) converges to a single integral curve. If the inequality where
to hold true for a larger constant, that would mean that the one-dimensional Hardy in-
equality from which it was derived would also hold for that constant, which is known
to be false.

EXAMPLE 3.2. The prototype of simple traceable spaces spaces is the Euclidean
half-space RN

+ = {x∈RN : xN > 0} equipped with the parallel vector field ∂/∂xN . The
normal coordinates in this case are given by t = xN and s = (x1, . . . ,xN−1) , so we have
that ω = dx1 ∧ ·· · ∧ dxN = dt ∧ ds (if necessary, take one of the s coordinates to have
an opposite sign in order to mitigate the extra sign that might occur from changing the
order in the exterior product). Moreover, we clearly have τ = x N , so it follows from
Theorem 3.1. that the inequality

∫
RN

+

∣∣∣∣ ∂ϕ
∂xN

∣∣∣∣
p

dx �
(

p−1
p

)p ∫
RN

+

|ϕ |p
xp

N
dx, ϕ ∈C1

c (RN
+)

holds for all p > 1.

EXAMPLE 3.3. A less trivial example that still falls within the class of simple
cases is that of a two-dimensional angle A = {x ∈ R2 : 0 < θ (x) < α} (for some given
α ∈ (0,2π ]) equipped with the vector field

X = rε/p ∂
∂θ

for some p > 1 and some ε ∈ R . In polar coordinates, we have ω = rdθ ∧dr . To find
a set of normal coordinates (t,s) for this configuration, choose s = r and notice that
we must wave

∂
∂ t

= rε/p ∂
∂θ

,

and therefore we may choose t = θ
rε/p . Moreover, it follows that

dθ = sε/pdt +
ε
p

ts
ε−p

p ds,

hence ω = sε/p+1dt ∧ds , so (A,X ,ω) is simple. Since the integral curves here follow
co-centric circles each with angular velocity r ε/p , it follows that τ = r−ε/p min{θ ,α −
θ} . Direct application of Theorem 1 yields the inequality

∫
A

rε
∣∣∣∣∂ϕ
∂θ

∣∣∣∣
p

dx �
(

p−1
p

)p ∫
A

rε |ϕ |p
min{θ ,α −θ}p dx, ϕ ∈C1

c (A).
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It is worth noting that in the special case ε = −p , we get an inequality involving the
angular component of the gradient, thus we have

∫
A
|∇ϕ |pdx �

(
p−1

p

)p ∫
A

|ϕ |p
rp min{θ ,α −θ}p dx, ϕ ∈C1

c (A).

4. p-normal coordinates

The proof of (1) was based on the fact that we can multiply the integral over dt
with Ω(s) and then pass Ω(s) inside the integral (since it is independent of t ). If we
look at the more general case of a non-simple space where Ω(t,s) depends also on t ,
it is clear that one cannot repeat this argument.

We can bypass this difficulty by introducing new coordinates that are related to
the initial set of normal coordinates (t,s) . These new coordinates, denoted (t ′,s′) , will
have the property

X =
∂
∂ t

= Ω′(t ′,s′)−1/p ∂
∂ t ′

,

where Ω′(t ′,s′) = ω(∂t′ ,∂s′) is the local volume density in these new coordinates. This
way, we can get an integral over dt ′ which contains both the correct vector field and
the correct volume element from the beginning.

This motivates the following definition.

DEFINITION 4.1. Let (M,X ,ω) be a directed volume space, and let p > 1. A set
of coordinates (τ,σ) = (τ,σ 1, . . . ,σN−1) (defined on some open set) will be called a
set of p-normal coordinates along X with respect to ω if

X = Ω(τ,σ)−1/p ∂
∂τ

.

We dedicate the remainder of this section to prove the existence and some useful
properties of these coordinates. We also explore their connection to regular normal
coordinates as defined previously, and relate to them a well-defined (independent of
coordinates) temporal/volumetric “distance” like τ in the previous sections. These facts
will form the necessary background to generalise Theorem 3.1 to include non-simple
spaces.

PROPOSITION 4.2. (Existence) Let (t,s) be a set of normal coordinates on some
open U ⊆ M in the directed volume space (M,X ,ω) . The coordinates (t ′,s′) defined
by

t ′ =
∫ t

Ω(ξ ,s)−
1

p−1 dξ , s′ = s

is a set of p-normal coordinates along X with respect to ω on U .

Proof. It is clear that
∂ t ′

∂ t
= Ω(t,s)−

1
p−1 ,
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and we calculate

Ω(t,s) = ω(∂t ,∂s) =
∂ t ′

∂ t
ω(∂t′ ,∂s′) =

∂ t ′

∂ t
Ω′(t ′,s′).

It follows that
∂ t ′

∂ t
= Ω′(t ′,s′)−1/p,

thus

Ω′(t ′,s′)−1/p ∂
∂ t ′

=
∂
∂ t

= X ,

so the set of coordinates (t ′,s′) is indeed p-normal along X with respect to ω .
Since ω is non-vanishing, it follows that Ω(t,s) > 0, so in particular t ′ is well-

defined everywhere in U . �
This not only proves existence, but also provides a practical way to compute such

coordinates, provided we already have a set of normal coordinates, which are often
straightforward to acquire.

Another fact is that these coordinates cooperate well with the flow of the field X .
If we choose a saturated normal chart, which we already know how to produce, it is
straightforward to turn it into a p-normal saturated coordinate chart using the above
transformation. This is evident from the fact that the vector field Ω(τ,σ)−1/pX has the
same integral curves as X , only reparametrised.

Recall that for a directed volume space, we defined the associated temporal dis-
tance τ : M → R , which essentially measures the amount of time required to reach the
“boundary” of M moving along the flow of X . Equivalently, if (t,s) is a set of normal
coordinates in a saturated domain such that t ∈ Is = (as,bs) , then

τ = dist(t,∂ Is) = min(t −as,bs − t).

We now introduce the following notation.

DEFINITION 4.3. Let f : I → R be a measurable function on the interval I =
(a,b) (here it is possible that a = −∞ or b = +∞). Define

∫ t

∂ I
f (ξ )dξ = min

(∫ t

a
f (ξ )dξ ,

∫ b

t
f (ξ )dξ

)
.

In this notation, it is clear that

τ =
∫ t

∂ Is
dξ .

Moreover, the condition that (M,X) is traceable can be rewritten as

τ =
∫ t

∂ Is
dξ < ∞ everywhere in M.

It turns out that what we need in the case of non-simple spaces, is a suitable mod-
ification of this with respect to p-normal coordinates.
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DEFINITION 4.4. Let (M,X ,ω) be a directed volume space and let (t,s) , t ∈ Is

be normal coordinates for a saturated chart domain U ⊆ M , let Ω(t,s) be the local
volume density in these coordinates and let p > 1.

1. We say that U is p-traceable if

∫ t

∂ Is
Ω(ξ ,s)−

1
p−1 dξ < ∞ everywhere in U.

2. If U is p-traceable, we define the associated temporal/volumetric distance τ p :
U → R to be the function

τp = Ω(t,s)
1

p−1

∫ t

∂ Is
Ω(ξ ,s)−

1
p−1 dξ .

PROPOSITION 4.5. Everything in the above definition is well-defined, i.e. inde-
pendent of the choice of normal coordinates in U .

Proof. Suppose that we have two sets of normal coordinates (t,s)= (t,s1, . . . ,sN−1)
and (t ′,s′) = (t ′,(s′)1, . . . ,(s′)N−1) of the same orientation in U. By the chain rule, we
have that

∂
∂ t

=
∂ t ′

∂ t
∂

∂ t ′
+

N−1

∑
j=1

∂ (s′) j

∂ t
∂

∂ (s′) j ,

∂
∂ si =

∂ t ′

∂ si

∂
∂ t ′

+
N−1

∑
j=1

∂ (s′) j

∂ si

∂
∂ (s′) j ,

where i = 1, . . . ,N −1. Since these are both sets of normal coordinates, we must have
∂t = ∂t′ = X . This implies that

∂ t ′

∂ t
= 1 and

∂ (s′) j

∂ t
= 0 for all j = 1, . . . ,N −1.

In particular, the s′ coordinates are independent of t and s ′ = σ(s) for some diffeo-
morphism σ between open sets in RN−1 .

By linearity and skew-symmetry of ω , we have that

Ω(t,s) = ω
(

∂
∂ t

,
∂

∂ s1 , . . . ,
∂

∂ sN−1

)

=
N−1

∑
j1,..., jN−1=1

∂ (s′) j1

∂ s1 · · · ∂ (s′) jN−1

∂ sN−1 ω
(

∂
∂ t ′

,
∂

∂ (s′) j1
, . . . ,

∂
∂ (s′) jN−1

)

= ∑
π∈SN−1

∂ (s′)π(1)

∂ s1 · · · ∂ (s′)π(N−1)

∂ sN−1 (−1)πΩ′(t ′,s′),
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where the last sum is over all permutations π in (N − 1) elements and (−1)π is the
sign of π . It follows that

Ω(t,s)
detDσ(s)

= Ω′(t ′,s′),

where Dσ is the Jacobian matrix of s′ = σ(s) . Since σ is an orientation-preserving
diffeomorphism, this matrix is non-singular and the determinant is positive.

It is straightforward to show that neither the convergence of the integral in (1) of
the definition nor the formula of τ p in (2) are affected if we switch between normal
coordinates. Indeed, we have that

∫ t′

∂ Is′
Ω′(ξ ′,s′)−

1
p−1 dξ ′ =

∫ t

∂ Is

[
Ω(ξ ,s)

detDσ(s)

]− 1
p−1 dξ ′

dξ
dξ

= (detDσ(s))
1

p−1

∫ t

∂ Is
Ω(ξ ,s)−

1
p−1 dξ ,

so ∫ t

∂ Is
Ω(ξ ,s)−

1
p−1 dξ < ∞ ⇔

∫ t′

∂ Is′
Ω′(ξ ′,s′)−

1
p−1 dξ ′ < ∞,

and it is clear that τp = τ ′p . �
Since every directed space (M,X) admits an open cover of saturated normal co-

ordinate charts, and since the above notions are independent of the choice of such a
chart, we can unambiguously extend these notions over the whole manifold. This way
we may define the global function τ p : M → R given locally by

τp = Ω(t,s)
1

p−1

∫ t

∂ Is
Ω(ξ ,s)−

1
p−1 dξ .

At this point, it is clear that (M,X ,ω) is p-traceable if and only if the function τ p is
defined everywhere in M .

As a final remark, we would like to point out that in the case where (M,X ,ω)
is simple, p-traceability coincides with traceability and τ p = τ , so this is indeed a
meaningful extension of the previous concepts.

5. The general case

We are now ready to state and prove our main result.

THEOREM 5.1. Let (M,X ,ω) be a directed volume space and let p > 1 . Then
the inequality

∫
M
|Xϕ |pω �

(
p−1

p

)p ∫
M

|ϕ |p
τ p

p
ω , ϕ ∈C1

c (M) (2)

is valid whenever the space is p-traceable.
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Proof. Let U be a saturated coordinate domain with normal coordinates χ =
ζ−1 = (t,s) and corresponding p-normal coordinates χ ′ = (ζ ′)−1 = (t ′,s′) constructed
as demonstrated in the previous section. Let ϕ ∈C1

c (M) . As with the simple case, apply
the one-dimensional Hardy inequality to ϕ ◦ ζ ′(·,s) ∈C1

c (Is′) to get

∫
Is′
|∂t′(ϕ ◦ ζ ′)(t ′,s′)|pdt ′ �

(
p−1

p

)p ∫
Is′

|ϕ ◦ ζ ′(t ′,s′)|p
distp(t ′,∂ Is′)

dt ′,

which by the properties of the p-normal coordinates becomes

∫
Is′
|Xϕ ◦ ζ ′(t ′,s′)|pΩ′(t ′,s′)dt ′ �

(
p−1

p

)p ∫
Is′

|ϕ ◦ ζ ′(t ′,s′)|p
distp(t ′,∂ Is′)

dt ′.

Integrating both sides over the s ′ -coordinates then yields
∫

S′

∫
Is′
|Xϕ ◦ ζ ′(t ′,s′)|pΩ′(t ′,s′)dt ′ds′

�
(

p−1
p

)p ∫
S′

∫
Is′

|ϕ ◦ ζ ′(t ′,s′)|p
Ω′(t ′,s′)distp(t ′,∂ Is′)

Ω′(t ′,s′)dt ′ds′.

To show that this is the same as

∫
U
|Xϕ |pω �

(
p−1

p

)p ∫
U

|ϕ |p
τ p

p
ω ,

it remains to be shown that τ p
p = Ω′(t ′,s′)distp(t ′,∂ Is′) . This is straightforward, as we

have

dist(t ′,∂ Is′) =
∫ t

∂ Is
Ω− 1

p−1 (ξ ,s)dξ

from the definition, and by elementary calculations we also have that Ω ′(t ′,s′) =
Ω

p
p−1 (t,s) .

The proof is again completed by a similar argument as in 3.1. �

Let us make a few remarks about the result. The first is its generality. The
only condition that we have imposed for the inequality to hold true is p-traceability
of (M,X ,ω) . The number of cases this applies to is vast, including many important
cases that are already of interest. We will provide specific examples in the remainder
of our work. For the time being, let us note that the only thing we need - in principle -
in order to check whether the condition is satisfied is to find a set of normal coordinates
(t,s) , compute the local volume density Ω(t,s) in these coordinates and then check if
the integral ∫ t

∂ Is
Ω− 1

p−1 (ξ ,s)dξ

converges. In a large number of cases, including many of the cases that are of immediate
interest, this poses no real hardship.
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What we gain from this process, however, is often highly non-trivial results. If
the space in question indeed turns out to be p-traceable, the result provides an explicit,
optimal Hardy potential in terms of the induced temporal/volumetric distance

Ω
1

p−1 (t,s)
∫ t

∂ Is
Ω− 1

p−1 (ξ ,s)dξ .

EXAMPLE 5.2. As an elementary application to showcase how the method works
in practice, we provide an alternative proof of the standard Euclidean Hardy inequality
in RN featuring the distance from a single point. Here, choose M = RN \ {0} , X =
∂/∂ r and ω = det (the Euclidean volume form).

Finding normal coordinates for this configuration is trivial: since we must have

∂
∂ t

=
∂
∂ r

,

simply choose t = r . For the rest of the coordinates there is a lot of freedom of choice,
but we can simply choose s = θ , where θ are the angles in the spherical coordinate
system (therefore the spherical coordinates as a whole forms a set of normal coordinates
in our case).

The expression of the Euclidean volume form in spherical coordinates is of the
form ω = rN−1 f (θ )dr∧dθ for some f (θ ) that involves powers of sines of the angles,
therefore in our chosen normal coordinates we have the same representation

ω = tN−1 f (s)dt ∧ds,

so it is clear that the local volume density is Ω(t,s) = t N−1 f (s) .
Now let 1 < p �= N . The temporal/volumetric distance is

τp = Ω
1

p−1 (t,s)
∫ t

∂ Is
Ω− 1

p−1 (ξ ,s)dξ = t
N−1
p−1

∫ t

{0,∞}
ξ− N−1

p−1 dξ .

To compute this, we must consider the two different cases p < N and p > N , but in
either case the result is

τp =
p−1
|p−N|r.

By 5.1, it follows that the inequality

∫
RN

∣∣∣∣∂ϕ
∂ r

∣∣∣∣
p

dx �
∣∣∣∣ p−N

p

∣∣∣∣
p ∫

RN

|ϕ |p
rp dx

holds for all ϕ ∈C1
c (RN \ {0}) , as expected.

However, notice the unorthodox manner in which we obtain the best constant. In
our method, this constant is not merely the result of algebraic operations, but has a
geometric significance as well: it is a direct consequence of the p-dependence of the
distance τp .
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EXAMPLE 5.3. In the same manner as in the previous example, by choosing X =
r−ε/p∂/∂ r we can prove the weighted inequality

∫
RN

1
rε

∣∣∣∣∂ϕ
∂ r

∣∣∣∣
p

dx �
∣∣∣∣ p−N + ε

p

∣∣∣∣
p ∫

RN

|ϕ |p
rp+ε dx, ϕ ∈C1

c (RN \ {0})

for ε �= N− p . The calculations are a bit more involved than before but still elementary.

EXAMPLE 5.4. As a final example, we turn our attention to the hyperbolic space
HN , where a peculiar phenomenon occurs: the Hardy inequality becomes a Poincaré
inequality. We employ the Poincaré half space model, where H n = {x ∈ RN : xN > 0}
with gHN = 1

x2
N

gRN . The Riemannian volume form in this case reads ωHN = x−N
N det.

Let X = xN
∂

∂xN
. It is clear that |X |= 1. To find a set of normal coordinates for (H N ,X)

we must find a t such that
∂
∂ t

= xN
∂

∂xN
,

so we choose t = logxN and s = (x1, . . . ,xN−1) . It follows that ω = e−(N−1)tds∧ dt .
Finally, we calculate

τp = e−
N−1
p−1 t

∫ t

−∞
e

N−1
p−1 ξ dξ =

p−1
N −1

,

from which we obtain the inequality
∫

HN
|∇HN ϕ |pωHN �

∫
HN

∣∣∣∣xN
∂ϕ
∂xN

∣∣∣∣
p

ωHN �
(

N −1
p

)p ∫
HN

|ϕ |pωHN .

This is the classic Poincaré inequality for the hyperbolic space, and it is already known
to be a consequence of the Hardy inequality (it can actually be obtained via the weighted
inequality of the previous example, with minor modifications).

At this point it becomes clear that, when referring to the temporal/volumetric dis-
tance, the word “distance” should not be taken too literally, since it does not always
conform to the way we know a distance should behave (e.g. in the last example it was
a constant).

6. Application I: The exterior of a ball

We will now use the method to obtain some new results. We would like to point
out that there are new things that can be said even in the Euclidean case. In this section
we focus on the case where M = E is the exterior of a Euclidean ball of dimension N .

THEOREM 6.1. (Hardy Inequality for the exterior of a ball) Let E = {x∈R N : |x|
> R} be the exterior of the N -dimensional Euclidean ball of radius R. Then the in-
equalities

∫
E

∣∣∣∣∂ϕ
∂ r

∣∣∣∣
p

dx �
(

p−N
p

)p ∫
E

|ϕ |p
r

N−1
p−1 p(r

p−N
p−1 −R

p−N
p−1 )p

dx, p > N,
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∫
E

∣∣∣∣∂ϕ
∂ r

∣∣∣∣
N

dx �
(

N −1
N

)N ∫
E

|ϕ |N
rN log(r/R)N dx,

∫
E

∣∣∣∣∂ϕ
∂ r

∣∣∣∣
p

dx �
(

N − p
p

)p ∫
E

|ϕ |p
r

N−1
p−1 p min{r

p−N
p−1 ,R

p−N
p−1 − r

p−N
p−1 }p

dx, 1 < p < N

hold for all ϕ ∈C1
c (E) .

Proof. Similar to the case of RN with the distance from a single point, the spher-
ical coordinate system is a set of normal coordinates. The only difference now is that
t = r ranges from R to ∞ . Thus, we have

τp = t
N−1
p−1

∫ t

{R,∞}
ξ− N−1

p−1 dξ ,

so in each individual case

τp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p−1
p−N r

N−1
p−1 (r

p−N
p−1 −R

p−N
p−1 ), p > N

r log(r/R), p = N.

p−1
N−p r

N−1
p−1 min{r

p−N
p−1 ,R

p−N
p−1 − r

p−N
p−1 }, p < N

and the result follows. �
This is a non-trivial result, although its derivation has been trivialised by the use

of our method. Let us make a few remarks on it. Note that in the cases where p �= N ,
for small r−R we have τp ≈ r−R , whereas for large r−R we have τ p ≈ p−1

|p−N| (r−
R) . This fits our intuition: when close to the ball the inequality must behave like the
one involving the distance from a hyperplane, while for very large distances it must
resemble the one involving the distance from a point. In essence, the induced distance
τp forms a continuous transition between these two limit cases.

It is also of practical importance to compare τ p with the Euclidean distance from
the boundary d = r−R . This will yield inequalities for the classic Hardy potential V =
d−p . To our knowledge, the only known result in this direction is given by Avkhadiev
and Makarov in [1] (see also [7] for alternative proofs of this result). The result states
that for every compact U ⊆ RN , the best constant in the Hardy inequality

∫
RN\U

|∇ϕ |pdx � c
∫

RN\U

|ϕ |p
d p dx, ϕ ∈C1

c (R
N \U),

is c =
( p−N

p

)p in the case where p > N , which implies the optimal inequality

∫
E
|∇ϕ |p �

(
p−N

p

)p ∫
E

|ϕ |p
d p , ϕ ∈C1

c (E)

in the case of the exterior of a ball. In that case our method gives

τp =
p−1
p−N

r
N−1
p−1 (r

p−N
p−1 −R

p−N
p−1 ).
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To specify the best constant κ such that

1
τp

� κ
d

,

we make a few observations. As we already noted, we have τ p(r) ≈ d(r) for r close to
R and τp(r) ≈ p−1

p−N d(r) for large r . More generally, the derivative of τ p(r) is given by

τ ′p(r) =
p−1
p−N

− N −1
p−N

(
R
r

) p−N
p−1

,

which is a strictly increasing function of r . It follows that

p−1
p−N

d(r) = sup
y>R

(τ ′p(y)d(r) > τp(r)

so
1
τp

>
p−N
p−1

1
d

and we retrieve the same best constant c =
( p−N

p

)p
. It follows that our method im-

proves the result of [1] in the case where U is a ball, in the sense that it provides a
better distance for the same constant.

For the case p < N , we have the following comparison.

COROLLARY 6.2. Let E = {x ∈ RN : |x| > R} . Then the inequality

∫
E
|∇ϕ |pdx �

(
N − p

p

)p(
1−2−

p−1
N−p

)p
∫

E

|ϕ |p
d p dx, ϕ ∈C1

c (E)

holds for all p < N .

Proof. In this case, it is

τp =
p−1
N − p

r
N−1
p−1 min{r

p−N
p−1 ,R

p−N
p−1 − r

p−N
p−1 }.

We put a = 2
p−1
N−p R , which is the real number such that

a
p−N
p−1 = R

p−N
p−1 −a

p−N
p−1 ,

i.e. the point in which the branch transition occurs. It follows that

τp =

⎧⎨
⎩

p−1
N−p r, r � a

p−1
N−p r

N−1
p−1 (R

p−N
p−1 − r

p−N
p−1 ), r < a

.



64 M. PASCHALIS

An elementary calculation reveals that the derivative of τ p(r) for r < a is

τ ′p(r) =
N −1
N − p

(r/R)
N−p
p−1 − p−1

N − p
,

which is strictly increasing, so in particular τ p(r) is convex for r < a . By virtue of
Jensen’s inequality it follows that

τp(r) � A(r−R), R < r < a,

where

A =
τp(a)− τp(R)

a−R
=

p−1
N − p

a
a−R

=
p−1
N − p

(
1−2−

p−1
N−p

)−1
.

As for the region r � a , we certainly have that τ p(r) � A(r−R) , since both func-
tions are affine, share the same value at a and p−1

N−p < A .
So in any case we have

1
τp

� N − p
p

1−2−
p−1
N−p

d

and the result follows. �

For the sake of clarity, we give some plots of the function τ p for specific values of
N and p , plotted against the function p−1

|p−N| (r−R) that we use when making the Eu-
clidean comparison (see Figure 1 below). Other choices of N and p give qualitatively
similar results. What really matters is whether p < N or p > N .

Figure 1: Left: R = 1 , N = 3 , p = 2 . Right: R = 1 , N = 3 , p = 4
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7. Application II: Spherical symmetry

Moving beyond the classic Euclidean setting, the most important class of examples
is arguably the class of spherically symmetric manifolds. We say that a Riemannian
manifold (M,g) is (locally) spherically symmetric around a central point o ∈ M if the
metric can be expressed as

g = dρ ⊗dρ + ψ2(ρ)gSN−1

in a punctured neighbourhood of o , where ρ = dist(·,o) is the Riemannian distance
from o , ψ is a positive function depending only on ρ and g SN−1 is the round metric of
the unit sphere of codimension 1. We are interested in the case where we have global
spherical symmetry.

If M is non-compact, the above polar representation extends to the whole punc-
tured space M′ = M \{o} . If M is compact, we must exclude an additional “antipodal”
point o′ ∈ M (the most characteristic example is the sphere, where one must exclude
both poles).

In either case, ρ : M′ → R has range of the form (0,R) (we may have R = +∞),
and we may apply Theorem 5.1 with X = ∂/∂ρ and ω = ωg = ψN−1(ρ)dρ ∧ωSN−1 .
In the following, we also take into account the case where we choose to exclude not
only the “pole(s)” o (and o ′ ), but perhaps a larger object (for example, a geodesic ball
around o or o′ ).

THEOREM 7.1. Suppose that (M ′,g) is a Riemannian manifold whose metric can
be expressed as

g = dρ ⊗dρ + ψ2(ρ)gSN−1

for some ρ : M′ → (a,b) and some smooth ψ : (a,b) → (0,∞) . If for each value of
ρ ∈ (a,b) , either one (or both) of the integrals

∫ ρ

a
ψ− N−1

p−1 (ξ )dξ ,

∫ b

ρ
ψ− N−1

p−1 (ξ )dξ

converge, the inequality

∫
M′

|∂ρ ϕ |pωg �
(

p−1
p

)p ∫
M′

|ϕ |p
ϖ p

p
ωg, ϕ ∈C1

c (M′)

is valid with

ϖp = ψ
N−1
p−1 (ρ)min

(∫ ρ

a
ψ− N−1

p−1 (ξ )dξ ,

∫ b

ρ
ψ− N−1

p−1 (ξ )dξ
)

.

Proof. This is just a restatement of Theorem 5.1 for the special case (M,X ,ω) =
(M′,∂ρ ,ωg) . �

M′ can be thought of as a suitable open submanifold of a spherically symmetric
manifold M . A key feature of our technique is that it effectively manages to take into
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account the volumetric/temporal distance from both the “inner” and the “outer” edge of
the manifold. By “inner” edge we mean the edge that is closer to the central point o .
The volumetric/temporal distance from the inner edge is given by

ϖ in
p = ψ

N−1
p−1 (ρ)

∫ ρ

a
ψ− N−1

p−1 (ξ )dξ ,

while the corresponding distance from the outer edge is

ϖout
p = ψ

N−1
p−1 (ρ)

∫ b

ρ
ψ− N−1

p−1 (ξ )dξ .

While it is true that ϖp = min(ϖ in
p ,ϖout

p ) , and consequently

1
ϖp

� 1
ϖ in

p
,

1
ϖout

p
,

it is sometimes convenient to consider Hardy potentials that take into account only the
inner or outer edge. One may choose to do this in order to extend the class of admissible
functions (in the case of a compact manifold where we have an antipodal point o ′ , one
may still prefer to take into account functions that do not vanish at o ′ ).

To this end, this is a good point to demonstrate the flexibility of our method: all
that Theorem 5.1 does is to essentially “lift” the one-dimensional Hardy inequality (� )
in higher dimensions. As a matter of fact, any one-dimensional functional inequality
could be used in its place. Without straying from our subject of Hardy inequalities, we
simply point out that one gets nearly identical results if we choose instead to lift the
inequality

(��)
∫ b

a
|ϕ ′(x)|pdx �

(
p−1

p

)p ∫ b

a

|ϕ(x)|p
(x−a)p dx, ϕ ∈C1

c ((a,b]),

which takes into account only the first endpoint and admissible functions need not van-
ish close to b . This gets us exactly what we need.

THEOREM 7.2. Let (M,g) be a compact, spherically symmetric manifold with
empty boundary, with central point o∈M of injectivity radius inj(o) = R, ρ = dist(·,o)
and let

g = dρ ⊗dρ + ψ2(ρ)gSN−1

for some smooth ψ : (0,R) → (0,∞) . Then the inequality

∫
M
|∂ρ ϕ |pωg �

(
p−1

p

)p ∫
M

|ϕ |p
(ϖ in

p )p ωg, ϕ ∈C1
c (M \ {o})

is valid whenever ∫ ρ

0
ψ− N−1

p−1 (ξ )dξ < ∞.
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Proof. It is well known that in this case we have ρ −1(R) = {o′} where o′ is
a single point antipodal to o . It follows that M \ {o,o ′} can be covered with polar
coordinates in which the metric is expressed exactly as in the statement of the theorem.
The rest of the proof is a repetition of the steps in the proof of Theorem 5.1, the only
difference being applying (��) instead of (�) . �

Of special interest are the cases of the N -Sphere SN , where ψ(θ ) = sin(θ ) , θ ∈
(0,π) , and the Hyperbolic Space HN , where ψ(ρ) = sinh(ρ) , ρ ∈ (0,∞) .

REMARK 1. It recently came to our attention that this is not the first time that re-
sults such as these make their appearance. Other authors have employed analytic meth-
ods to obtain such results in a number of cases. For example, in [ 5], the authors present
some results for spheres and spherically symmetric domains that are very similar to our
own. In [4], the authors use a general result from [6] to derive an Lp Hardy potential
for the hyperbolic space that also has the same form as the one that occurs from our
method. More generally, in the spherically symmertic case, the Hardy potentials that
we are looking at are all of the form |∇ρ | p/ρ p for some p-harmonic ρ ∈ W 1,p(M) ,
and can therefore be considered a special case of the main result in [ 6].

Regardless, our method is inherently geometric instead of analytic and applies
more generally, for example X and ω need not be related by a Riemannian metric.
Moreover, the potentials provided by our method are explicit in any case, symmetric or
not.

8. Application III: The exterior of a black hole

As a final application, we would like to discuss the case of the Schwarzschild
metric, which describes static black holes in the context of General Relativity. The full
Schwarzschild metric in (3+1)-dimensional spacetime reads

−
(

1− 1
r

)
dt ⊗dt +

(
1− 1

r

)−1

dr⊗dr + r2gS2

and is actually a pseudo-Riemannian metric. To get a Riemannian metric, we will
simply restrict our attention on “temporal slices” of constant time, where the restricted
metric reads (

1− 1
r

)−1

dr⊗dr + r2gS2 .

THEOREM 8.1. (Hardy Inequality for the Schwarzschild Black Hole)
Let B = {x ∈ R3 : |x| > 1 } be equipped with the metric

gB =
r

r−1
dr⊗dr + r2gS2
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as above, let ∇B and ωB stand for the Riemannian gradient and volume form, respec-
tively, and let

δ =

⎧⎪⎨
⎪⎩

2r2
√

r−1
r 1 < r < (4/3)

2r2

(
1−

√
r−1

r

)
r � (4/3)

.

Then the inequality

∫
B
|∇Bϕ |2ωB �

∫
B

r−1
r

∣∣∣∣∂ϕ
∂ r

∣∣∣∣
2

ωB � 1
4

∫
B

|ϕ |2
δ 2 ωB

is valid for all ϕ ∈C1
c (B) .

Proof. Let X =
√

r−1
r

∂
∂ r . In polar coordinates we have

ωB =
√

r
r−1

r2 sin(θ )dr∧dθ ∧dφ .

We are looking for a new coordinate t to replace r such that ∂/∂ t = X . Let f : (1,∞)→
(0,∞) be the function given by the formula

f (x) =
√

x
√

x−1+ log(
√

x+
√

x−1).

It is easy to verify that t = f (r) satisfies the imposed condition, therefore (t,θ ,φ) is
a set of normal coordinates for (B,X) . As f is a bijection, let g denote its inverse.
Substituting r = g(t) into the formula for ωB , we get

ωB = g(t)2 sin(θ )dt ∧dθ ∧dφ ,

therefore Ω(t,θ ,φ) = g(t)2 sin(θ ) . The temporal/volumetric distance in this case is

τ2 = g(t)2
∫ t

{0,∞}
g(w)−2dw = r2 min

(∫ t

0
g(w)−2dw,

∫ ∞

t
g(w)−2dw

)
.

Substituting w = f (ξ ) , it is elementary to show that

τ2 = r2
∫ r

{1,∞}
dξ

ξ 3/2(ξ −1)1/2
= δ

and the proof is complete. �

A more complete treatment of this matter will be given elsewhere.
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9. Higher-order inequalities

Likewise, one can recursively obtain inequalities for higher order differential op-
erators. For example, consider the second-order operator YX obtained by the com-
position of two directional derivatives (vector fields) X ,Y ∈ Γ(T M) . If (M,Y,ω) is
p-traceable, we obtain

∫
M
|YXϕ |pω �

(
p−1

p

)p ∫
M

|Xϕ |p
(τY

p )p ω =
∫

M

∣∣∣∣ X
τY

p
ϕ

∣∣∣∣
p

ω ,

where τY
p is the temporal/volumetric distance of (M,Y,ω) . In the same manner, if

(M,X/τY
p ,ω) is p-traceable, we may repeat the process and obtain

∫
M
|YXϕ |pω �

(
p−1

p

)2p ∫
M

|ϕ |p

(τY /τX
p

p )p
ω ,

where τY/τX
p

p is the temporal/volumetric distance for (M,X/τ Y
p ,ω) . By induction, this

process can produce inequalities for operators of the form X 1 · · ·Xk for any k ∈ N ,
provided that p-traceability holds for each step.

We give some examples of higher-order inequalities obtained in this way.

EXAMPLE 9.1. Recursive application of the weighted inequality of Example 5.3
yields the k -th order Rellich inequality

∫
RN

∣∣∣∣∂ kϕ
∂ rk

∣∣∣∣
p

dx �
k

∏
l=1

∣∣∣∣ l p−N
p

∣∣∣∣
p ∫

RN

|ϕ |p
rkp dx, ϕ ∈C1

c (RN \ {0}).

Note that, in essence, if one has weighted inequalities for the vector fields of interest,
computing the distance at each step becomes unnecessary.

Likewise, for the one-dimensional case we have

∫
R+

|Dkϕ |pdx �
k

∏
l=1

(
l p−1

p

)p ∫
R+

|ϕ |p
xkp dx, ϕ ∈C1

c (R+),

which can be further integrated to give the same inequality for the half-space.

EXAMPLE 9.2. Consider the second order differential operator

H =
1
r

∂
∂ r

r
∂
∂ r

.

Applying the weighted inequality of Example 5.3 twice yields the inequality

∫
RN

|Hϕ |pdx �
∣∣∣∣2p−N

p

∣∣∣∣
2p ∫

RN

|ϕ |p
r2p dx, ϕ ∈C1

c (RN \ {0}).
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As a final interesting application, we will use the above to obtain Rellich inequal-
ities involving the wave operator in the 2-dimensional half-space, which, in contrast to
most operators that are being discussed in literature, is not an elliptic operator. We are
not aware of other results of this type so far. We prove the following.

THEOREM 9.3. (Higher-order Rellich Inequality for the Wave Operator) Let � =
∂ 2

x − ∂ 2
y denote the 2-dimensional wave operator, and let u ∈ C ∞

c (R2
+) . Then the in-

equality ∫
R2

+

|�ku|pdxdy �
2k

∏
l=1

(
l p−1

p

)p ∫
R2

+

|u|p
y2kp

dxdy

holds for all k ∈ N . The constant is sharp.

This is an easy corollary of the following lemma.

LEMMA 9.4. Let u ∈C∞
c (R2

+) . Then the inequality

∫
R2

+

|(∂x ± ∂y)u|p
yγ dxdy �

(
γ + p−1

p

)p ∫
R2

+

|u|p
yγ+p dxdy

holds for all γ > 1− p.

Proof. Consider the case of X := (∂x + ∂y) . The coordinates

t =
1
2
(x+ y), s =

1
2
(y− x)

are a set of normal coordinates for (R2
+,X) (it can be easily verified that X = ∂/∂ t ).

Moreover, we have that x = t − s and y = t + s , thus

dx = dt −ds, dy = dt + ds.

It follows that dx∧dy = 2dt ∧ds . It follows that

ω =
1
yγ dx∧dy =

2
(t + s)γ dt ∧ds,

and the corresponding temporal/volumetric distance is

τp = (t + s)−
γ

p−1

∫ t

∂ Is
(ξ + s)

γ
p−1 dξ ,

where Is = (−s,∞) . By elementary calculations, this is equal to

τp =
p−1

γ + p−1
(t + s) =

p−1
γ + p−1

y

and the result follows.
The case of (∂x − ∂y) is entirely analogous. �
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The inequality in the theorem follows from the fact that � = (∂ x + ∂y)(∂x − ∂y)
and inductive application of the lemma. Sharpness is proved by a standard argument,
substituting the sequence

uε(x,y) = y
2kp−1

p +ερε(x,y), ε → 0,

where ρε is a suitable cutoff function that is equal to ρε = 1 in (−ε,ε)× (ε,1/ε) and
supp(ρε) ⊂ (−2ε,2ε)× (ε/2,2/ε) .

A. Auxiliary material

We give some auxiliary results from the theory of differentiable manifolds that are
used throughout our work. All of them can be found in [ 10].

Let F : M → N be a smooth map between manifolds. As usual, the differential
of F is defined to be the map F∗ : T M → T N such that F∗X [g] = X [g ◦ F ] for all
g∈C∞(N) . Likewise, we define the pull-back of F as the map F ∗ : Λ(T ∗N)→Λ(T ∗M)
by F∗ω(X1, . . . ,Xk) = ω(F∗X1, . . . ,F∗Xk) for all vectors X1, . . . ,Xk ∈ TzM for all z∈M .

LEMMA A.1. (Diffeomorphic invariance of the integral) Let F : N → M be an
orientation-preserving diffeomorphism and ω ∈ Λtop(T ∗M) . Then

∫
M

ω =
∫

N
F∗ω .

LEMMA A.2. (Integration over parametrisations) Let M be an oriented manifold
of dimension N and let ω ∈ ΛN(T M) be a compactly supported top-form on M . Sup-
pose D1, . . . ,Dk are open domains of integration in RN , and for i = 1, . . . ,k we are
given smooth maps ζi : Di → M satisfying

1. ζi restricts to an orientation-preserving diffeomorphism from Di onto an open
set Wi ⊂ M .

2. Wi ∩Wj = ∅ for i �= j .

3. supp(ω) ⊂W 1 ∪·· ·∪W k .

Then ∫
M

ω =
k

∑
i=1

∫
Di

ζ ∗
i ω .
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