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REGULARITY OF COMMUTATORS OF MULTILINEAR

MAXIMAL OPERATORS WITH LIPSCHITZ SYMBOLS

TING CHEN AND FENG LIU ∗

(Communicated by I. Perić)

Abstract. We study the regularity properties for commutators of multilinear fractional maximal
operators. More precisely, let m � 1 , 0 � α < mn and�b = (b1, . . . ,bm) with each bi belonging
to the Lipschitz space Lip(R) , we denote by [�b,Mα ] (resp., Mα,�b ) the commutator of the

multilinear fractional maximal operator Mα with �b (resp., the multilinear fractional maximal
commutators). When α = 0 , we denote [�b,Mα ] = [�b,M] and Mα,�b = M �b . We show that

for 0 < s < 1 , 1 < p1, . . . , pm, p,q < ∞ , 1/p = 1/p1 + · · ·+ 1/pm , both [�b,M] and M�b are
bounded and continuous from W s,p1 (Rn)×···×W s,pm (Rn) to W s,p(Rn) , from F p1 ,q

s (Rn)×
···×F pm,q

s (Rn) to F p,q
s (Rn) and from B p1,q

s (Rn)×···×B pm,q
s (Rn) to B p,q

s (Rn) . It was also
shown that for 0 � α < mn , 1 < p1, . . . , pm,q < ∞ and 1/q = 1/p1 + · · ·+ 1/pm −α/n , both
[�b,M] and M�b are bounded from W1,p1(Rn)×···×W 1,pm(Rn) to W 1,q(Rn) .

1. Introduction

The primary purpose of this work is to investigate the regularity and continuity
for commutators of multilinear fractional maximal operators on the Sobolev spaces,
Triebel-Lizorkin spaces and Besov spaces. Let us recall some definitions.

DEFINITION 1. (Commutators of multilinear fractional maximal operators) Let
m � 1, 0 � α < mn and �b = (b1, . . . ,bm) with each b j ∈ L1

loc(R
n) . For �f = ( f1, . . . , fm)

with each f j ∈ L1
loc(R

n) , the multilinear fractional maximal operator Mα is defined as

Mα(�f )(x) = sup
r>0

1

|B(x,r)|m−α/n

m

∏
j=1

∫
B(x,r)

| f j(y j)|dy j, x ∈ R
n,

where B(x,r) is the open ball in Rn centered at x with radius r , and |B(x,r)| is the
volume of B(x,r) . The commutator of Mα and �b is given by the formula

[�b,Mα ](�f )(x) =
m

∑
i=1

[�b,Mα ]i(�f )(x), x ∈ R
n,
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where

[�b,Mα ]i(�f )(x) = bi(x)Mα (�f )(x)−Mα( f1, . . . , fi−1,bi fi, fi+1, . . . , fm)(x).

The multilinear fractional maximal commutator with �b is defined by

Mα ,�b(�f )(x) =
m

∑
i=1

Mi
α ,�b

(�f )(x),

where

Mi
α ,�b

(�f )(x) = sup
r>0

1

|B(x,r)|m−α/n

∫
B(x,r)m

|bi(x)−bi(yi)|
m

∏
j=1

| f j(y j)|d�y,

where B(x,r)m =

m︷ ︸︸ ︷
B(x,r)×·· ·×B(x,r) and d�y = dy1 · · ·dym .

When α = 0, the operator Mα reduces to the usual multilinear maximal oper-
ator M , then [�b,Mα ] (resp., Mα ,�b ) becomes the commutator of multilinear maxi-

mal operator [�b,M] (resp., multilinear maximal commutator M�b ). We also denote
Mi

α ,�b
= Mi

�b
for α = 0 and 1 � i � m . For the sake of simplicity, we denote Mα =

Mα , [�b,Mα ] = [b,Mα ] and Mα ,�b = Mα ,b when m = 1. When α = 0, we denote

Mα = M , [�b,Mα ] = [b,M ] and Mα ,b = Mb . Clearly, the operator M is the usual
centered Hardy-Littlewood maximal operator. The operator [b,M ] (resp., M b ) is the
commutator of Hardy-Littlewood maximal operator (resp., maximal commutator).

The regularity theory of maximal operators has been an active topic of current
research. The first work related to Sobolev regularity was due to Kinnunen [ 11] who
established the boundedness of M on the first order Sobolev space W 1,p(Rn) for 1 <
p � ∞ , where

W 1,p(Rn) := { f : R
n → R : ‖ f‖W1,p(Rn) = ‖ f‖Lp(Rn) +‖∇ f‖Lp(Rn) < ∞},

where ∇ f = (D1 f , . . . ,Dn f ) is the weak gradient of f . Since then, Kinnunen’s result
was extended to various variants. For example, see [12] for the local case, [13] for the
fractional case and [4, 19] for the multilinear case. Since we do not have sublinearity for
the weak derivative of maximal operators, the continuity of M : W 1,p(Rn)→W 1,p(Rn)
for 1 < p < ∞ is certainly a nontrivial issue, which was addressed in the affirmative by
Luiro [24] and was later extended to a local version in [25] and a multilinear version in
[4, 17]. Another way to extend the regularity theory of maximal operators is to study
its behaviour on other smooth function spaces. Korry [ 14] firstly proved that M is
bounded on the inhomogeneous Triebel-Lizorkin spaces F p,q

s (Rn) and inhomogeneous
Besov spaces Bp,q

s (Rn) for 0 < s < 1 and 1 < p, q < ∞ . As an immediate result, we
have that M is bounded on the fractional Sobolev spaces W s,p(Rn) for 0 < s < 1
and 1 < p < ∞ (see also [15]). Here W s,p(Rn) is defined by the Bessel potentials and
F p,2

s (Rn) = W s,p(Rn) for all 0 < s < 1 and 1 < p < ∞ . In 2010, Luiro [25] established
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the continuity of M : F p,q
s (Rn)→ F p,q

s (Rn) for 0 < s < 1 and 1 < p, q < ∞ . Later on,
Liu and Wu [20] extended the above results to the maximal operators associated with
polynomial mappings. Moreover, they obtained that M : B p,q

s (Rn) → Bp,q
s (Rn) for

0 < s < 1 and 1 < p, q < ∞ . Other interesting works can be found in [ 1, 2, 3, 5, 9, 10].
We now formulate partial results of [17, 19].

THEOREM A. ([17, 19]) Let 0 � α < mn, 1 < p1, . . . , pm,q < ∞ and 1/q =
1/p1 + · · ·+ 1/pm −α/n. Then Mα is bounded and continuous from W 1,p1(Rn)×
·· ·×W 1,pm(Rn) to W 1,q(Rn) . Moreover, if �f = ( f1, . . . , fm) with each fi ∈W 1,pi(Rn) ,
then

‖Mα(�f )‖W1,q(Rn) �α ,m,n,p1,...,pm

m

∏
j=1

‖ f j‖W1,p j (Rn).

It should be pointed out that Theorem A is based on the well known Lebesgue
boundedness and continuity for Mα . To be more precise, it was known that

Mα : Lp1(Rn)×·· ·×Lpm(Rn) → Lq(Rn) (1)

is continuous and

‖Mα(�f )‖Lq(Rn) �α ,m,n,p1,...,pm

m

∏
j=1

‖ f j‖Lp j (Rn), (2)

for 0 � α < mn , 1 < p1, . . . , pm < ∞ , 1 � q < ∞ and 1/q = 1/p1+ · · ·+1/pm−α/n . It
is worth mentioning that the authors in [22] established the boundedness and continuity
for the multilinear strong maximal operators on the Triebel-Lizorkin spaces and Besov
spaces. Using similar arguments, we can obtain the following results. Here we only list
these results without proofs, which are useful for our aim.

THEOREM B. Let 1 < p1, . . . , pm, p,q < ∞ , 0 < s < 1 and 1/p = 1/p1 + · · ·+
1/pm . Then

(i) The map M : F p1,q
s (Rn)×·· ·×F pm,q

s (Rn) → F p,q
s (Rn) is bounded and contin-

uous. Moreover, if �f = ( f1, . . . , fm) with each fi ∈ F pi,q
s (Rn) , then

‖M(�f )‖F p,q
s (Rn) �m,n,p1,...,pm

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
.

(ii) The map M : Bp1,q
s (Rn)×·· ·×Bpm,q

s (Rn) → Bp,q
s (Rn) is bounded and contin-

uous. Moreover, if �f = ( f1, . . . , fm) with each fi ∈ Bpi,q
s (Rn) , then

‖M(�f )‖Bp,q
s (Rn) �m,n,p1,...,pm

m

∏
j=1

‖ f j‖B
p j,q
s (Rn)

.

On the other hand, the regularity properties of the commutators of maximal oper-
ators have been studied by many authors. The first work in this direction was due to
Liu et al. who [23] firstly investigated the regularity and continuity of commutators of
Hardy-Littlewood maximal operators on the Sobolev spaces, Triebel-Lizorkin spaces
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and Besov spaces. Later on, the above Sobolev regularity results were extended to the
fractional version by Liu and Xi in [21]. Very recently, Liu and Wang [18] studied the
Sobolev regularity properties of the commutators of Hardy-Littlewood maximal opera-
tor and its fractional version with Lipschitz symbols. We now introduce the Lipschitz
space.

DEFINITION 2. The homogeneous Lipschitz space Lip(Rn) is defined by

Lip(Rn) := { f : R
n → C continuous : ‖ f‖Lip(Rn) < ∞},

where

‖ f‖Lip(Rn) := sup
x∈Rn

sup
h∈Rn\{0}

| f (x+ h)− f (x)|
|h| < ∞.

The inhomogeneous Lipschitz space Lip(Rn) is given by

Lip(Rn) := { f : R
n → C continuous : ‖ f‖Lip(Rn) < ∞},

where
‖ f‖Lip(Rn) := ‖ f‖L∞(Rn) +‖ f‖Lip(Rn) < ∞.

REMARK 1. It was shown in [18] that if b ∈ Lip(Rn) , then the weak partial
derivatives Dib , i = 1, . . . ,n , exist almost everywhere. Moreover, we have

Dib(x) = lim
h→0

b(x+ hei)−b(x)
h

and
|Dib(x)| � ‖b‖Lip(Rn)

for almost every x ∈ Rn . Here ei = (0, . . . ,0,1,0, . . . ,0) is the canonical i-th base
vector in R

n for i = 1, . . . ,n .

The partial result in [18] can be listed as follows:

THEOREM C. ([18]) Let 1 < p < ∞ , 0 � α < n/p and 1/q = 1/p−α/n. If
b ∈ Lip(Rn) , then [b,Mα ] is bounded and continuous from W 1,p(Rn) to W 1,q(Rn) .
The same boundedness hold for Mα ,b .

Based on the above, a natural question is the following

QUESTION 1.1. Let �b = (b1, . . . ,bm) with each b j ∈ Lip(Rn) . Are the commuta-
tors [�b,M] and M�b bounded and continuous on the Sobolev spaces, Triebel-Lizorkin
spaces or Besov spaces?

The main motivation of this work is to address the above question. It is well known
that the commutator in multilinear setting was first studied by Pérez and Torres [ 26] and
was later developed by many authors (see [16] et al.). Particularly, the commutators
of multilinear maximal opeators associated to cubes were first introduced by Zhang
[29] who investigated the multiple weighted estimates for these commutators. Here
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we focus on the regularity properties of the above commutators. Before presenting our
main results, let us point out the following comments, which are very useful in our
proofs.

REMARK 2. (i) Let 0 � α < mn , 1 < p1, . . . , pm < ∞ , 1 � q < ∞ and 1/q =
1/p1 + · · ·+ 1/pm −α/n . Let us fix i = 1, . . . ,m and �b = (b1, . . . ,bm) with each b j ∈
L∞(Rn) . By (1) and (2), one has

[�b,Mα ]i : Lp1(Rn)×·· ·×Lpm(Rn) → Lq(Rn) (3)

is bounded and continuous. Moreover,

‖[�b,Mα ]i(�f )‖Lq(Rn) �α ,m,n,p1,...,pm ‖bi‖L∞(Rn)

m

∏
j=1

‖ f‖Lp j (Rn). (4)

(ii) Let 0 � α < mn , 1 < p1, . . . , pm,q < ∞ and 1/q = 1/p1 + · · · + 1/pm −α/n . Let
us fix i = 1, . . . ,m and �b = (b1, . . . ,bm) with each b j ∈ L∞(Rn) . One can easily check
that

Mi
α ,�b

(�f )(x) � |bi(x)|Mα(�f )(x)+Mα( f1, . . . , fi−1,bi fi, fi+1, . . . , fm)(x). (5)

By (2) and (5), we obtain

‖Mi
α ,�b

(�f )‖Lq(Rn) �α ,n,p1,...,pm ‖bi‖L∞(Rn)

m

∏
j=1

‖ f‖Lp j (Rn). (6)

One the other hand, one can easily check that

|Mi
α ,�b

(�f j)−Mi
α ,�b

(�f )| �
m

∑
l=1

Mi
α ,�b

(�Fl),

where �f j = ( f1, j, . . . , fm, j) and �Fl = ( f1, . . . , fl−1, fl, j − fl , fl+1, j , . . . , fm, j) . This to-
gether with (6) implies that

Mi
α ,�b

: Lp1(Rn)×·· ·×Lpm(Rn) → Lq(Rn) (7)

is continuous.
(iii) For y∈Rn , we define fy(x)= f (x+y) . Let �f = ( f1, . . . , fm) ,�b = (b1, . . . ,bm) ,

�fy = (( f1)y, . . . ,( fm)y) and�by = ((b1)y, . . . ,(bm)y) . Clearly, (Mα(�f ))y(x)= Mα(�fy)(x)
and (Mi

α ,�b
(�f ))y(x) = Mi

α ,�by
(�fy)(x) for all i = 1, . . . ,m .

The main results of this paper are the following.

THEOREM 1. Let 0 � α < mn, 1 < p1, . . . , pm < ∞ , 1 � q < ∞ and 1/q = 1/p1 +
· · ·+ 1/pm−α/n. Let �b = (b1, . . . ,bm) with each b j ∈ Lip(Rn) , then

[�b,Mα ] : W 1,p1(Rn)×·· ·×W1,pm(Rn) →W 1,q(Rn)
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is bounded and continuous. Moreover, if �f = ( f1, . . . , fm) with each fi ∈ W 1,pi(Rn) ,
then

‖[�b,Mα ](�f )‖W1,q(Rn) �α ,m,n,p1,...,pm

( m

∑
i=1

‖bi‖Lip(Rn)

) m

∏
j=1

‖ f j‖W1,p j (Rn). (8)

The above boundedness result holds for Mα ,�b .

THEOREM 2. Let 1 < p1, . . . , pm, p,q < ∞ , 0 < s < 1 and 1/p = 1/p1 + · · ·+
1/pm . Let �b = (b1, . . . ,bm) with each b j ∈ Lip(Rn) , then

[�b,M] : F p1,q
s (Rn)×·· ·×F pm,q

s (Rn) → F p,q
s (Rn)

is bounded and continuous. Moreover, if �f = ( f1, . . . , fm) with each fi ∈ F pi,q
s (Rn) ,

then

‖[�b,M](�f )‖F p,q
s (Rn) �m,n,p1,...,pm

( m

∑
i=1

‖bi‖Lip(Rn)

) m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
. (9)

The same conclusions hold for M�b .

THEOREM 3. Let 1 < p1, . . . , pm, p,q < ∞ , 0 < s < 1 and 1/p = 1/p1 + · · ·+
1/pm . Let �b = (b1, . . . ,bm) with each b j ∈ Lip(Rn) , then

[�b,M] : Bp1,q
s (Rn)×·· ·×Bpm,q

s (Rn) → Bp,q
s (Rn)

is bounded and continuous. Moreover, if �f = ( f1, . . . , fm) with each fi ∈ Bpi,q
s (Rn) ,

then

‖[�b,M](�f )‖Bp,q
s (Rn) �m,n,p1,...,pm

( m

∑
i=1

‖bi‖Lip(Rn)

) m

∏
j=1

‖ f j‖B
p j,q
s (Rn)

. (10)

The same conclusions hold for M�b .

By the facts W 0,p(Rn) = Lp(Rn) and W s,p(Rn) = F p,2
s (Rn) for any s > 0 and

1 < p < ∞ and Theorems 1 and 2, we have

COROLLARY 1. Let 1 < p1, . . . , pm, p < ∞ , 0 � s � 1 and 1/p = 1/p1 + · · ·+
1/pm . Let �b = (b1, . . . ,bm) with each b j ∈ Lip(Rn) , then

[�b,M] : W s,p1(Rn)×·· ·×Ws,pm(Rn) →W s,p(Rn)

is bounded and continuous. Moreover, if �f = ( f1, . . . , fm) with each fi ∈ W s,pi(Rn) ,
then

‖[�b,M](�f )‖W s,p(Rn) �m,n,p1,...,pm

( m

∑
i=1

‖bi‖Lip(Rn)

) m

∏
j=1

‖ f j‖Ws,p j (Rn).

The same result holds for M�b .
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REMARK 3. (i) It is unknown whether the map Mα ,�b :W 1,p1(Rn)×·· ·×W1,pm(Rn)
→ W 1,q(Rn) is continuous under the conditions in Theorem 1, which is interesting,
even in the special case m = 1 and α = 0.

(ii) Theorem 1 implies Theorem C when m = 1.
(iii) Theorems 2 and 3 and Corollary 1 are new, even in the special case m = 1.

This paper will be organized as follows. Section 2 will be devoted to presenting
the proof of Theorem 1. In Section 3 we shall prove Theorem 2. The proof of Theorem
3 will be given in Section 4. We would like to remark that the main ideas in the proofs
of Theorems are motivated by [20, 22, 28].

Throughout the paper, the letter C or c , sometimes with certain parameters, will
stand for positive constants not necessarily the same one at each occurrence, but are
independent of the essential variables. If there exists a constant c > 0 depending only
on ϑ such that A � cB , we then write A �ϑ B or B �ϑ A ; and if A �ϑ and B �ϑ A ,
we then write A ∼ϑ B . In what follows, let Rn = {ζ ∈ R

n;1/2 < |ζ | � 1} and we
denote by Δζ ( f ) the difference of f for an arbitrary function f defined on R n and
ζ ∈ Rn , i.e., Δζ f (x) = f (x+ ζ )− f (x) .

2. Proof of boundedness and continuity on Sobolev spaces

This section is devoted to proving Theorem 1. Let us present some notations and
lemma, which play key roles in the proof of Theorem 1. Let el = (0, . . . ,0,1,0, . . . ,0)
be the canonical l -th base vector in R

n for l = 1, . . . ,n . Let 1 < p < ∞ and f ∈ L p(Rn) .
For all h ∈ R with |h| > 0, y ∈ Rn and i = 1, . . . ,n , we define the functions f i

h and fy

by setting

f i
h(x) =

f (x+ hei)− f (x)
h

and fy(x) = f (x+ y).

It is well known that
‖ f i

h −Di f‖Lp(Rn) → 0 as h → 0 (11)

if f ∈W 1,p(Rn) . For convenience, we set

G( f ; p) = limsup
|h|→0

‖ fh − f‖Lp(Rn)

|h| .

According to [7, Section 7.11], we have

u ∈W 1,q(Rn), 1 < q < ∞ ⇐⇒ u ∈ Lq(Rn) and G(u;q) < ∞. (12)

We now present a characterization of the product of a function in W 1,p(Rn) and a
function in Lip(Rn) . which was proved in [18].

LEMMA 1. ([18]) Let 1 < p < ∞ . If f ∈W 1,p(Rn) and b ∈ Lip(Rn) , then b f ∈
W 1,p(Rn) . Moreover,

Di(b f ) = bDi f + f Dib, i = 1, . . . ,n,



116 T. CHEN AND F. LIU

almost everywhere in Rn . Consequently,

∇(b f ) = b∇ f + f ∇b,

almost everywhere in Rn . In particular, it holds that

‖b f‖W1,p(Rn) �
√

n‖b‖Lip(Rn)‖ f‖W1,p(Rn).

Now we turn to present the proof of Theorem 1.

Proof of Theorem 1. In what follows, we let 0 � α < mn , 1 < p1, . . . , pm < ∞ ,
1 � q < ∞ and 1/q = 1/p1 + · · ·+ 1/pm −α/n . Let �f = ( f1, . . . , fm) with each fi ∈
W 1,pi(Rn) and �b = (b1, . . . ,bm) with each bi ∈ Lip(Rn) . We divide the proof into two
steps:

Step 1: Proof of Theorem 1 for [�b,Mα ]
By the definition of [�b,Mα ] , to prove (8), it suffices to prove that

‖[�b,Mα ]i(�f )‖W1,q(Rn) � C‖bi‖Lip(Rn)

m

∏
j=1

‖ f j‖W1,p j (Rn) (13)

for each i = 1, . . . ,m . We now prove (13) for i = 1 and other cases are analogous. By
Theorem A and invoking Lemma 1, we have

‖b1Mα(�f )‖W1,q(Rn) � C‖b1‖Lip(Rn)‖Mα(�f )‖W 1,q(Rn)

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖W1,p j (Rn).
(14)

For convenience, we set �f1,b1 = (b1 f1, f2, . . . , fm) . Invoking Lemma 1, we have that
b1 f1 ∈W 1,p1(Rn) and

‖b1 f1‖W 1,p1(Rn) � C‖b1‖Lip(Rn)‖ f1‖W1,p1 (Rn),

which together with Theorem A leads to

‖Mα(�f1,b1)‖W1,q(Rn) � C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖W1,p j (Rn). (15)

Combining (15) with (14) leads to (13) with i = 1.
We now prove the continuity result. Let �f j = ( f1, j, . . . , fm, j) with fi, j → fi in

W 1,pi(Rn) as j → ∞ for all i = 1, . . . ,m . We want to show that

‖[�b,Mα ]i(�f j)− [�b,Mα ]i(�f )‖W1,q(Rn) → 0 as j → ∞ (16)

for all i = 1, . . . ,m . We only work with the case i = 1 and other cases are analogous.
By Theorem A and Lemma 1, we have

‖b1Mα (�f j)−b1Mα(�f )‖W1,q(Rn)

� C‖b1‖Lip(Rn)‖Mα(�f j)−Mα(�f )‖W1,q(Rn) → 0 as j → ∞.
(17)
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By Lemma 1 again, we have that b1 f1 ∈W 1,p1(Rn) , b1 f1, j ∈W 1,p1(Rn) and

‖b1 f1, j −b1 f1‖W1,p1(Rn) = ‖b1( f1, j − f1)‖W 1,p1(Rn)
� C‖b1‖Lip(Rn)‖ f1, j − f1‖W1,p1 (Rn) → 0 as j → ∞,

which together with Theorem A implies

‖Mα(b1 f1, j, f2, j, . . . , fm, j)−Mα(b1 f1, f2, . . . , fm)‖W 1,q(Rn) → 0 as j → ∞.

This together with (17) implies (16) with i = 1.
Step 2: Proof of Theorem 1 for Mα ,�b
By the definition of Mα ,�b , it suffices to show that

‖Mi
α ,�b

(�f )‖W 1,q(Rn) � C‖bi‖Lip(Rn)

m

∏
j=1

‖ f j‖W1,p j (Rn) (18)

for each i = 1, . . . ,m . By (6), to prove (18), it suffices to show that

‖∇Mi
α ,�b

(�f )‖Lq(Rn) � C‖bi‖Lip(Rn)

m

∏
j=1

‖ f j‖W1,p j (Rn) (19)

for each i = 1, . . . ,m . We only prove (19) for i = 1 and other cases are analogous. Fix
y ∈ Rn . By Remark 2 (iii), we have

|(M1
α ,�b

(�f ))y(x)−M1
α ,�b

(�f )(x)|
= |M1

α ,�by
(�fy)(x)−M1

α ,�b
(�f )(x)|

� sup
r>0

1

|B(x,r)|m−α/n

∫
B(x,r)m

∣∣∣|(b1)y(x)− (b1)y(z1)|
∣∣∣ m

∏
j=1

( f j)y(z j)
∣∣∣

−|b1(x)−b1(z1)|
∣∣∣ m

∏
j=1

f j(z j)
∣∣∣∣∣∣dz1dz2 · · ·dzm

� sup
r>0

1

|B(x,r)|m−α/n

∫
B(x,r)m

|(b1)y(x)− (b1)y(z1)−b1(x)+ b1(z1)|

×
∣∣∣ m

∏
j=1

( f j)y(z j)
∣∣∣dz1dz2 · · ·dzm

+sup
r>0

1

|B(x,r)|m−α/n

∫
B(x,r)m

|b1(x)−b1(z1)|

×
∣∣∣ m

∏
j=1

( f j)y(z j)−
m

∏
j=1

f j(z j)
∣∣∣dz1dz2 · · ·dzm.

(20)

Observe that

m

∏
j=1

( f j)y(z j)−
m

∏
j=1

f j(z j) =
m

∑
l=1

(( fl)y(zl)− fl(zl))
( l−1

∏
μ=1

fμ(zμ)
)( m

∏
ν=l+1

( fν )y(zν )
)
,
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which combine with (20) yields

|(M1
α ,�b

(�f ))y(x)−M1
α ,�b

(�f )(x)|
� |(b1)y(x)−b1(x)|Mα (�fy)(x)+Mα(�f1,b1,y)(x)+

m

∑
l=1

M1
α ,�b

(�Fl,y)(x),
(21)

where
�f1,b1,y = (((b1)y −b1)( f1)y,( f2)y, . . . ,( fm)y),

�Fl,y = ( f1, . . . , fl−1,( fl)y − fl,( fl+1)y, . . . ,( fm)y).

By (2), (6), (21), Hölder’s inequality and Minkowski’s inequality, we have

‖(M1
α ,�b

(�f ))y −M1
α ,�b

(�f )‖Lq(Rn)

� ‖((b1)y −b1)Mα (�fy)‖Lq(Rn) +‖Mα(�f1,b1,y)‖Lq(Rn) +
m

∑
l=1

‖M1
α ,�b

(�Fl,y)‖Lq(Rn)

� C‖(b1)y −b1‖L∞(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn)

+C
m

∑
l=1

‖b1‖L∞(Rn)‖( fl)y − fl‖Lpl (Rn)

l−1

∏
μ=1

‖ fμ‖Lpμ (Rn)

m

∏
ν=l+1

‖( fν )y‖Lpν (Rn).

(22)

Since f j ∈W 1,p j(Rn) for 1 � j � m , then by (12), we have that G( f j, p j) < ∞ . There-
fore, we get from (22) and the property of b1 that

G(M1
α ,�b

(�f );q) = limsup
|y|→0

‖(M1
α ,�b

(�f ))y −M1
α ,�b

(�f )‖Lq(Rn)

|y|

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn)

+C
m

∑
l=1

‖b1‖L∞(Rn)G( fl , pl) ∏
1�μ�m

μ 
=l

‖ fμ‖Lpμ (Rn) < ∞.

(23)

Combining (23), (12) and (8) lead to M1
α ,�b

(�f ) ∈W 1,q(Rn) .

Fix l ∈ {1, . . . ,n} . From (11) and (22) we see that

‖DlM
1
α ,�b

(�f )‖Lq(Rn)

� liminf
h→0

∥∥∥(M1
α ,�b

(�f ))l
h

∥∥∥
Lq(Rn)

� C liminf
h→0

∥∥∥(b1)l
h

∥∥∥
L∞(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn)

+C
m

∑
j=1

‖b1‖L∞(Rn) liminf
h→0

∥∥∥( f j)l
h

∥∥∥
Lp j (Rn)

∏
1�μ�m

μ 
= j

‖ fμ‖Lpμ (Rn)
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� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn) +C
m

∑
j=1

‖b1‖L∞(Rn)‖Dl f j‖Lp j (Rn) ∏
1�μ�m

μ 
=l

‖ fμ‖Lpμ (Rn)

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖W1,p j (Rn).

This gives (19) for i = 1 and completes the proof of Theorem 1. �

3. Proof of boundedness and continuity on Triebel-Lizorkin spaces

In this section we shall prove Theorem 2. At first, let us introduce some properties
of Triebel-Lizorkin spaces and lemmas, which are the main ingredients of proof.

3.1. Properties on Triebel-Lizorkin spaces and some lemmas

Let Ḟ p,q
s (Rn) be the homogeneous Triebel-Lizorkin spaces. Let s > 0 and 1 <

p < ∞ , 1 < q � ∞ , 1 � r < ∞ . We denote by E s
p,q,r the mixed norm of three variable

functions g(x,k,ζ ) by

‖g‖Es
p,q,r

:=
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

|g(x,k,ζ )|rdζ
)q/r)1/q∥∥∥

Lp(Rn)
.

It was shown by Yabuta [28] that

‖ f‖Ḟ p,q
s (Rn) ∼ ‖Δ2−kζ f‖Es

p,q,r , for 0 < s < 1, 1 < p < ∞, 1 < q � ∞, 1 � r < min{p,q}.
(24)

Moreover, it was pointed out in [6, 8, 27] that

‖ f‖F p,q
s (Rn) ∼ ‖ f‖Ḟ p,q

s (Rn) +‖ f‖Lp(Rn), for s > 0, 1 < p,q < ∞, (25)

‖ f‖F p,q
s1 (Rn) � ‖ f‖F p,q

s2 (Rn), for s1 � s2, 1 < p, q < ∞, (26)

‖ f‖F
p,q2

s (Rn) � ‖ f‖F
p,q1

s (Rn), for s ∈ R, 1 < p < ∞, 1 < q1 � q2 < ∞. (27)

The following presents a characterization of the product of a function in F p,q
s (Rn)

and a function in Lip(Rn) .

LEMMA 2. Let 0 < s < 1 and 1 < p, q < ∞ . If f ∈ F p,q
s (Rn) and g ∈ Lip(Rn) ,

then f g ∈ F p,q
s (Rn) . Moreover,

‖ f g‖F p,q
s (Rn) �s,q ‖g‖Lip(Rn)‖ f‖F p,q

s (Rn). (28)

Proof. Note that

Δ2−kζ ( f g)(x) = Δ2−kζ f (x)Δ2−kζ g(x)+ g(x)Δ2−kζ f (x)+ f (x)Δ2−kζ g(x), (29)
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for all x ∈Rn , ζ ∈Rn and k ∈ Z . Combining (29) with (24) and Minkowski’s inequal-
ity implies that

‖ f g‖Ḟ p,q
s (Rn) � C

∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

|Δ2−kζ ( f g)|dζ
)q)1/q∥∥∥

Lp(Rn)

� C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

|Δ2−kζ f Δ2−kζ g|dζ
)q)1/q∥∥∥

Lp(Rn)

+C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

|gΔ2−kζ f |dζ
)q)1/q∥∥∥

Lp(Rn)

+C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

| f Δ2−kζ g|dζ
)q)1/q∥∥∥

Lp(Rn)

� C‖g‖L∞(Rn)

∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

|Δ2−kζ f |dζ
)q)1/q∥∥∥

Lp(Rn)

+C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

| f Δ2−kζ g|dζ
)q)1/q∥∥∥

Lp(Rn)

� C‖g‖L∞(Rn)‖ f‖Ḟ p,q
s (Rn)

+C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

| f Δ2−kζ g|dζ
)q)1/q∥∥∥

Lp(Rn)
.

Note that 0 < s < 1. By Minkowski’s inequality and the property of g , one has

∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

| f Δ2−kζ g|dζ
)q)1/q∥∥∥

Lp(Rn)

�
∥∥∥( 0

∑
k=−∞

2ksq
(∫

Rn

| f Δ2−kζ g|dζ
)q)1/q∥∥∥

Lp(Rn)

+
∥∥∥( ∞

∑
k=1

2ksq
(∫

Rn

| f Δ2−kζ g|dζ
)q)1/q∥∥∥

Lp(Rn)

�
(

2‖g‖L∞(Rn)

( 0

∑
k=−∞

2ksq
)1/q

+‖g‖Lip(Rn)

( ∞

∑
k=1

2kq(s−1)
)1/q)|Rn|‖ f‖Lp(Rn)

� 2
((

1
1−2−sq

)1/q
+

(
1

1−2−q(1−s)

)1/q)|Rn|‖g‖Lip(Rn)‖ f‖Lp(Rn).

Therefore, we get from (25) that

‖ f g‖Ḟ p,q
s (Rn) � C‖g‖Lip(Rn)‖ f‖F p,q

s (Rn).

This together with (25) and the trivial estimate ‖ f g‖Lp(Rn) � ‖g‖L∞(Rn)‖ f‖Lp(Rn) im-
plies (28). �

The following result will play a key role in the proof of Theorem 2.

LEMMA 3. ([28]). For any 1 < p, q, r < ∞ , we have

∥∥∥(
∑
k∈Z

‖M ( fk,ζ )‖q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� Cp,q,r

∥∥∥(
∑
k∈Z

‖ fk,ζ‖q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

.



COMMUTATORS OF MULTILINEAR MAXIMAL OPERATORS 121

3.2. Proof of Theorem 2

In what follows, we fix 1 < p1, . . . , pm, p,q < ∞ , 0 < s < 1 and 1/p = 1/p1 +
· · ·+1/pm . Let �b = (b1, . . . ,bm) with each b j ∈ Lip(Rn) . The proof of Theorem 2 will
be divided into two steps:

Step 1: Proof of Theorem 2 for [�b,M]
By Minkowski’s inequality, to prove (9), it suffices to show that

‖[�b,M]i(�f )‖F p,q
s (Rn) � C‖bi‖Lip(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
(30)

for each i = 1, . . . ,m .
We only prove (30) for the case i = 1 and other cases are analogous. By Theorem

B (i) and invoking Lemma 2, we have

‖b1M(�f )‖F p,q
s (Rn) � C‖b1‖Lip(Rn)‖M(�f )‖F p,q

s (Rn)

� C‖b1‖Lip(Rn)
m
∏
j=1

‖ f j‖F
p j ,q

s (Rn)
,

(31)

‖M(b1 f1, f2, . . . , fm)‖F p,q
s (Rn) � C‖b1 f1‖F

p1,q
s (Rn)

m

∏
j=2

‖ f j‖F
p j ,q

s (Rn)

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
.

(32)

Then (30) with i = 1 follows from (31) and (32).
Let �f j = ( f1, j, . . . , fm, j) with each fi, j → fi in F pi,q

s (Rn) as j → ∞ for all i ∈
{1, . . . ,m} . It suffices to show that

‖[�b,M]i(�f j)− [�b,M]i(�f )‖F p,q
s (Rn) → 0 as j → ∞ (33)

for all i = 1, . . . ,m . We only prove (33) for i = 1 since other cases can be proved
similarly. Invoking Lemma 2, we have

‖b1 f1, j −b1 f1‖F
p1,q

s (Rn) � C‖b1‖Lip(Rn)‖ f1, j − f1‖F
p1,q

s (Rn),

which together with the continuity result in Theorem B (i) yields that

‖M(b1 f1, j , f2, j, . . . , fm, j)−M(b1 f1, f2, . . . , fm)‖F p,q
s (Rn) → 0 as j → ∞. (34)

On the other hand, by invoking Lemma 2 and Theorem B (i) again,

‖b1M(�f j)−b1M(�f )‖F p,q
s (Rn) � C‖b1‖Lip(Rn)‖M(�f j)−M(�f )‖F p,q

s (Rn) → 0 as j → ∞,

which together with (34) leads to (33) with i = 1.
Step 2: Proof of Theorem 2 for M�b
At first, we shall prove the boundedness part. We want to show that

‖M�b(�f )‖F p,q
s (Rn) � C

( m

∑
i=1

‖bi‖Lip(Rn)

) m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
. (35)
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To prove (35), it suffices to prove that

‖Mi
�b
(�f )‖F p,q

s (Rn) � C‖bi‖Lip(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
(36)

for each i = 1, . . . ,m .
Without loss of generality we only prove (36) for the case i = 1 and other cases

are analogous. By (21) and (5), we have that, for any (x,k,ζ ) ∈ R
n ×Z×Rn ,

|Δ2−kζ (M1
�b
(�f ))(x)| � |Δ2−kζ b1(x)|M(�f2−kζ )(x)+M(�f1,b1,2−kζ )(x)

+|b1(x)|
m

∑
l=1

M(�Gl,2−kζ )(x)+
m

∑
l=1

M(�Gb1,l,2−kζ )(x)

=: Γ(x,k,ζ ),

(37)

where
�f1,b1,2−kζ = (Δ2−kζ b1( f1)2−kζ ,( f2)2−kζ , . . . ,( fm)2−kζ ),

�Gl,2−kζ = ( f1, . . . , fl−1,Δ2−kζ fl ,( fl+1)2−kζ , . . . ,( fm)2−kζ ),

�Gb1,1,2−kζ = (b1Δ2−kζ f1,( f2)2−kζ , . . . ,( fm)2−kζ ),

�Gb1,l,2−kζ = (b1 f1, f2, . . . , fl−1,Δ2−kζ fl ,( fl+1)2−kζ , . . . ,( fm)2−kζ ), l = 2, . . . ,m.

In light of (24) and (37) we would have

‖M1
�b
(�f )‖Ḟ p,q

s (Rn) � C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

|Δ2−kζ b1|M(�f2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

+C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

M(�f1,b1,2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

+C
∥∥∥|b1|

(
∑
k∈Z

2ksq
(∫

Rn

m

∑
l=1

M(�Gl,2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

+C
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

m

∑
l=1

M(�Gb1,l,2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

=: A1 + A2 + A3 + A4.

(38)

By the property of b1 and (2), we get

A1 � C
∥∥∥( 0

∑
k=−∞

2ksq
(∫

Rn

|Δ2−kζ b1|M(�f2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

+C
∥∥∥( ∞

∑
k=1

2ksq
(∫

Rn

|Δ2−kζ b1|M(�f2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

� C
(
‖b1‖L∞(Rn)

( 0

∑
k=−∞

2ksq
)1/q

+‖b1‖Lip(Rn)

( ∞

∑
k=1

2−kq(1−s)
)1/q)‖M(�f2−kζ )‖Lp(Rn)

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn).

(39)
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By Hölder’s inequality, we get

A2 �
∥∥∥ m

∏
j=2

M (( f j)2−kζ )
(

∑
k∈Z

2ksq
(∫

Rn

M (Δ2−kζ b1( f1)2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

� C
m

∏
j=2

‖M (( f j)2−kζ )‖Lp j (Rn)

×
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

M (Δ2−kζ b1( f1)2−kζ )dζ
)q)1/q∥∥∥

Lp1 (Rn)
.

(40)

By the property of b1 , we have

∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

M (Δ2−kζ b1( f1)2−kζ )dζ
)q)1/q∥∥∥

Lp1 (Rn)

�
∥∥∥( 0

∑
k=−∞

2ksq
(∫

Rn

M (Δ2−kζ b1( f1)2−kζ )dζ
)q)1/q∥∥∥

Lp1 (Rn)

+
∥∥∥( ∞

∑
k=1

2ksq
(∫

Rn

M (Δ2−kζ b1( f1)2−kζ )dζ
)q)1/q∥∥∥

Lp1 (Rn)

� C‖b1‖L∞(Rn)

∥∥∥( 0

∑
k=−∞

2ksq
(∫

Rn

M (( f1)2−kζ )dζ
)q)1/q∥∥∥

Lp1 (Rn)

+C‖b1‖Lip(Rn)

∥∥∥( ∞

∑
k=1

2ksq
(∫

Rn

2−k|ζ |M (( f1)2−kζ )dζ
)q)1/q∥∥∥

Lp1 (Rn)

� C
(
‖b1‖L∞(Rn)

( 0

∑
k=−∞

2ksq
)1/q

+‖b1‖Lip(Rn)

( ∞

∑
k=1

2−kq(1−s)
)1/q)‖M (( f1)2−kζ )‖Lp1 (Rn)

� C‖b1‖Lip(Rn)‖ f1‖Lp1 (Rn).

(41)

It follows from (40) and (41) that

A2 � C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn). (42)

For A3 , by Minkowski’s inequality, we get

A3 � C
m

∑
l=1

‖b1‖L∞(Rn)

∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

M(�Gl,2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)
. (43)

Let us fix l ∈ {1, . . . ,m} . Note that

M(�Gl,2−kζ ) � ∑
τ⊂El

∏
μ∈τ∪{l}

M (Δ2−kζ fμ) ∏
ν∈τ ′

M ( fν ), (44)

where El = {l +1, . . . ,m} and τ ′ = {1, . . . ,m}\ (τ∪{l}) . Let ατ be such that 1/ατ =
∑�∈τ 1/p� +1/pl . It is clear that p < ατ < pl and 1/p = 1/ατ +∑κ∈τ ′ 1/pκ . By (44),
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Minkowski’s inequality, Hölder’s inequality and the bounds for M , we have∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

M(�Gl,2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)

� ∑
τ⊂El

∥∥∥ ∏
ν∈τ ′

M ( fν )
(

∑
k∈Z

2ksq
(∫

Rn
∏

μ∈τ∪{l}
M (Δ2−kζ fμ)dζ

)q)1/q∥∥∥
Lp(Rn)

� C ∑
τ⊂El

∏
ν∈τ ′

‖M ( fν)‖Lpν (Rn)

×
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn
∏

μ∈τ∪{l}
M (Δ2−kζ fμ)dζ

)q)1/q∥∥∥
Lατ (Rn)

� C ∑
τ⊂El

∏
ν∈τ ′

‖ fν‖Lpν (Rn)

×
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn
∏

μ∈τ∪{l}
M (Δ2−kζ fμ)dζ

)q)1/q∥∥∥
Lατ (Rn)

.

(45)

Fix τ ⊂ El . By Hölder’s inequality, Lemma 3 and (24)–(27), we have∥∥∥(
∑
k∈Z

2ksq
(∫

Rn
∏

μ∈τ∪{l}
M (Δ2−kζ fμ)dζ

)q)1/q∥∥∥
Lατ (Rn)

�
∥∥∥(

∑
k∈Z

2ksq ∏
μ∈τ∪{l}

‖M (Δ2−kζ fμ)‖q

Lpμ /ατ (Rn)

)1/q∥∥∥
Lατ (Rn)

�
∥∥∥ ∏

μ∈τ∪{l}

(
∑
k∈Z

(2ksατ/pμ‖M (Δ2−kζ fμ)‖
Lpμ /ατ (Rn))

pμ q/ατ
)ατ/(qpμ)∥∥∥

Lατ (Rn)

� ∏
μ∈τ∪{l}

∥∥∥(
∑
k∈Z

(2ksατ/pμ‖M (Δ2−kζ fμ)‖
Lpμ /ατ (Rn))

pμ q/ατ
)ατ/(qpμ )∥∥∥

Lpμ (Rn)

� C ∏
μ∈τ∪{l}

∥∥∥(
∑
k∈Z

(2ksατ/pμ‖Δ2−kζ fμ‖Lpμ /ατ (Rn))
pμ q/ατ

)ατ/(qpμ )∥∥∥
Lpμ (Rn)

� C ∏
μ∈τ∪{l}

‖ fμ‖
Ḟ

pμ ,pμ q/ατ
ατ s/pμ

(Rn)

� C ∏
μ∈τ∪{l}

‖ fμ‖
F

pμ ,pμ q/ατ
ατ s/pμ

(Rn)

� C ∏
μ∈τ∪{l}

‖ fμ‖F
pμ ,q

s (Rn).

(46)

Combining (46) with (45) and (25) implies that
∥∥∥(

∑
k∈Z

2ksq
(∫

Rn

M(�Gl,2−kζ )dζ
)q)1/q∥∥∥

Lα (Rn)
� C

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
. (47)

It follows from (43) and (47) that

A3 � C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
. (48)

Invoking Lemma 2, we have b1 f1 ∈ F p1,q
s (Rn) and

‖b1 f1‖F
p1,q

s (Rn) � C‖b1‖Lip(Rn)‖ f1‖F
p1,q

s (Rn). (49)
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By (49) and the arguments similar to those used to derive (47), we have

∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

M(�Gb1,l,2−kζ )dζ
)q)1/q∥∥∥

Lp(Rn)
� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
(50)

for each l = 2, . . . ,m . Observe that

M(�Gb1,1,2−kζ ) � M (b1Δ2−kζ f1) ∑
τ⊂E1

∏
μ∈τ

M (Δ2−kζ fμ) ∏
ν∈τ ′

M ( fν )

� ‖b1‖L∞(Rn) ∑
τ⊂E1

∏
μ∈τ∪{1}

M (Δ2−kζ fμ) ∏
ν∈τ ′

M ( fν ).
(51)

By (51) and the arguments similar to those used to derive (47), one gets

∥∥∥(
∑
k∈Z

2ksq
(∫

Rn

M(�Gb1,1,2−kζ )dζ
)q)1/q∥∥∥

Lα (Rn)
� C‖b1‖L∞(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
.

(52)
By (50), (52) and Minkowski’s inequality, we obtain

A4 � C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
. (53)

Combining (53) with (38), (39), (42) and (48) implies (36) with i = 1.
Now we prove the continuity result for M�b . Let �f j = ( f1, j, . . . , fm, j) with each

fi, j → fi in F pi,q
s (Rn) as j → ∞ for all i ∈ {1, . . . ,m} . It is enough to show that

‖Mi
�b
(�f j)−Mi

�b
(�f )‖F p,q

s (Rn) → 0 as j → ∞ (54)

for all i = 1, . . . ,m .
We only prove (54) for i = 1 since other cases are analogous. By (25) we have

that fi, j → fi in Ḟ pi,q
s (Rn) and in Lpi(Rn) as j → ∞ for i = 1, . . . ,m . By (25) and (7),

to prove (54) with i = 1, it suffices to show that

‖M1
�b
(�f j)−M1

�b
(�f )‖Ḟ p,q

s (Rn) → 0 as j → ∞. (55)

We shall prove (55) by contradiction. Assume that (55) doesn’t hold. Without loss of
generality we may assume that there exists a constant c > 0 such that

‖M1
�b
(�f j)−M1

�b
(�f )‖Ḟ p,q

s (Rn) > c, ∀ j � 1. (56)

By (7), we may assume without loss of generality, by extracting a subsequence that
M1

�b
(�f j)(x)−M1

�b
(�f )(x) → 0 as j → ∞ for almost every x ∈ Rn . Hence

Δ2−kζ (M1
�b
(�f j)−M1

�b
(�f ))(x) → 0 as j → ∞ (57)

for every (k,ζ ) ∈Z×Rn and almost every x ∈Rn . By (37) we have that, for (x,k,ζ ) ∈
R

n ×Z×Rn ,

|Δ2−kζ (M1
�b
(�f j)−M1

�b
(�f ))(x)| � Γ j(x,k,ζ )+ Γ(x,k,ζ ), (58)
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where Γ is given as in (37) and

Γ j(x,k,ζ )

:=
∣∣∣|Δ2−kζ b1(x)|M((�f j)2−kζ )(x)+M(�f1, j,b1,2−kζ )(x)+ |b1(x)|

m

∑
l=1

M(�Gl, j,2−kζ )(x)

+
m

∑
l=1

M(�Gb1,l, j,2−kζ )(x)−Γ(x,k,ζ )
∣∣∣

�
4

∑
i=1

ϕi, j(x,k,ζ ),

(59)
where

ϕ1, j(x,k,ζ ) := |Δ2−kζ b1(x)||M((�f j)2−kζ )(x)−M(�f2−kζ )(x)|,
ϕ2, j(x,k,ζ ) := |M(�f1, j,b1,2−kζ )(x)−M(�f1,b1,2−kζ )(x)|,

ϕ3, j(x,k,ζ ) := |b1(x)|
m

∑
l=1

|M(�Gl, j,2−kζ )(x)−M(�Gl,2−kζ )(x)|,

ϕ4, j(x,k,ζ ) =
m

∑
l=1

|M(�Gb1,l, j,2−kζ )(x)−M(�Gb1,l,2−kζ )(x)|,

�f1, j,b1,2−kζ := (Δ2−kζ b1( f1, j)2−kζ ,( f2, j)2−kζ , . . . ,( fm, j)2−kζ ),

�Gb1,1, j,2−kζ := (b1Δ2−kζ f1, j,( f2, j)2−kζ , . . . ,( fm, j)2−kζ ),

�Gl, j,2−kζ := ( f1, j, . . . , fl−1, j ,Δ2−kζ fl, j,( fl+1, j)2−kζ , . . . ,( fm, j)2−kζ ),

�Gb1,l, j,2−kζ := (b1 f1, j , f2, j, . . . , fl−1, j,Δ2−kζ fl, j,( fl+1, j)2−kζ , . . . ,( fm, j)2−kζ ), l = 2, . . . ,m.

By the arguments similar to those used to derive (39), one has

‖ϕ1, j‖Es
p,q,1

� C‖b1‖Lip(Rn)‖M(�f j)−M(�f )‖F p,q
s (Rn),

which together with Theorem B (i) leads to

‖ϕ1, j‖Es
p,q,1

→ 0 as j → ∞. (60)

On the other hand, by the sublinearity for M and similar arguments as in deriving ( 48)
and (50), we can obtain

‖ϕi, j‖Es
p,q,1

� C‖b1‖Lip(Rn)

m

∑
l=1

‖ fl, j − fl‖F
pl ,q

s (Rn)

× ∏
1�μ�m

μ 
=l

(‖ fμ, j − fμ‖F
pμ ,q

s (Rn) +‖ fμ‖F
pμ ,q

s (Rn)), i = 2,3,4.
(61)

It follows from (59)–(61) that

‖Γ j‖Es
p,q,1

→ 0 as j → ∞. (62)
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By (62), there exists a subsequence { j�}∞
�=1 ⊂ { j}∞

j=1 such that

∞

∑
�=1

‖Γ j�‖Es
p,q,1

< ∞. (63)

We get from (39), (42), (48), (50) and Minkowski’s inequality that

‖Γ‖Es
p,q,1

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖F
p j ,q

s (Rn)
. (64)

On the other hand, we get from (58) that

|Δ2−kζ (M1
�b
(�f j� )−M1

�b
(�f ))(x)| �

∞

∑
�=1

Γ j�(x,k,ζ )+ Γ(x,k,ζ ) =: Φ(x,k,ζ ), (65)

for all (x,k,ζ ) ∈ Rn ×Z×Rn . By (64), (65) and Minkowski’s inequality, we have that
‖Φ‖Es

p,q,1
< ∞ . Hence,

∫
Rn

Φ(x,k,ζ )dζ < ∞ for every k ∈ Z and almost every x ∈ Rn .
By (57), (65) and the dominated convergence theorem, we have∫

Rn

|Δ2−kζ (M1
�b
(�f j�)−M1

�b
(�f ))(x)|dζ → 0 as � → ∞ (66)

for every k ∈ Z and almost every x ∈ Rn . By the fact ‖Φ‖Es
p,q,1

< ∞ , one has

(
∑
k∈Z

2ksq
(∫

Rn

Φ(x,k,ζ )dζ
)q)1/q

< ∞ (67)

for almost every x ∈ Rn . From (65) we see that∫
Rn

|Δ2−kζ (M1
�b
(�f j�)−M1

�b
(�f ))(x)|dζ �

∫
Rn

Φ(x,k,ζ )dζ , (68)

for all (x,k,ζ ) ∈ Rn×Z×Rn and � � 1. By (66)–(68) and the dominated convergence
theorem, one finds that(

∑
k∈Z

2ksq
(∫

Rn

|Δ2−kζ (M1
�b
(�f j�)−M1

�b
(�f ))(x)|dζ

)q)1/q → 0 as � → ∞. (69)

Using (65) and the fact that ‖Φ‖Es
p,q,1

< ∞ again,

(
∑
k∈Z

2ksq
(∫

Rn

|Δ2−kζ (M1
�b
(�f j�)−M1

�b
(�f ))(x)|dζ

)q)1/q

�
(

∑
k∈Z

2ksq
(∫

Rn

|Φ(x,k,ζ )|dζ
)q)1/q

< ∞
(70)

for almost every x ∈ Rn . It follows from (69), (70) and the dominated convergence
theorem that

‖Δ2−kζ (M1
�b
(�f j� )−M1

�b
(�f ))‖Es

p,q,1
→ 0 as � → ∞,

which combining with (24) leads to ‖M1
�b
(�f j�)−M1

�b
(�f )‖Ḟ p,q

s (Rn) → 0 as � → ∞ . This
is in contradiction with (56). This finishes the proof of Theorem 2. �
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4. Proof of boundedness and continuity on Besov spaces

In this section we shall present the proof of Theorem 3. Let us begin with some
properties of Besov spaces.

4.1. Properties on Besov spaces

We denote by Ḃp,q
s (Rn) the homogeneous Besov spaces. It was proved by Yabuta

[28] that if 0 < s < 1, 1 � p < ∞ , 1 � q � ∞ and 1 � r � p , then

‖ f‖Ḃp,q
s (Rn) ∼

(
∑
k∈Z

2ksq
∥∥∥(∫

Rn

|Δ2−kζ f |rdζ
)1/r∥∥∥q

Lp(Rn)

)1/q
. (71)

For a measurable function g : Rn ×Z×Rn → R , we define

‖g‖p,q,s :=
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

|g(x,k,ζ )|pdxdζ
)q/p)1/q

.

Then, by (71) and Fubini’s theorem, we have

‖ f‖Ḃp,q
s (Rn) ∼ ‖Δ2−kζ f‖p,q,s. (72)

It is well known that (see [6, 8, 27])

‖ f‖Bp,q
s (Rn) ∼ ‖ f‖Ḃp,q

s (Rn) +‖ f‖Lp(Rn), for s > 0, 1 < p,q < ∞, (73)

‖ f‖Bp,q
s1 (Rn) � ‖ f‖Bp,q

s2 (Rn), for s1 � s2, 1 < p, q < ∞, (74)

‖ f‖B
p,q2
s (Rn) � ‖ f‖B

p,q1
s (Rn), for s ∈ R, 1 < p < ∞, 1 < q1 � q2 < ∞. (75)

The following presents a characterization of of the product of a function in B p,q
s (Rn)

and a function in Lip(Rn) .

LEMMA 4. Let 0 < s < 1 and 1 < p,q < ∞ . If f ∈ B p,q
s (Rn) and g ∈ Lip(Rn) ,

then f g ∈ Bp,q
s (Rn) . Moreover,

‖ f g‖Bp,q
s (Rn) � C‖g‖Lip(Rn)‖ f‖Bp,q

s (Rn). (76)

Proof. By (73) and the trivial estimate ‖ f g‖Lp(Rn) � ‖g‖L∞(Rn)‖ f‖Lp(Rn) , to prove
(76), it suffices to show that

‖ f g‖Ḃp,q
s (Rn) � C‖g‖Lip(Rn)‖ f‖Bp,q

s (Rn). (77)
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By (29), (72) and Minkowski’s inequality, we have

‖ f g‖Ḃp,q
s (Rn) � C

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

|Δ2−kζ ( f g)(x)|pdxdζ
)q/p)1/q

� C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

|Δ2−kζ f (x)Δ2−kζ g(x)|pdxdζ
)q/p)1/q

+C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

|g(x)Δ2−kζ f (x)|pdxdζ
)q/p)1/q

+C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

| f (x)Δ2−kζ g(x)|pdxdζ
)q/p)1/q

� C‖g‖L∞(Rn)

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

|Δ2−kζ f (x)|pdxdζ
)q/p)1/q

+C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

| f (x)Δ2−kζ g(x)|pdxdζ
)q/p)1/q

� C‖g‖L∞(Rn)‖ f‖Ḃp,q
s (Rn)

+C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

| f (x)Δ2−kζ g(x)|pdxdζ
)q/p)1/q

.

(78)

By the property of g , we have
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

| f (x)Δ2−kζ g(x)|pdxdζ
)q/p)1/q

�
( 0

∑
k=−∞

2ksq
(∫

Rn

∫
Rn

| f (x)Δ2−kζ g(x)|pdxdζ
)q/p)1/q

+
( ∞

∑
k=1

2ksq
(∫

Rn

∫
Rn

| f (x)Δ2−kζ g(x)|pdxdζ
)q/p)1/q

� C|Rn|‖g‖L∞(Rn)‖ f‖Lp(Rn)

( 0

∑
k=−∞

2ksq
)1/q

+C|Rn|‖g‖Lip(Rn)‖ f‖Lp(Rn)

( ∞

∑
k=1

2−kq(1−s)
)1/q

� C‖g‖Lip(Rn)‖ f‖Lp(Rn).

(79)

Then (77) follows from (73), (78) and (79). �

4.2. Proof of Theorem 3

In this subsection we shall prove Theorem 3. Applying Lemma 4, Theorem B
(ii) and the arguments similar to those used in deriving the Triebel-Lizorkin space
boundedness and continuity for [�b,M] , one can get (10) and the continuity for [�b,M] :
Bp1,q

s (Rn)×·· ·×Bpm,q
s (Rn) → Bp,q

s (Rn) .
Next we prove Theorem 3 for M�b . In what follows, we fix 0 < s < 1, 1 <

p1, . . . , pm, p,q < ∞ and 1/p = 1/p1 + · · ·+ 1/pm . At first, we shall prove that

‖M�b(�f )‖Bp,q
s (Rn) � C

( m

∑
i=1

‖bi‖Lip(Rn)

) m

∏
j=1

‖ f j‖B
p j,q
s (Rn)

. (80)
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By Minkowski’s inequality, to prove (80), it is enough to show that

‖Mi
�b
(�f )‖Bp,q

s (Rn) � C‖bi‖Lip(Rn)

m

∏
j=1

‖ f j‖B
p j,q
s (Rn)

(81)

for each i = 1, . . . ,m .
We only work with (81) for the case i = 1 since other cases are analogous. By

(72) and (37), we have

‖M1
�b
(�f )‖Ḃp,q

s (Rn)

� C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(|Δ2−kζ (M1
�b
(�f ))(x)|)pdxdζ

)q/p)1/q

� C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(|Δ2−kζ b1(x)|M(�f2−kζ )(x))pdxdζ
)q/p)1/q

+C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(M(�f1,b1,2−kζ )(x))pdxdζ
)q/p)1/q

+C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

( m

∑
l=1

|b1(x)|M(�Gl,2−kζ )(x)
)p

dxdζ
)q/p)1/q

+C
(

∑
k∈Z

2ksq
(∫

Rn

∫
Rn

( m

∑
l=1

M(�Gb1,l,2−kζ )(x)
)p

dxdζ
)q/p)1/q

=: B1 + B2 + B3 + B4.

(82)

By (2) and the property of b1 , we have

B1 � C
(

∑
k∈Z

2ksq
(∫

Rd

∫
Rn

(|Δ2−kζ b1(x)|M(�f2−kζ )(x))pdxdζ
)q/p)1/q

� C
( 0

∑
k=−∞

2ksq
(∫

Rd

∫
Rn

(|Δ2−kζ b1(x)|M(�f2−kζ )(x))pdxdζ
)q/p)1/q

+C
( ∞

∑
k=1

2ksq
(∫

Rd

∫
Rn

(|Δ2−kζ b1(x)|M(�f2−kζ )(x))pdxdζ
)q/p)1/q

� C
(
‖b1‖L∞(Rn)

( 0

∑
k=−∞

2ksq
)1/q

+‖b‖Lip(Rn)

( ∞

∑
k=1

2−kq(1−s)
)1/q)

×‖M(�f2−kζ )‖Lp(Rn)

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn).

(83)

B2 � C
(

∑
k∈Z

2ksq
(
‖Δ2−kζ b1( f1)2−kζ ‖Lp1(Rn×Rn) ∏

j=2
‖( f j)2−kζ‖Lp j (Rn)

)q)1/q

� C
( 0

∑
k=−∞

2ksq
(
‖Δ2−kζ b1( f1)2−kζ‖Lp1 (Rn×Rn) ∏

j=2
‖ f j‖Lp j (Rn)

)q)1/q

+C
( ∞

∑
k=1

2ksq
(
‖Δ2−kζ b1( f1)2−kζ ‖Lp1(Rn×Rn) ∏

j=2
‖ f j‖Lp j (Rn)

)q)1/q
(84)
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� C
(
‖b1‖L∞(Rn)

( 0

∑
k=−∞

2ksq
)1/q

+‖b‖Lip(Rn)

( ∞

∑
k=1

2−kq(1−s)
)1/q)

×
m

∏
j=1

‖ f j‖Lp j (Rn)

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖Lp j (Rn).

By Minkowski’s inequality and Hölder’s inequality, one has

B3 � C‖b1‖L∞(Rn)

m

∑
l=1

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(
M(�Gl,2−kζ )(x)

)p
dxdζ

)q/p)1/q
. (85)

Fix l ∈ {1, . . . ,m} . Let El = {l + 1, . . . ,m} and τ ′, ατ be given as in the proof of
Theorem 2. By Minkowski’s inequality, Hölder’s inequality, (44) and the bounds for
M , one finds that

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(M(�Gl,2−kζ )(x))pdxdζ
)q/p)1/q

� ∑
τ⊂El

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(
∏

μ∈τ∪{l}
M (Δ2−kζ fμ) ∏

ν∈τ ′
M ( fν )

)p
dxdζ

)q/p)1/q

� C ∑
τ⊂El

∏
ν∈τ ′

‖M ( fν)‖Lpν (Rn)

(
∑
k∈Z

2ksq
∥∥∥ ∏

μ∈τ∪{l}
M (Δ2−kζ fμ)

∥∥∥q

Lατ (Rn×Rn)

)1/q

� C ∑
τ⊂El

∏
ν∈τ ′

‖ fν‖Lpν (Rn)

(
∑
k∈Z

2ksq
∥∥∥ ∏

μ∈τ∪{l}
M (Δ2−kζ fμ)

∥∥∥q

Lατ (Rn×Rn)

)1/q
.

(86)

By the bounds for M and (72)–(75), we have

(
∑
k∈Z

2ksq
∥∥∥ ∏

μ∈τ∪{l}
M (Δ2−kζ fμ)

∥∥∥q

Lατ (Rn×Rn)

)1/q

�
(

∑
k∈Z

2ksq ∏
μ∈τ∪{l}

‖M (Δ2−kζ fμ)‖Lpμ (Rn×Rn)

)q)1/q

� ∏
μ∈τ∪{l}

(
∑
k∈Z

(2ksατ/pμ‖M (Δ2−kζ fμ)‖Lpμ (Rn×Rn))
pμ q/ατ

)ατ/(pμ q)

� ∏
μ∈τ∪{l}

‖ fμ‖
Ḃ

pμ ,pμ q/ατ
sατ /pμ

(Rn)

� ∏
μ∈τ∪{l}

‖ fμ‖
B

pμ ,pμ q/ατ
sατ /pμ

(Rn)

� ∏
μ∈τ∪{l}

‖ fμ‖B
pμ ,q
s (Rn).

(87)

It follows from (73), (86) and (87) that

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(M(�Gl,2−kζ )(x))pdxdζ
)q/p)1/q

� C
m

∏
j=1

‖ f j‖B
p j ,q
s (Rn)

. (88)
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Combining (85) with (88) and the property of b1 implies

B3 � C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖B
p j ,q
s (Rn)

. (89)

By (51) and the arguments similar to those used to derive (88), one has

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(
M(�Gb1,1,2−kζ )(x)

)p
dxdζ

)q/p)1/q

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖B
p j,q
s (Rn)

.
(90)

On the other hand, by Lemma 4, we have that b1 f1 ∈ Bp1,q
s (Rn) and

‖b1 f1‖B
p1,q
s (Rn) � C‖b1‖Lip(Rn)‖ f1‖B

p1,q
s (Rn),

which together with the arguments similar to those used to derive ( 88) implies

(
∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(
M(�Gb1,l,2−kζ )(x)

)p
dxdζ

)q/p)1/q

� C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖B
p j,q
s (Rn)

(91)

for each l = 1, . . . ,m . Then by (90), (91) and Minkowski’s inequality, one has

B4 � C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖B
p j ,q
s (Rn)

. (92)

Combining (92) with (82)–(84) and (89) implies (81) for i = 1.
It remains to prove the continuity result for M�b . The proof is similar as in the

proof of the continuity part for M�b in Theorem 2. Let �f j = ( f1, j , . . . , fm, j) with each
fi, j → fi in Bpi,q

s (Rn) as j → ∞ for all i ∈ {1, . . . ,m} . It suffices to show that

‖Mi
�b
(�f j)−Mi

�b
(�f )‖Bp,q

s (Rn) → 0 as j → ∞ (93)

for all i = 1, . . . ,m .
We only prove (93) for i = 1 since other cases are analogous. By (73), we have

that, fi, j → fi in Ḃpi,q
s (Rn) and in Lpi(Rn) as j → ∞ for all i ∈ {1, . . . ,m} . By (7), to

conclude (93) with i = 1, it suffices to prove that

‖M1
�b
(�f j)−M1

�b
(�f )‖Ḃp,q

s (Rn) → 0 as j → ∞. (94)

We shall prove (94) by contradiction. Assume that (94) doesn’t hold. We may assume,
without loss of generality that, there exists a constant c > 0 such that

‖M1
�b
(�f j)−M1

�b
(�f )‖Ḃp,q

s (Rn) > c, for all j � 1.
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Let {ϕi, j}4
i=1 , and Γ j, Γ be given as in the proof of Theorem 2. Using arguments

similar to those used in deriving (90) and (91), one obtains

‖ϕi, j‖p,q,s � C‖b1‖Lip(Rn)

m

∑
l=1

‖ fl, j − fl‖B
pl ,q
s (Rn)

× ∏
1�μ�m

μ 
=l

(‖ fμ, j − fμ‖B
pμ ,q
s (Rn) +‖ fμ‖B

pμ ,q
s (Rn)),

for i = 1,2,3,4. It follows that

‖Γ j‖p,q,s � C‖b1‖Lip(Rn)

m

∑
l=1

‖ fl, j − fl‖B
pl ,q
s (Rn)

× ∏
1�μ�m

μ 
=l

(‖ fμ, j − fμ‖B
pμ ,q
s (Rn) +‖ fμ‖B

pμ ,q
s (Rn)).

(95)

By (37), (83), (84), (89), (92) and Minkowski’s inequality, we have

‖Γ‖p,q,s � C‖b1‖Lip(Rn)

m

∏
j=1

‖ f j‖B
p j,q
s (Rn)

. (96)

The rest of proof follows from (95), (96) and the arguments similar to the proof of
Theorem 2. We omit the details. �
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