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REGULARITY OF COMMUTATORS OF MULTILINEAR
MAXIMAL OPERATORS WITH LIPSCHITZ SYMBOLS

TING CHEN AND FENG LIU*

(Communicated by 1. Peri€)

Abstract. We study the regularity properties for commutators of multilinear fractional maximal
operators. More precisely, let m>1, 0 < oo <mn and b = (by,...,by) with each b; belonging
to the Lipschitz space Lip(R), we denote by [B,sma} (resp., M, ) the commutator of the

multilinear fractional maximal operator M, with b (resp., the multilinear fractional maximal
commutators). When o = 0, we denote [b,90,] = [b,9] and M = M ;. We show that

for 0<s<1,1<pi,....pm PG <o, 1/p=1/p1+---+1/pm, both 6,9 and Mg are
bounded and continuous from W $P1(R") x --- x W SPm(R") to W SP(R"), from Fs P19 (R") x

x FsPm9(R") to RPI(R") and from Bs"L9(RM) x --- x BL™I(RM) to B Y(RM). It was also
shown that for 0 <o <mn, 1 < p1,...,pm,q<ee and 1/q=1/p1+---+1/pm— a/n, both
[b,21] and 9t ;; are bounded from W1P1(R") x - x WhPm(R") to WHI(R).

1. Introduction

The primary purpose of this work is to investigate the regularity and continuity
for commutators of multilinear fractional maximal operators on the Sobolev spaces,
Triebel-Lizorkin spaces and Besov spaces. Let us recall some definitions.

DEFINITION 1. (Cgmmutators of multilinear fractional maximal operators) Let
>1,0<a<mnand b= (by,...,bn) witheach bj € L} (R"). For f=(fi,..., fmn)
W|th each fj € L (R"), the multilinear fractional maximal operator 9t is defined as

r>0

ima(F)(x):sup‘B(x T H/ fi(yj)|dyj, xe€R",

where B(x,r) is the open ball in R" centered at x with radius r, and |B(x,r)]| is the
volume of B(x,r). The commutator of 90, and b is given by the formula

MB

[, 2] (F)(x) = ¥ 0. Mali(F)(x), xR,
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where

-,

[Bvima]i(]?)(x) = bi(X)fmoc(f)(X) _Emoc(fly---afi—l,bifi, fi+1;---,fm)(x)-

The multilinear fractional maximal commutator with b is defined by

where

-,

i _ 1 oy b e TT (v
100 =90 s g 9100~ 0OD T 16311

m

where B(x,r)™ = B(x,r) x --- x B(x,r) and dy = dy; - - - dyp.

When o = 0, the operator 9, reduces to the usual multilinear maximal oper-
ator 9, then [b,My] (resp., M, ) becomes the commutator of multilinear maxi-

mal operator [B,sm] (resp., multilinear maximal commutator 9t;). We also denote

Em'aB = Em% for o« =0 and 1 < i< m. For the sake of simplicity, we denote 91, =

My, [0,Mg] = [b,.44) and M = My, when m=1. When o =0, we denote
My = M, [5,//@] =[b,.#] and .4y, = . Clearly, the operator .# is the usual
centered Hardy-Littlewood maximal operator. The operator [b,.#] (resp., .#) is the
commutator of Hardy-Littlewood maximal operator (resp., maximal commutator).

The regularity theory of maximal operators has been an active topic of current
research. The first work related to Sobolev regularity was due to Kinnunen [ 11] who
established the boundedness of . on the first order Sobolev space W 1P(R") for 1 <
p < o, Where

WHEPRY) == {f 1 R" = R o || fllwrpen) = | FllLogn) + [V llpn) < o3,

where Vf = (D1 f,...,Dnf) is the weak gradient of f. Since then, Kinnunen’s result
was extended to various variants. For example, see [12] for the local case, [13] for the
fractional case and [4, 19] for the multilinear case. Since we do not have sublinearity for
the weak derivative of maximal operators, the continuity of .2 : W P(R") — W -P(R")
for 1 < p < o is certainly a nontrivial issue, which was addressed in the affirmative by
Luiro [24] and was later extended to a local version in [25] and a multilinear version in
[4, 17]. Another way to extend the regularity theory of maximal operators is to study
its behaviour on other smooth function spaces. Korry [14] firstly proved that .# is
bounded on the inhomogeneous Triebel-Lizorkin spaces F&"4(R") and inhomogeneous
Besov spaces B&I(R") for 0 <s < 1 and 1 < p,q < . As an immediate result, we
have that .# is bounded on the fractional Sobolev spaces W P(R") for 0 <s <1
and 1 < p < o (see also [15]). Here W*:P(R") is defined by the Bessel potentials and
FP2(RM) =WSP(R") forall 0 <s<1and 1< p < co. In 2010, Luiro [ 25] established
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the continuity of .2 : F>9(R") — FP9(R") for 0 <s<1and 1 < p,q < . Later on,

Liu and Wu [20] extended the above results to the maximal operators associated with

polynomial mappings. Moreover, they obtained that .# : BY%9(R") — BYY(R") for

0<s<1land1l<p,q< . Otherinteresting works can be foundin[1, 2, 3, 5, 9, 10].
We now formulate partial results of [17, 19].

THEOREM A. ([17,19]) Let 0< a <mn, 1< py,...,Ppm,q < and 1/q =
1/p1+---+1/pm—oa/n. Then M, is bounded and continuous from W LPL(R") x
- x WhPm(R) to WLA(R"). Moreover, if = (fy,..., fn) with each fi ¢ WLPi(R"),
then

N m
19z Semnsom [T iy

It should be pointed out that Theorem A is based on the well known Lebesgue
boundedness and continuity for 99t,,. To be more precise, it was known that

My LPH(R") x -+ x LPM(R™) — LYR") 1)
is continuous and
. m
1996 (F)lLa(n) Semnprom LI FillLri genys )
i=1

for0<o<mn,1<pg,...,pm<e,l<gq<eandl/q=1/p1+---+1/pm—oc/n. It
is worth mentioning that the authors in [22] established the boundedness and continuity
for the multilinear strong maximal operators on the Triebel-Lizorkin spaces and Besov
spaces. Using similar arguments, we can obtain the following results. Here we only list
these results without proofs, which are useful for our aim.

THEOREM B. Let 1 < p1,...,pm,p,q <, 0<s<land1l/p=1/p1+---+
1/pm. Then

(i) The map 9 : FPYI(R™M) x - x FP™9(RM) — FP9(R") is bounded and contin-
uous. Moreover, if f=(fy,..., fy) with each f; € FP"9(R"), then

m
Hm(f)HFSW(Rn) Smon,pg,e..,pm 1_[1\\ fj HFSpj.q(Rn).
J:

(ii) The map 901 : BE*I(R") x - x B§™I(R") — BEI(R") is bounded and contin-
uous. Moreover, if f = (fy,..., fy) with each f; € BY"4(R"), then

m
”m(f)HBg’q(R”) Sm,n,plwapm 1_[1 H fJ HBSPJ"'q(Rn)'
J:

On the other hand, the regularity properties of the commutators of maximal oper-
ators have been studied by many authors. The first work in this direction was due to
Liu et al. who [23] firstly investigated the regularity and continuity of commutators of
Hardy-Littlewood maximal operators on the Sobolev spaces, Triebel-Lizorkin spaces
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and Besov spaces. Later on, the above Sobolev regularity results were extended to the
fractional version by Liu and Xi in [21]. Very recently, Liu and Wang [18] studied the
Sobolev regularity properties of the commutators of Hardy-Littlewood maximal opera-
tor and its fractional version with Lipschitz symbols. We now introduce the Lipschitz
space.

DEFINITION 2. The homogeneous Lipschitz space Lip(R") is defined by
Lip(R") := {f : R" — C continuous: || f||_jpmn) < oo},

vinere £ (ch) = £
x—+h) — f(x
(| fl|Lipen) = sup  sup f@m.
X€RMheRM\ {0} ‘ |

The inhomogeneous Lipschitz space Lip(R") is given by
Lip(R") := {f : R" — C continuous : || || ipmn) < e},

where
[ FllLipny == [ Flliemny + [ FllLiprny < oe.

REMARK 1. It was shown in [18] that if b € Lip(R"), then the weak partial
derivatives Dib, i =1,...,n, exist almost everywhere. Moreover, we have

_ . b(x+hej) —b(x)
D0 = fin =5
and
IDib(x)| < [Ibl|Lip(rn)
for almost every x € R". Here e; = (0,...,0,1,0,...,0) is the canonical i-th base
vectorin R" fori=1,...,n.

The partial result in [18] can be listed as follows:

THEOREM C. ([18]) Let 1< p<o, 0<a<n/pand 1/g=1/p—a/n. If
b € Lip(R"), then [b,.#,] is bounded and continuous from W P(R") to W14(R").
The same boundedness hold for .Z .

Based on the above, a natural question is the following

QUESTION 1.1. Let b= (by,...,by) with each bj € Lip(R"). Are the commuta-

tors [b, 9] and 91 bounded and continuous on the Sobolev spaces, Triebel-Lizorkin
spaces or Besov spaces?

The main motivation of this work is to address the above question. It is well known
that the commutator in multilinear setting was first studied by Pérez and Torres [ 26] and
was later developed by many authors (see [16] et al.). Particularly, the commutators
of multilinear maximal opeators associated to cubes were first introduced by Zhang
[29] who investigated the multiple weighted estimates for these commutators. Here
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we focus on the regularity properties of the above commutators. Before presenting our
main results, let us point out the following comments, which are very useful in our
proofs.

REMARK 2. (i) Let 0 < a <mn, 1< py,.. S Pm < e, l1<g<eand 1l/q=
1/p1+---4+1/pm—o/n. Letusfix i=1,....mand b= (by,...,by) with each bj €
L=(R"). By (1) and (2), one has

0,9 ]i : LPL(R") x -+ x LPM(R") — LI(R") ©)

is bounded and continuous. Moreover,

m

1[0, 2% )i (F)[lLagn) Seumn,prespm 1BillL=(rn) _l_Ile”LpJ'(]R”)' 4
J:

(i)Let 0< oo <mn, 1< py,....pmg<eand 1/g=1/p1+---+1/pm—o/n. Let
us fix i=1,...,m and b= (by,...,by) with each bj € L*(R"). One can easily check
that

-,

a5 ()00 < [0i ()M (F) () + M (1, fimg,bifis i, fm) (%) (5)

By (2) and (5), we obtain

||9ﬁia7 ( )|||_q R") ,Sotnpl Pm ||b |||_w RN) HHfHLpJ (RN (6)
i=1

One the other hand, one can easily check that

. - . . m - -
0, 51) = 9, 5 (1) < 30, (R,

where fj = (foj,..., mj) and B = (f1,...,fi_1, fij — fi, fieaj,..., fmj). This to-
gether with (6) implies that

M LPLRY) x - x LP(RY) — LI(R") @)

is continuous.
(iif) For y € R", we define f,(x) = f(x+y). Let f=(f1,....,fn), b=(b1,....bm),
fy=((f1)y,.... (fm)y ) and by—((bl) (b )) Clearly (ma(F))Y(X = ( y)(X)

and (QﬁLB(f))y(x) :EDI ( ) (X) foraII i=1,.
The main results of this paper are the following.

THEOREM 1. Let0<o<mn, 1< pg,...,pm <o, 1<q<eandl/q=1/p1+
--+1/pm—o/n. Let b= (by,...,by) with each bj € Lip(R"), then

[b,9,] : WEPL(RM) x - x WEPm(RM) — WA(R")
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is bounded and continuous. Moreover, if f = (fi,..., fy) with each fi € WLPi(R"),
then

m m
” [bvma](f)”WLq(]Rn) §a7m7n,p17~~7pm (2 Hbl HLip(]R”)) H H fJ ||W1~pj (RM)’ (8)
i=1 j=1
The above boundedness result holds for M, 5

THEOREM 2. Let 1 < p1,...,pm,P,q <o, 0<s<land l/p=1/p1+---+
1/pm. Let b= (by,...,by) with each bj € Lip(R"), then

[0,90) : FPLA(R") x -+ x FPmA(RM) — FPY(R")
is bounded and continuous. Moreover, if f = (fi,...,fn) with each f; € RP9(R"),

then ) ) 0 o
B9 (F) lepanmy Smape.oom (X Ibilliipeen)) TTIfilloin g @)
i=1 j=1

The same conclusions hold for M.

THEOREM 3. Let 1 < p1,...,Pm, P, <, 0<s<land1l/p=1/p1+---+
1/pm. Let b= (by,...,by) with each bj € Lip(R"), then

B.90]: BE(RY) x -+ x BEMI(R") — BRY(R")

is bounded and continuous. Moreover, if f = (fy,..., fy) with each f; € BY9(R"),
then

The same conclusions hold for M.

By the facts WO-P(R") = LP(R") and WSP(R") = FP#(R") for any s > 0 and
1 < p < e and Theorems 1 and 2, we have

COROLLARY 1. Let 1 < p1,....pm,p<e,0<s<land1l/p=1/p1+---+
1/pm. Let b= (by,...,by) with each bj € Lip(R"), then

[B, 9] : WEPL(RM) x - x WSPm(R") — WSP(R")

is bounded and continuous. Moreover, if f = (fy,...,fn) with each f; € WSPi(R"),
then

m

m
8.1 (F) s ieny Smprccom (2 10ilipen) ) LTI illeos e
i=1 j

i=1

The same result holds for S
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REMARK 3. (i) Itis unknown whether the map 90t : WLPL(R") x - x WP (RT)

— WLA(R") is continuous under the conditions in Theorem 1, which is interesting,
even in the special case m=1 and oc = 0.

(ii) Theorem 1 implies Theorem C when m = 1.

(iif) Theorems 2 and 3 and Corollary 1 are new, even in the special case m = 1.

This paper will be organized as follows. Section 2 will be devoted to presenting
the proof of Theorem 1. In Section 3 we shall prove Theorem 2. The proof of Theorem
3 will be given in Section 4. We would like to remark that the main ideas in the proofs
of Theorems are motivated by [20, 22, 28].

Throughout the paper, the letter C or ¢, sometimes with certain parameters, will
stand for positive constants not necessarily the same one at each occurrence, but are
independent of the essential variables. If there exists a constant ¢ > 0 depending only
on ¥ such that A < cB, we thenwrite A<ysB orB =>4 A;andif A<y and B <y A,
we then write A ~4 B. In what follows, let R, = {{ € R";1/2 < |{| < 1} and we
denote by A (f) the difference of f for an arbitrary function f defined on R" and
e, ie, Arf(x)=f(x+&)—f(x).

2. Proof of boundedness and continuity on Sobolev spaces

This section is devoted to proving Theorem 1. Let us present some notations and
lemma, which play key roles in the proof of Theorem 1. Let ¢, = (0,...,0,1,0,...,0)
be the canonical | -th base vectorin R" for I=1,...,n. Let 1< p<eoand f € LP(R").
Forall he R with [h| >0,yeR" and i=1,...,n, we define the functions f} and f,
by setting

i f(x+hej) — f(x
fh(x) = % and fy(x) = f(x+y).
It is well known that _
Hfrl]—DifHLp(Rn)—)O as h—20 (11)

if f < WLP(R"). For convenience, we set

fo—f n
G(f;p) = limsup M.
[h|—0 ‘h|
According to [7, Section 7.11], we have
ue WHI(RM), 1<q<oo<=uelLIR") and G(u;q) < oo. (12)

We now present a characterization of the product of a function in W 1-P(R") and a
function in Lip(R"). which was proved in [18].

LEMMA 1. ([18]) Let 1 < p < oo. If f € WLP(R") and b € Lip(R"), then bf
WLP(R"). Moreover,

Di(bf) =bD;f + fDjb, i=1,...,n,
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almost everywhere in R". Consequently,
V(bf) =bVf+ fVb,
almost everywhere in R". In particular, it holds that

1DF lwrp@n) < Vb Lipgn) | Fllwp @)

Now we turn to present the proof of Theorem 1.

Proof of Theorem 1. In what follows, we let 0 <oa<mn, 1< p1,..., Pm < o0,
1<gq<eand 1l/q=1/p1+---+1/pm—a/n. Let f = (f1,..., fm) with each fj €
WLPi(R") and b = (by,...,bm) with each bj € Lip(R"). We divide the proof into two
steps: .

Step 1: Proof of Theorem 1 for [b, 9]

By the definition of [b, 9], to prove (8), it suffices to prove that

m

100 90 Ji (F) lwraan) < CIbi | Lipgen) H [ Filly s (g (13)

foreach i =1,...,m. We now prove (13) for i = 1 and other cases are analogous. By
Theorem A and invoking Lemma 1, we have

16197 (F) lwagny < Cllboal|Lipen) |9 (F)llwragn)
m

14
< Clo uipczy LTIy to1 - (4
i=1

For convenience, we set ﬂ,bl = (b1 fy, f2,..., fm). Invoking Lemma 1, we have that
by f; € WHPL(RM) and
Hbl lewlypl(Rn) < C||b1HLip(]R”) H leWlapl(Rﬂ)a
which together with Theorem A leads to
N m
9o Fop) wzacen) < ClBalLipn TT 1 Filly 2o g (15)
j=1

Combining (15) with (14) leads to (13) with i = 1.
We now prove the continuity result. Let fj = (fyj,..., fmj) with fij — fi in

WLPI(R") as j — oo forall i =1,...,m. We want to show that
(b9 )i (F}) — [0,9Ma]i (F) wrageny — 0 & j — o0 (16)
forall i=1,...,m. We only work with the case i = 1 and other cases are analogous.

By Theorem A and Lemma 1, we have

1b197%6, () — b1t (F) |y ]R”)
fi

. 17)
< CllbalLipgan) 19 (F}) — M) llwraen) — 0 asj — e
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By Lemma 1 again, we have that by f; € WhPL(R"), by f; j € WEPL(R") and

101 F1,5 —bafaflyrpr oy = [01(Frj = f2) lwpr gy
< C”blHLip(R”)H fl,j - fl“wlpl(Rn) —0 as J — 9,

which together with Theorem A implies
||9:n(1(b1 f17j7 fz,ja ey fm,j) - E):nOC(bl f17 f27 AR fm)”Wlﬂ(Rn) - 0 as J — .

This together with (17) implies (16) with i = 1.
Step 2: Proof of Theorem 1 for 91,
By the definition of sm it sufflces to show that

. . m
ngg(f)“wlyq(ﬂgn) < C||bi||Lip(Rn) H H fj||lepj (R (18)
. i1
foreach i=1,...,m. By (6), to prove (18), it suffices to show that
. . m
“Vm;75(f)“Lq(R“) < ClIbil|Lip(rn) H 15l 20 gn) (19)

=1

foreach i=1,...,m. We only prove (19) for i = 1 and other cases are analogous. Fix
y € R". By Remark 2 (iii), we have

O 5 (F)y(0) — L o (F))]
= ; (£)00 — ML (7))

1 m
<UD T e (B0~ o) T ha)

—‘b1 b1 21 “Hf Hd21d22---d2m

S [B(x,r)[m-e/n - J—
rggmgﬂX’r)'mia/n /‘3(”)”"( 1)y(X) = (b1)y(z1) — b1 (X) +ba(z1)]
X‘Hl fi)y(Zj)‘dzldzz...dzm
i=
TR B / g P200) b1 ()
X‘Hl(fJ)Y(Zj)_Hlf ‘dzldzz -dzm
i= L

Observe that

ﬁ ﬁfj(Zj):i((f|)y(2|)—f|(2|))(

j=1 j=1 1=1 u=1 v=I+1
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which combine with (20) yields

-, -,

O 5 (F))y(0) — 9L ()

= 21
< o))~ b0 ) )+ My )0+ X0 B0, )
where B
f1p,y = ((D1)y =b1)(fr)y, (f2)y, -, (fm)y),
ﬁl,y = (fl,~~~>fl—l7(fl)y_ f|7(f|+1)y7~~~»(fm)y)-
By (2), (6), (21), Holder’s inequality and Minkowski’s inequality, we have
(0, (F)y - 1~(ﬂHm R)
< [ ((br)y — 1) (Fy)[Larn) + e (Fipy ) llLaen) +lefm (Fiy)llLaen)
(22)

< Cl|(b1)y — ba |~ (mn) H [1FillLpi gy

—1 m
JrCZHblHLm ')l (f)y = fillen mny H [l eny TT ICRyllew @y
1=1 u=1 v=I+1

Since fj € WLPi(R") for 1< j <m, then by (12), we have that G(fj, pj) < . There-
fore, we get from (22) and the property of by that
10 & (F))y = 22 o (F)llLagn)
G .(f);q) = limsu o b
(O, (7)) = limsup "
m
< Cllbyipn [Tl o (23)
j=1
m
+C Y [Ibafli=@nG(frpr) TT N fullies @n) < oo

=1 1<u<m
A

Combining (23), (12) and (8) lead to M . (f) c WLA(RM),
Fix I € {1,...,n}. From (11) and (22) we see that

1D 5 (Pl

-,

I|m|an e ()

LI(RM)

m
<Climinf oo} | _ . | (TIETE

m
- - |
+C 3 Il Lkl (GO Py s QLA S

HF]
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m m
< ClballLipny [T fillees gmy +C X 02 lli=geny D1 Fillpi oy TT 1 fiullipe o)
j=1

j=1 l<u<sm

A

m
< Cllbauipn) TT1 filly 205 g
=1

This gives (19) for i = 1 and completes the proof of Theorem 1. [

3. Proof of boundedness and continuity on Triebel-Lizorkin spaces

In this section we shall prove Theorem 2. At first, let us introduce some properties
of Triebel-Lizorkin spaces and lemmas, which are the main ingredients of proof.

3.1. Propertieson Triebel-Lizorkin spaces and somelemmas

Let FP9(R") be the homogeneous Triebel-Lizorkin spaces. Let s >0 and 1 <
p<oo,l<q< oo, 1< <. We denote by Ep qr the mixed norm of three variable
functlons a(x,k C) by

e, = (2 2%9( , Joterorae)™)

keZ

LP(RN)’
It was shown by Yabuta [28] that
for0<s<l l<p<e, 1<q<oe, 1<r<min{p,q}.

[ Fllepany ~ (Ao FllEg g

Moreover, it was pointed out in [6, 8, 27] that 9
I llepacn) ~ 1 llgpagen + [ fllon), fors>0,1<p,q<e, (25)

I llegaqen) < Il Fllegagen), forsy <sz, 1<p,q<e, (26)

| f HFS"“?(RH) < f HFJ”ql(Rn)» forsecR, 1<p<o, 1<y < <oo. 27)

The following presents a characterization of the product of a function in F&"%(R")
and a function in Lip(R").

LEMMA 2. Let0<s<land 1<p,q<eo. If f € F>YR") and g € Lip(R"),
then fg € F”9(R"). Moreover,

1 fallepagrny Ssa 19l Lipem) |l fllgpagn)- (28)
Proof. Note that

Ageig (F9)(X) = Agoicr T () A1 9 (%) +9(0)Agoicc F ) + F()Apk0(x),  (29)
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forall xe R", { € R, and k € Z. Combining (29) with (24) and Minkowski’s inequal-
ity implies that

Ifgllepaen (kEZZkS‘*( / [4,- kc<f9>|d4)q>l/q!Lp<Rn)
€
(ke%stq / 1Ay FA,- k§g|dc> ) v Lo(rN)
wof( 2 [t iec) .
el e c09))
S

< Cllgfl(en H(sz“‘(/ 811100 )1/qH
(3,2( / 14y <calot) )™

keZ
<C||9||L°° )1 Fllipa ey

szsq / [fA,- k;g|d§> )UqHLP(R”).

keZ

LP(R)

Note that 0 < s < 1. By Minkowski’s inequality and the property of g, one has

<keZZkSq / fA,- kggldé) )1/qHLp(R)

<J(2 2 (f e kcgidc>“>”qHLp<Rn>

AE 2L 0900
(

< (2lgllu-qeo gszQ) +||g||up<Rn>(gqu<5‘lJ)l/q)|mn|||fLp@w
<2(( b q)” "t () )l gl e [ e

Therefore, we get from (25) that

1 fallepagrn) < CllGlILip@n | f lgpagn)-

This together with (25) and the trivial estimate | fg|| omn) < [[9][Le(®n) [l fllLp ) iM-
plies (28). [

The following result will play a key role in the proof of Theorem 2.

LEMMA 3. ([28]). Forany 1 < p,q, r < o, We have

| (kezz||//z<fk,;>ﬁr(mn))” o, <Coar] z g8 ony) o
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3.2. Proof of Theorem 2

In what follows, we fix 1 < p1,...,pm,P,q <, 0<s<land 1/p=1/p;+
.--+1/pm. Let b= (by,...,by) with each bj € Lip(R"). The proof of Theorem 2 will
be divided into two steps:

Step 1: Proof of Theorem 2 for [b, 9]

By Minkowski’s inequality, to prove (9), it suffices to show that

m
H [bﬂm]i(f)HFsp’q(R”) < C”bl HLip(Rn) H || f] HFspj’q(Rn) (30)
j=1

foreachi=1,...,m.
We only prove (30) for the case i = 1 and other cases are analogous. By Theorem
B (i) and invoking Lemma 2, we have

10197 F)lpagny < CllbL|Lipgan) 9P ppagen)

i (31)
< Cllba [ Lipen) Il [TEp.

m
192201 o, f2,-- fn)pacanm) < ClOFallgpssen) TN illpio o
m - (32)
< Cllba|Lip(n) Jl:[1 151193 -

Then (30)qwith i =1 follows from (31) and (32).
Let fj = (fl,j,~~~,fm,j) with each fi7j — fi in Fspi’q(Rn) as j—oo forall ie
{1,...,m}. It suffices to show that

1B, 98 (F5) — (B, 90 (F)|epaggny — 0 @ j— oo (33)

forall i=1,....m. We only prove (33) for i = 1 since other cases can be proved
similarly. Invoking Lemma 2, we have

102 f1.j = bafaflppragn) < CllbLflLipernm I 1. — fullppra gy,
which together with the continuity result in Theorem B (i) yields that
[9(bsfrj, o, fmj) = M(brfe, Fo, oo i) [epagmny — 0 @S j— oo (34)
On the other hand, by invoking Lemma 2 and Theorem B (i) again,
[b19(F}) — 19 (F)l|pagn) < ClIballLipen IM(F}) — U F)llgpaggn) — O as j— oo,

which together with (34) leads to (33) with i =1.
Step 2: Proof of Theorem 2 for 91
At first, we shall prove the boundedness part. We want to show that

m m
199 ()l pany < C(Zl HbiHLip(R”)> 1_[1 [ fj H,:spivq(Rn)~ (35)
1= =
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To prove (35), it suffices to prove that
o m
1908 (F) lepany < ClIbillLiprn) leH Fill £pie ) (36)

foreachi=1,...,m
Without loss of generality we only prove (36) for the case i = 1 and other cases
are analogous. By (21) and (5), we have that, for any (x,k,§) € R" X Z x Ry,

\Aszg(m%(F))(X)| < |A27kgb1(x)|m(‘?szg)(x) +5m(‘?1,b1727kg)(x)
+[b1(x |Efm G, 2k¢) )+|_219ﬁ(éb1,|,27kg)(x) (37)
= T(x,k, g) -

where -
fl,b172*k§ = (Aszgbl(fl)szp (fz)szp R (fm)szg%

Gioke = (f1oo s fion, Agip fiy (Fiyn)p ks (Fn)a k)
Gpy10-k¢ = (D185 f1, (F2) gk (Fm)pice),
bel,szg =(bafr, fo,os fio, Ag i fiu (Fiia) o g oo (Fm)okg)s 1=2,...,m.
In light of (24) and (37) we would have
. a\ /9
1 n < ksq ~ ~
IO lepacen) < S| (Z299( [, 1aebuimfraad) ) 7

(g2, o)) |

kezZ LP(R”>

sl (3 kezzksq / ZmG|2k§ ag))" e <9
+CH(k szsq /‘.Rngim bel,z—k;)dC)) HLP(R”)
S ALt At At AL
By the property of b; and (2), we get
A1<C|’<k§'w2ksq</ |Ap- kal‘s’m( C)dg>q>l/qHLp(Rn)
+CH(§12“‘*(/ g sgbu(fa00a0) )
1/q
<C(lIballemen (k_E_mszQ) (39)
bl ipge (k 2 DR G

m
< Cllb|ipny [T I il rs &)
j=1
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By Holder’s inequality, we get

HH//z ) (22 [ 0 igbu(), )00 ) )”qHLp(Rn)

<CH [ ((F7)2x I LPi mny (40)
ksq gy /d
H(kéz < /// (Apgba(f), kC)dC) ) LPL (RN

By the property of b;, we have

H(%stq< M (Bgyxgb1(f1), kg)dc>q>1/q’
<H(k=2_wzksq /mn//z(Azkgbl(fl)zkg)dg)q)l/q’
+H (ézksq</mn///(A2kgbl(fl)zkg)dc>q> 1/q’ Lp1 (&)
0
<k=2_'w2ksq</mn///((fl>2kg)dc>q>l/q LP1(RN) (41)
(Z2o( [, 2 e (ipae)) ™

i 2ksq> l/q

LP1(RN)

LPL(RM)

< Cllby || (rny

+C|[ba|Lip(rn)

LPL(RN)

<C(Hb1HLm RM) (k

1/q
1151 lLipge) (22 =) (F2)g-w)llos e
< Clfbu [ Liprn) HleLpl (RN)-

It follows from (40) and (41) that
m
A2 < Cllbaluipeny TT I fillLpi an)- (42)
=1
For Az, by Minkowski’s inequality, we get

(22ksq / 9ﬁG,2kC)d§>> HLp(Rn). (43)

kez

As < CE [[ba |- (®n)

Letus fix I € {1,...,m}. Note that

MGii) < D 1 A (Ageef) [T #(1), (44)

TCE| uetu{l} vet

where Ej = {I+1,...,m} and 7/ ={1,...,m}\ (tU{l}). Let ct; be suchthat 1/a; =
Sverl/pe+1/pp. Itisclearthat p <o < pand 1/p=1/0:+ e 1/pi. By (44),
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Minkowski’s inequality, Hlder’s inequality and the bounds for .# , we have

H szsq / f)ﬁ - dC) >1/q

keZ LP(R")
< M (f 2ksq (A d
rgél vlg/ keZ i""uelr_ul{l 2 ) C> ) HI—"<R”)
<C Y IT I (f0)llLov mn)
‘L'CE| ver
2ksq Ay iy fu)d
kEZ Rn IJEI‘IIJI{I} % 2- kg IJ) C) ) Loz (R")
<C Y T Ivlliee n
‘L'CE| ver
2%( | M (Dy v Fu)d .
keEZ 9%“617;[“} 2 ké’ ) C) ) Lot (RN)

Fix T C E;. By Holder’s inequality, Lemma 3 and (24)—(27), we have

2ksq [T #(8gicta )dC) )

keZ PRn perifl} Loz (R")
1/q
320 TN (B Fu)l
H<keZ ueru{l} & e/ mn)> Lot (RN

put!/m)“’/(qp“)

< 2ksar/Pu||///(A2 kg )|||_PH/“T
uetU{l} “kez

<| I
I (z

ueru{l} keZ

H ( >, (20e/Pu |y
ueru{l} keZ

<C H HfH” pyPuQ/GT(Rn)

(R n)) Loz (RN)

ar/(qpﬂ)
2kSOC‘r/pl1 H///(Aszg fu)ll Loy /ot (mn))PHQ/ar>

LPu (RM)

)pyq/af>°‘f/(qp“)

kg f””Lp#/“T(SRn) LPu (R")

uetU{l} Ofrs/pu

<C H Hf ” g PuQ/OCT(Rn)
uetU{l} ars/py

<C H Hqupran
uetu{l}

Combining (46) with (45) and (25) implies that

[OESGRE RTINS

kez

m
SCLLIfillzria -
R") JI:[l R (R")
It follows from (43) and (47) that
m
Az < Clb|iprn [T Fillgpio gn-
j=1

Invoking Lemma 2, we have by f; € F"9(R") and

b fl|||:5”1>q(Rn) < C||blHLip(]R”) I leFSpl"q(Rn)-

(45)

(46)

(47)

(48)

(49)
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By (49) and the arguments similar to those used to derive (47), we have

H( 2ksq</mnfm(ébl7l,zkg)dc>q>l/qHLp(Rn)<C”blLip(Rn)jlmIl”fjFspj"q(R”) (50)

keZ

foreach | =2,....m. Observe that

sm(ébblﬁg) M (brdgie f1) Y, T] 4 (Agie fu) TT (1))

TCEjuer ver (51)
<bill=@m Y, TIT A (Agwefu) [T-#(f
TCEy petu{1} ver

By (51) and the arguments similar to those used to derive (47), one gets

I(Z

< ay\ 1/q m
G RRUCNPPRTLIS I I SCUEEN (LIRS

keZ
(52)
By (50), (52) and Minkowski’s inequality, we obtain
m
Ag < Clb|iprn) [T 11 P39 geny- (53)
j=1

Combining (53) with (38), (39), (42) and (48) implies (3§) with i =1.
Now we prove the continuity result for M. Let fj = (fyj,..., fmj) with each
fij— fiin FPP9(R) as j — oo forall i e {1,...,m}. Itis enough to show that

foralli=1,...,m
We only prove (54) for i =1 since other cases are analogous. By (25) we have
that fij — fi in F”9(R") and in LPi(R") as j — o for i=1,...,m. By (25) and (7),
to prove (54) with i =1, it suffices to show that
1995 (F5) — 95 (F) [ epaan) — 0 85 j — o=, (55)

We shall prove (55) by contradiction. Assume that (55) doesn’t hold. Without loss of
generality we may assume that there exists a constant ¢ > 0 such that

1998 (5) — M (F) [ epagny > €, Vj> L. (56)

By (7), we may assume without loss of generality, by extracting a subsequence that
ME(F}) (x) — ME(F)(x) — 0 as j — o for almost every x € R". Hence

-,

Agg (ME(T}) —ML(F))(x) — 0 as | —eo (57)

forevery (k,{) € Z x R, and almost every x € R". By (37) we have that, for (x,k,{) €
R" x Z x R,

|Ag-rg (M (Fj) — ME(F) () <Tj(x.k, &) + T (x.k, &), (58)
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where T is given as in (37) and

Lj(x.k, ) .
= ‘IAz—kgbl(X)IW((ﬁ)z—kg)(X) (T, 2k ) (X) + [D2(X)] X MGy 2k¢) (X)

+ ém(ébl,l,j,zkgxx) —T(x.k, )
=

< z ?i.j (Xv k7 C)a
i=1

(59)
where

91 (K £) 1= 1A b1 (0]MU((F} gk ) (%) = M Fporg) (¥)],
92,1k, §) = (T jp, 2-0)(X) = M(Frp 5k (X

02100k, £) = b1 001 3, IG5 1)) — (G 1) ()
) =1
P15 (%K, §) = |—2i Gy, 1.2k ) (X) = MGy 4 1) (X
fl by 2-ke = (Agebr(faj)oice, (Fo )z s (fnj)oke)
Gbl,l,j,Z*kg = (b1Ay kg fuj, (F25)0 koo (Tmj)o k)
Grjokg = (frjseees fion A fij (Fia ok oo (fmn i)k,
Gpyrjzke =1t f2 s fiiaj Ag ke fij (Fanj)akgse o (Fnjlakg), 1=2,...,m.
By the arguments similar to those used to derive (39), one has
lorjlles ,, < ClIbalLipen) 19R(F)) = M(F)llgpa )
which together with Theorem B (i) leads to

o jlles,, —0 as j—ee (60)

On the other hand, by the sublinearity for 9t and similar arguments as in deriving (48)
and (50), we can obtain

l9ijlles ., < Cllb1lLipn) Z||f|j—f|||pp|an
< |1 ||f,” f,JHFspy,q &M +Hf/~‘HFsp“’q(R”))’ i=2,3,4.

I<u<sm
u#l

It follows from (59)—(61) that

(61)

ITilleg,, —0 as j— o (62)
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By (62), there exists a subsequence {j;}7" ; C {J} >, such that
Ty lles ,, <o (63)
; "=pg,1
We get from (39), (42), (48), (50) and Minkowski’s inequality that
m
ITlles ., < CliballLipgen) ,Ul 1Fill P19 - (64)

On the other hand, we get from (58) that

~»

8-k (M () — () Zru (%K &)+ Tk &) = @(x.k,§),  (65)

forall (x,k,§) € R" x Z x Ry. By (64), (65) and Minkowski’s inequality, we have that
Hd>||Esq <co. Hence, [ @(X,K,£)dE < forevery k € Z and almost every x € R".

By (57), (65) and the dominated convergence theorem, we have
[ 1o ((F) = MEH)1AE 0 a5 ¢ — o0 (66)

for every k € Z and almost every x € R". By the fact ||<I>||Es < oo, ONe has

¥ 29( / ®(x,k, &) dC) ) (67)
keZ
for almost every x € R". From (65) we see that
[Ag-kg (M (Fj,) =D)AL < | Dlx.k, )L, (68)
Rn NRn

forall (x,k,{) e R"xZ xR, and £ > 1. By (66)—(68) and the dominated convergence
theorem, one finds that

(Z2( [, 1o my(fy) - i (M)0iag) ) 0 et (69)

Using (65) and the fact that Hq)”Equ < oo again,

(229 [ 18 sclmy(Fi) - <>><>|dc))

kezZ (70)

<(Z2( ], ook orec)) " <

kez

for almost every x € R". It follows from (69), (70) and the dominated convergence
theorem that
18-+ (ME(F,) = ME(F)) s, — 0 @s € — oo,

which combining with (24) leads to ||9)L(fj[) ?DL( )Hqu gy — 0 as £ — eo. This
is in contradiction with (56). This flnlshes the proof of Theorem 2. [
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4. Proof of boundedness and continuity on Besov spaces

In this section we shall present the proof of Theorem 3. Let us begin with some
properties of Besov spaces.

4.1. Propertieson Besov spaces

We denote by BY"%(R") the homogeneous Besov spaces. It was proved by Yabuta
[28]thatif 0<s<1,1<p<o,l1<g<~and 1l<r<p,then

([ g trag)”

For a measurable function g : R" x Z x Ry, — R, we define

I9llpas = (g;k“(/mn [ gtk paag) ")

q 1/q
LD(RH)) . (71)

I llgparn) ~ ( Y, 2%
keZ

Then, by (71) and Fubini’s theorem, we have
Hf”BBq(Rn) ~ HAszcijp-,q-& (72)
It is well known that (see [6, 8, 27])
| fllgpaeny ~ [ Fllgparn) + I fllLogny, fors>0, 1< p,q<ee, (73)
IFllgpan) < lIfllgeagan): forsy<sz, 1< p,q<e, (74)
I f HBg.qz(Rn) < Hf||B§,q1(Rn), forseR, 1<p<o, 1< <Qp<oce. (75)

The following presents a characterization of of the product of a functionin B £'9(R")
and a function in Lip(R").

LEMMA 4. Let 0<s<1and 1< p,q<e. If f € B&YR") and g € Lip(R"),
then fg € B&9(R"). Moreover,

1 fallgpagrn) < CllgllLipmm) |l fllgpagn)- (76)

Proof. By (73) and the trivial estimate || fgl|ypgn) < [|9][L=(&n)|l f||Lp(rn) , to prove
(76), it suffices to show that

[ fallgparn) < ClIgllLipn) [l fllgpamn)- (77)
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By (29), (72) and Minkowski’s inequality, we have
a/p\1/q
fg|lgpaipn <C ZKSQ//A, fg)(x)|Pdxd
Ifallspren) <C( 220 [, [, 1A (fO)(0Pexa) ) .
ksq b a/py 1/g
<c(¥2 (/mn/Rn|A2,k§f(x)A2,kgg(x)\ ddg) ")

kez

we( B2 ( [, [ io00mg e paac) )

kezZ
+C(22ksq</mn /]R” |f(x)Asz;g(x)wdde)q/P)1/q -
S Cligll- <k622ksq / / ‘Az—kgf(XdiXdC)q/p)l/q

kez
a/p\1
so(z ([ [ 1100, gpang) ")
keZ
< CllgllL=@n [l Fllgparn)

(X 2“‘1(/%n /R |f(x)AZ,kgg(x)wdxd;)q/p)l/q.

kez

By the property of g, we have

(Z25o( [ [ 1f008ca00Panar) ")

keZ

< <k%m2ksq</9“n /Rn |f(X)AZ,kgg(X”pdde)Wp) 1/q
+(k§412ksq( / / |f(X) A« 9(x)[Pdxd C)WP)l/q "

< CIRnllgl-qa [ lloen z 2ksq)

ka(1—s)\ ¥/
+C9Rn 19l ipgen) I FllLp(en) (22 i)
=1

< Cl9llLipn) Il Fllie )
Then (77) follows from (73), (78) and (79). O

4.2. Proof of Theorem 3

In this subsection we shall prove Theorem 3. Applying Lemma 4, Theorem B
(if) and the arguments similar to those used in deriving the Triebel-Lizorkin space
boundedness and continuity for [b,901], one can get (10) and the continuity for [b, 9] :
BYYY(RM) x .- x BE™Y(R") — BEY(RM).

Next we prove Theorem 3 for 9. In what follows, we fix 0 <s <1, 1<
P1s-. 5 Pm,P,q<eeand 1/p=1/p1+---+1/pm. At first, we shall prove that

m m
(1998 (F) llgpagny < C(Zl HbiHLip(R”)> 1_[1 [ fj HBSF’J‘~‘1(Rn)~ (80)
1= =
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By Minkowski’s inequality, to prove (80), it is enough to show that
o m
19921 (F) g2 gn) < ClIbi [ Lipgzn) ,-Ul” fillgei gy (81)

foreachi=1,...,m
We only work with (81) for the case i = 1 since other cases are analogous. By
(72) and (37), we have

||m%(ﬂ”8§’?“(1gﬂ) 1
S C( 2,2 </mn /]Rn (|A27kc(Wé(F))(X)I)pddeq/p) /
(

kez

<o(Z ([ [ (aebataim(y ) o0)raxar)””) ™

(M (Fy 210 )P ) ) )

il p a/py\ 1/a
+c((3 2¢( / / MG, 1, 4)(x)) dxdl
(22, Lo (EmGue0) )"
=:B1+By+B3+By.
By (2) and the property of by, we have
a/p\1/9
B <C( T2 [ [, (2 ieba 0Ty ) )b ) )

keZ

a/p\ /9
<C k:_wszq /md /Rn(|A2*k§b1(x)|m(f2*kg)(x))dedC> )
S F a/p\1/d
#0229 [, [ (82 e0s00m(Fy ) 00)P0nec) )
S 1/ < 1/q
< C( by lie(gn 2K0) 7 1D i 0 5—kg(1-3)
< L=(R )( z ) LIP(R)<1§1 ) )

k=—c
X[[9M(fyxg) HnL]P(Rn)

< Cliballipny [T 1 Fill i ey -
=1

(83)

ay 1/d
B2 < C( 3, 2(18gcDa(fa)p-vg o wncony) T 1)z lpican)) )
keZ j=2

ay\ 1/d
<c(k; 2911 b (Fr)z gl oy HHfJHLp, @) )

a\1/q
—l—C( Z 2ksq <||A27k§b1(f1)2—kg HLpl(Rnan) H || fj Hij (Rn)> ) (84)
k=1 j=2
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< (a3, 29)" " bl ( 3,2790-9))

k=—co

m
< [T IIfilLes (RM)
j=1
m
< ClballLipgen) TT I fill i gny -
j=1
By Minkowski’s inequality and Holder’s inequality, one has
m P a/py 1/d
Bs < C||ba | (rn) Z szsq / /n (Gy2-k¢) )) dXdC) ) . (89)
I=1 "keZ R

Fix | € {1,....m}. Let E;={l+1,....m} and 7/, o; be given as in the proof of
Theorem 2. By Minkowski’s inequality, Holder’s inequality, (44) and the bounds for
A , one finds that

ke%stq // M(G) 5« ) ))dedc>q/p>1/q
< 3 (22 Lo (T ossst Lot o) )

uetu{l} vet (86)
q 1/q
<C 2 H [ (£v) Loy (n) szsq H VALYE M)
TCE|ver <keZ uetu{l} ¢ Lot (R”xmn)>
1/q
<C Y [Tl ( X2 TT # (A« ) .
TCE ver : )<keZ petu{l} g Lar(Rnxmn)>
By the bounds for .# and (72)—(75), we have
1/q
2 A (Bg-g fu)
<k§i uelr_uI{I} : L”"(R”X%n)>
ay\ 1/d
S (22ksq IT 1 (Ageg f)lliow Rnxmn)> )
keZ uetu{l}
ar/(puq)
I1 < ¥ (2ksee/ Pu 127 (Agr Fu) e (R"x‘ﬁn))p”q/w)
uetU{l} “kez (87)
S H ||f#H Pu-Pud/or o
peioy B (B
< H ”fﬂH gPw PHQ/ar(Rn)
uetU{l} Sar/pu
< H ”fﬂHBé)l‘*q(Rn)-
petu{l}

It follows from (73), (86) and (87) that

(kGZZW( L L (DG v 0Pt ) ') < Cj]mllll filgpiogn  (89)
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Combining (85) with (88) and the property of by implies
m
Bs <C”bl”Lip(Rn)jl:IIHfJ.||B§J"'q(Rn)' (89)
By (51) and the arguments similar to those used to derive (88), one has

(Igiz&q(/mn /Rn (W(Gbu’szg)(x)) pdxd§>q/p> 1/q

u (90)
< CllbaLipn) TT 1 illgesa -
=1

On the other hand, by Lemma 4, we have that by f; € BS9(R") and
[b1 lele>1~q(Rn) < C||b1HLip(]R”) | leBfl‘q(R”)’

which together with the arguments similar to those used to derive (88) implies

ke%zksq /mn / Gb1,|72*kg)(x)> pdxdg>q/p> 1/q

< Cllba [ Lipen) Jl:[1 151125 g,

(91)

foreach | =1,...,m. Then by (90), (91) and Minkowski’s inequality, one has
m
Ba <C”bl”Lip(Rn)jl:IIHfJ.||B§J"'q(Rn)' (92)

Combining (92) with (82)—(84) and (89) implies (81) for i = 1.
It remains to prove the continuity result for 9. The proof is similar as in the

proof of the continuity part for 9t in Theorem 2. Let fi = (foj,.-., fmj) With each
fij — fi in BE"Y(R") as j — oo for all i€ {1,...,m}. It suffices to show that

1005 F5) — 2 (F)lgpaeny — 0 @s j— oo (93)

foralli=1,....m

We only prove (93) for i = 1 since other cases are analogous. By (73), we have
that, fij — fi in BE"9(R") and in LPi(R") as j — e forall i € {1,...,m}. By (7), to
conclude (93) with i =1, it suffices to prove that

”mé(ﬂ)_mé(ﬂHng(Rn) — 0 as j— co. (94)

We shall prove (94) by contradiction. Assume that (94) doesn’t hold. We may assume,
without loss of generality that, there exists a constant ¢ > 0 such that

19955 (F5) — 2% (F) | gpaeny > ¢, forall j>1
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Let {(pi,j}ﬁzl, and T'j, T" be given as in the proof of Theorem 2. Using arguments
similar to those used in deriving (90) and (91), one obtains

i jllp.gs < C”blHLIpR”EHflj fillgera mn

X H ”fﬂj f ||Bpuq R") ""”f#HBp/‘an))

i<pu<m

u#l

fori=1,2,3,4. It follows that

ITjlpa;s < ClIbalLipn 2”f|J_f|”Bplan

95
% TT (1 — Fullggmaan, + 1 lgpuazn): )
1<u<m
H‘;“
By (37), (83), (84), (89), (92) and Minkowski’s inequality, we have

m
||F||p.,q.,s < C||b1||Lip(R") H H fj ||B§j~°'(Rn)~ (96)

=1

The rest of proof follows from (95), (96) and the arguments similar to the proof of
Theorem 2. We omit the details. [
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