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APPROXIMATION BY LINEAR COMBINATIONS
OF TRANSLATES OF A SINGLE FUNCTION

DINH DONG AND VU NHAT HuY *

(Communicated by Z. Ditzian)

Abstract. We study approximation of periodic functions by arbitrary linear combinations of n
translates of a single function. We construct some linear methods of this approximation for
univariate functions in the class induced by the convolution with a single function, and prove
upper bounds of the LP-approximation convergence rate by these methods, when n — o, for
1 < p <. We also generalize these results to classes of multivariate functions defined as the
convolution with the tensor product of a single function. In the case p = 2, for this class, we
also prove a lower bound of the quantity characterizing best approximation of by arbitrary linear
combinations of n translates of arbitrary function.

1. Introduction

The present paper continues investigating the problem of function approximation
by arbitrary linear combinations of n translates of a single function which has been
studied in [1, 3]. In the last papers, some linear methods were constructed for approxi-
mation of periodic functions in a class induced by the convolution with a given function,
and prove upper bounds of the L P-approximation convergence rate by these methods,
when n — o, for the case 1 < p < . The main technique of the proofs of the results
is based on Fourier analysis, in particular, the multiplier theory. However, this tech-
nique cannot be extended to the two important cases p=1 and p = . In the present
paper, we aim at this approximation problem for the cases p=1 and p = « by using
a different technique. For convenience of presentation we will do this for 1 < p < «.

We shall begin our discussion here by introducing notation used throughout the
paper. In this regard, we merely follow closely the presentation in [1, 3]. The d-
dimensional torus denoted by T is the cross product of d copies of the interval [0, 27]
with the identification of the end points. When d = 1, we merely denote the d-torus
by T. Functions on T¢ are identified with functions on RY which are 27 periodic in
each variable. Denote by LP(T%), 1 < p < o, the space of integrable functions on T¢
equipped with the norm

o= (2m) 9P (fra |F(X)[PAX)P, 1
P | ess supyeqal (X)) p
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We will consider only real valued functions on T9. However, all the results in this
paper are true for the complex setting. Also, we will use Fourier series of a real valued
function in complex form.

Here, we use the notation Ny, for the set {1,2,...,m}. For vectors x := (x : | €
Ng) and y = (y; : 1 € Ng) in T¢ we use (x,y) := Yieng XY for the inner product of x
with y. Also, for notational convenience we allow Ny and Zg to stand for the empty
set. Given any integrable function f on T¢ and any lattice vector j = (j; :1 € Ng) € Z9,
we let f(j) denote the j-th Fourier coefficient of f defined by the equation

G [, 1m0

Frequently, we use the superscript notation B¢ to denote the cross product of d copies
of agivenset B in RY.

Let S(TY) be the space of distributions on T9. Every f € S(T%) can be identified
with the formal Fourier series

f— Z f\(j)é(J )

jezd

where the sequence (fA(j) . j €29 forms a tempered sequence.
Let A : R — R\ {0} be a bounded function. With the univariate A we associate
the multivariate tensor product function A4 given by

d
=] A(x 1 e Ng),
I=1
and introduce the function ¢, 4, defined on T9 by the equation
Pia(x) = Y, (i) M)
jezd

Moreover, in the case that d = 1 we merely write ¢, for the univariate function ¢, ;.
We introduce a subspace of LP(T9) defined as

Ay o) = {11 = gravg ge LP(T },

with norm
11l pcrety == N9l s

where f; * f, is the convolution of two functions f; and f, on Td.

As in [1, 3], we are concerned with the following concept. Let W be a prescribed
subset of LP(TY) and y € LP(TY) be a given function. We are interested in the approx-
imation in LP(T9)-norm of all functions f € W by arbitrary linear combinations of n
translates of the function v/, that is, by the functions in the set {y(- —y;): y; € T9
| € Ny} and measure the error in terms of the quantity

Mn(W, y)p = sup mf{ Hf— Y (- y|)H ‘g ERY e’JI‘d}.
€Ny
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The aim of the present paper is to investigate the convergence rate, when n — oo, of
Mn(Uj p(T%), w)p for 1 < p < oo, where

Upp(T%) 1= { T € 76 (T [fll,5 0y <1}

is the unit ball in Jﬁ,p('ﬂ‘d). We shall also obtain a lower bound for the convergence
rate as n — oo of the quantity

Mn(Uj 2(T9)) == inf{Mn(U“(Td), PRRTAS LZ(Td)} ,

which gives information about the best choice of y.

This paper is organized in the following manner. In Section 2, we give the nec-
essary background from Fourier analysis and construct a method for approximation of
functions in the univariate case. In Section 3, we extend the method of approxima-
tion developed in Section 2 to the multivariate case, in particular, prove upper bounds
for the approximation error and convergence rate, we also prove a lower bound of
Mn(Uz 2(T%))z.

2. Univariate approximation

In this section, we construct a linear method in the form of a linear combination of
translates of a function ¢g defined as in (1) for approximation of univariate functions
in 22, o(T). We give upper bounds of the approximation error for various A and j3.

Let 1,8,9 : R — R be given 2-times continuously differentiable functions and

¥ be such that
i _11
ﬂ(x)::{l’ X<l

0, ifx¢g(-1,1).
Corresponding to these functions we define the functions ¢ and Hp, as
A(X i
G (x) := Q, Hm(x) := Y 9(k/m)% (k) €, )
B(X) keZ
For a function f € 773 ,(T) represented as f = ¢, xg, g € LP(T), we define the
operator
1@ 2rk 2rk
Qmp(f) = mgme(g) (m) 0p ( - m) ; (3)

where Vin(9) := Hm*g. Finally, we define for a function h: R — R,

om(h; £)(x) := Y h(k/m) fid®~.
keZ
Let us obtain upper estimates for the error of approximating a function f € 7 ,(T)
by the trigonometric polynomial Qp,,5(f) a linear combination of 2m+ 1 translates of
the function ¢g .



172 D. DUNG AND V. NHAT HUY

DEFINITION 1. A 2-times continuously differentiable function y: R — R is called
a function of monotone type if there exists a positive constant ¢ such that

lw(X)| = colw(y)l, v (X)]=coly (y)| forall 2|y > [x| > |y]/2.
We put
emi=Jdn(A)+ sup (%(X)Hmz sup |§/(x)|>Jm(B),
[X|€[—m,m] [X|€[~m,m]

where for a 2-times continuously differentiable function v,

In(y) = /|X|>m< M‘ + ‘xy/"(x)D dx.

m
THEOREM 1. Let 1 < p < . Assume that the functions A, are of monotone
type. Then there exists a positive constant ¢ suchthat for all f € 73 ,(T) and me N,

I = Qmp(F)llp < ceml 5 ym)-

Before we give the proof of the above theorem, we recall a lemma proved in [ 6],

[7]

LEMMA 1. Let 1< p<eo, f €LP(T) and h: R — R be2-times continuously dif-
ferentiable function, supported on [—1,1]. Then there exists a constant ¢, independent
of f,h,m such that

om(h; £)1p < callh /| -

We also need a Landau’s inequality for derivatives [4].
LEMMA 2. Let f € L*(R) be 2-times continuously differentiable function. Then
112 < A1 F[leal 7] oo

In particular,
1 oo < M Flleo + 1 [loo

Proof of Theorem 1. Let f € 7 ,(T) be represented as ¢, 4+ g for some g
LP(T). We define the kernel Pn(x,t) for x,t € T as

2nk 2nk
An(x,1): 2m+12‘pﬁ< 2m+1>Hm<2m+1_t>'

It is easy to obtain from the definition (3) that

Qup(f /met
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We now use equation (1), the definition of the trigonometric polynomial Hp, given in
equation (2) and the easily verified fact, for k;s € Z,s € [-m,m|, that

0 Z

1 Z gk(t—(2nt/(2m+1))) ds((2mt/(2m+1))~ ):{ ’ 2m+1¢ )
2m+1 4 o .

g(k—kmlt, if X5 €7,

to conclude that o
=Y y(k)ee Tkt
keZ
where y(k) = & (Km/M)¥ (km)B (k) and km € [-m,m] satisfy (k—km)/(2m+1) € Z
Hence,

Qmp ()0 =Y 1K€ Gkn) + >, 7K€ G( +27
k>m k<—m k=—m
= n(X) + Bn(X) + Eim(X).

Consequently,
I = Qmp(H)llp < [l p+ | Zrmllp + | F — Gl p. )

For each j € N, we define the functions Ajm(X), Zm(X), “#jm(X), Z;m(x) and the
set |jm as follows

Ajm(X) 1= B(Mx+j@2m+1)),  Zm(X) =9 (mx),

Him(X) = A m(¥)O(X) Fm(x),  Dim(x):= D, v(K)€*Glkn),

keljm

lim:={keZ: (2m+1)j—m<k< (2m+1)j+m}.

Then we have .
=Y Y 7(KeGkn) = Y Zim(X), )

jeNKeljm jeN
and forall k € I m,

(k) = B(K) D (km/M)¥ (k) = B(j(2M+ 1) + km) & (km/m)¥ (km)
= Ajm(Km/m) 8 (km/M)¥ (km) = Ajm(km/m) & (km/m) _Zm(km/m)
j m(Km/m).

Zjm(X) Z (K 2 Jm(km/m) J@m1)Hhm)x 9(km)

_ eij(2m+l)x 2 c%/]m(km/m)elkm)(/g\(km) _ eij(2m+1)xo-m(f%/j,m; g)
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Therefore, by Lemma 1, there exists a constant ¢; such that

1Zimllp < call (#im)" -l p-

Then it follows from (5) that

Illp < X 1 Zimlp < X 1(Hjm) ll=llgllp- (6)
jeN jeN

From the definition of % m, supp® C [~1,1], and |||« < 2] [|ee < 4|0 [|-o, We
deduce that

185 - <410l st (1853m9) A+ 1(Asm. S 091 1y m ) 0]

xe[-1,1

<419"l| sup (1BOO1+mIB (1 +mPIB"(]) sup [#(x)]

XEljm xe[—mm|

+msup (1B0)1+miB')1) sup |9 ()

X€ljm xe[—mm|

+nf sup (Bl sup 1" ().

XEljm xe[—m,m|

Hence,

(Him) [l < 410"l sup (IBOO| + mIB'0)|+ P18 ()]}

XEljm

x sup (|9()]+ m' (9] + |9 (x)])

X€[—m,m|
forall j € N. Therefore, it follows from (6) that
Imllp < 4cu]} 0]l 3, sup (1B 0<)1+mip ()| -+ 1B (9])
jeNXEljm

x sup_ (1091 +mig )1+ Pl (9] ) gl

Xe[—m,m|
So, by Lemma 2, we have
I mllp < 16610l 3 sup (IBOII-+mPIB" (X)) x
jeNXEljm

x sup (19091 +mPig" (9] gllp- ()

Xe[—m,m|

Since the function o, 3 is of monotone type, there exists a positive constant cg such
that

lo(X)] = coler(y)], e ()] = cole” (y)],1B(X)| = ol BY)I,IB" (X)| = ol B" ()| (8)
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forall 4|y| > |x| > |y|/4. Hence,
Co

sup [B(X)| < B(x)|dx,
X|€lj,m M Jix|eljm
sup [m?B” (x)] < com 18" (x)|dx.
E [X|€1jm

So,
%\uxfgﬁm(ﬁ(ﬂﬂmzﬁﬁ <CO//m< O mp |)dX<CoJm(ﬁ)-

Combining this with (7), we obtain that

|-l p < 161 [0 ||weml|l p- ©)

Similarly,
[[%mllp < 16CoCe[|D |ml|dl[p- (10)

Next, we will estimate || f —%m||p. Notice that y(k) = 9 (k/m)¥ (k) B (k) = ¢ (k/m)A (k)
for ke [-m,m], and then

Om(V; =Y o(k/m)f(ké Zz‘}k/m K)G(k)e

keZ

Z (KG(K)E™ = Em(x),
and therefore,
I —=Gmllp = [[f — om(2; F)l[p. (11)
We define the functions S(x), ®@jm(x) and ¥jm(x) as
S(X) = 0(X) = ¥(x/2), DPjm(X):=A(2'MX), ¥jm(X):=SX)Djm(X).
Clearly, we have that
(9(k/(2771m)) — B (k/(2)m)))A (K) = S(k/ (2)m) @) m(k/(2Tm)) = ¥} m(k/(2'm)),

which together with

Gpism(0: 1) = Goim(9 1) = X, (3 (k/(2171m)) — 9 (k/ (2Tm) f (k)

keZ

= (9(k/(277Hm) — 9 (k/(2)m))) A (K g(K) e

keZ

implies that

Oitim(D5 f) — Gim(V; ) k%qu m k/(ZJm)) a( )el = Oim(¥jm: 9)-
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Then by Lemma 1, we obtain

1021+1m(D; F) = Goim(D: F) [ p < C['¥ ml=[| 9 p- (12)

Moreover, from the definition of ¥y, suppSC [—2,—-1/2]U[1/2,2], and ||F]|.. <
2||S || < 4)|S||o < 8]|8"|-o, We have that

¥ m(X)] = S (XD} m(X) +2S (@] 1(X) + SK) D] m(X)]

<89l sup (|®jm(X)] + P} m03)| + D] ()]
[xl€[1/2,2]

<169l sup (|®m(x)| + ] (X))
[xl€[1/2,2]

=160 sup  (1AG)]+ @M ()

[x|€[2i~tm2i+1m|

<649l sup  (1A091+ pA" (1)

Ix|€[2i-1m2i+1m]

Combining this and (12), we deduce

| Gzraan(; ) = Gim(; F)llp < B4cal| 9" sup (12091 + A" () gl

[x|€[2i=tm2i+im|
Therefore, by (11) and limm ... | f — 02, (D; T)||p = 0, we have that

[f—6mllp < 2 [02i+1m(F; F) — Gim(D; F)lp

<oscto'.y,  sup (RGI+PRA ) gl (13)

j=0|x|€[2i=tm,2i+1m]|

Since (8),
sp (0] < o x)|dx < _/ (X)]dx,
[x|e[2i-1m2i+1m| 2im \X\€[21m21+1m ‘X‘€21m21+1m
and
sup XA (X)) < 2¢ / ldx
[x|€[2i-1m2i+1m| [x|€[2im,2i+1m]
So,
< " 2, X "
sup (WX)I+IX2/1 (x)l) < 209 (Mer?L (x)|) dx
j=0x/€[21-Im2i+1m] [x|>m m

= 260dm(1).
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Hence, by (13), we deduce
If —Ginllp < 128c0c1 |9 el p- (14)
Combining (9), (10) and (14) we have

1T = Qmp(f)llp < cemll fllz ). O

From the above theorem, by letting A = 3, we obtain the following corollary.

COROLLARY 1. Let 1 < p< o and A be of monotone type. Then there exists a
positive constant ¢ such that for all f € 7 ((T) and me N,

1 = Qma(D)llp < (M)l )

DEFINITION 2. Let r,x € R. A function f : R — R will be called a mask of
type (r,x) if f is an even, 2 times continuously differentiable such that for t > 1,
f(t) = |t|"(log(|t| + 1)) "*F (log|t|) for some F : R — R such that |F ¥ (t)| < a; for
allt >1k=0,1,2.

THEOREM 2. Let 1< p< e, 1<r <, k€ R andthefunction A bea mask of
type (r, k). Then there exists a positive constant ¢ such that for all f € J#; ,(T) and
me N,

I = Qma(F)llp < cm™ (logm) ™™ | [z ,()-
Proof. Since the function A be a mask of type (r,x) and r > 1,

—r —K

/ A9 dx < al/ X~ (tog( +1)) dx<aym "(log(m+1))" VYmeN.
[x|>m [X|=m m

On the other hand,

m
(15)
b 010

< (007 g0 +2)))" F log )]+ (1" (log(< + 1)) )

x IF (1o x|)|/Ix| + (1x| " (log(X| + 1)) ~*) |F" (log X)) ~ F'(log x| /x* ) dx
<au [ (04090 +1) ™" +2(x " log(x|+ 1)) ) /¥

+ 217" (log([x| +1))~*) /%2 ) dx < agm~* (log(m+1)) ~*.
Hence, by (15), we deduce
In(A) <asm " (log(m+1))~*.

From this and Corollary 1, we complete the proof. [
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COROLLARY 2. For 1< p<eo, 1<r<e and A(x) =B(x) =x" for x#£0,
76,p(T) becomes the Korobov space K{,(T). Then we have the estimate asin [1]:

Mn(Uj p(T), & )p < cm’

where x; isthe Korobov function.

DEFINITION 3. A function f : R — R is called a function of exponent type if f
is 2 times continuously differentiable and there exists a positive constant s such that
f(t) = e SUF(|t|) for some decreasing function F : [0, +eo) — (0, +o0).

THEOREM 3. Let 1< p< e, 1 <r <o, k€ Z,thefunction A be a mash of
type (r, k), the function 3 of exponent type. Then there exists a positive constant ¢
suchthat for all f € 773 ,(T) and me N, we have

I = Qmp(Fllp < em™"(log(m+1)) " [ |l (r)-

Proof. We will use the notation in the proof of Theorem 1. For k € I} n we have
km = k— j(2m+1) and then
A (km)

[Y(K)| = | B(km+ j(2m+ 1))0(km/m)m

_ gsiemeny A km)F(km+ @M+ 1)] - gomi))
° F(kn)| e |

Hence,
3 7G| < 3oume I g

keljm

This implies that

o= T 3 v09€ G|
jeNkeljm p
(16)
<3by Y, me Mgl < bpm ™ (log(m+ 1)) 7| gp.
jeN
Similarly,
| %mllp < bom ™" (log(m+ 1))~/ gl p- 17)
We also known that in the proof of Theorem 1 that
It =Gnllp<bsy, s (1(1+1A" () gllp (18)

j=0|x|€[2]=tm2i+1 m]

We see that

sup A < b4/ A09] 4

Ix|e[2i-1m2i+1m] Xe2im2i+tm  [X]
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sup A" ()] < by / 3" () dx.

Ix|e[2)-1m2i+1m] x|€[2im2i+1m]

So,

oo

Y s (10014 b2 1) <bs |

j=0x/€[21-1m2i+1m] [X|>m

(M(XN + |X7LH(X)|> dx.

X

Hence, by (18), we deduce that

|~ il < baba]gl [

[X|=m

(%m + !xz”(x)|) dx < bsm" (log(m-+ 1)) g p-

Combining this, (16), (17) and (4), we complete the proof.

3. Multivariate approximation

In this section, we make use of the univariate operators Qy,; to construct multi-
variate operators on sparse Smolyak grids for approximation of functions from %,Lp(il‘d) .
Based on this approxiation with certain restriction on the function A we prove an
upper bound of Mn(ULp(Td)mo,Ld)p for 1 < p < e as well as a lower bound of
Mn(U;L,Z(Td))z. The results obtained in this section generalize some results in [1, 2].

3.1. Error estimatesfor functionsin the space %7,)(11“")

For m € N9, let the multivariate operator Qm in 7 ,(T%) be defined by

d
Qm:= HQmj A (19)
-1

where the univariate operator Qm; 4 is applied to the univariate function f by consid-

ering f as a function of variable x; with the other variables held fixed, Z% := {k €
79: k>0, j € Ng} and kj denotes the jth coordinate of k.

Set 74, :={k€7Z9: kj > —1, j € Ng}. For k€ Z_1, we define the univariate
operator Ty in J7; ,(T) by

Tk:ZI_szJLa k>0, T.:=I,

where | is the identity operator. If k € Z‘il, we define the mixed operator Ty in
jﬁ’p("ﬂ‘d) in the manner of the definition of (19) as

Set |k| := Xjen, [kj| for k € 29, and k,f = T (kj +2) 7.
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LEMMA 3. Let 1< p<oo, 1 <1 <oo, 0< Kk < oo andthefunction A be a mask
of type (r, k). Then we havefor any f € . ,(T?) and k € 24,

—xn—rlk
ITe(F)llp < Ckpf2 M1l o)

with some constant C independent of f and k.

Proof. We prove the lemma by induction on d. For d = 1 it follows from Theo-
rems 2. Assume the lemmais true for d —1. Set X" :={X; : j € Ng_1} and x = (X, Xq)
for x € RY. We temporarily denote by |||y, and 11l o(Td-1) 50 OF | fllpx, and

Hf||.r)ﬁp(1r),xd the norms applied to the function f by considering f as a function of

variable X’ or xq with the other variable held fixed, respectively. For k = (k’,ky) €
Z‘il, we get by Theorems 2 and the induction assumption

T ()llp = 11T Ty ()l px
— 2_r|k’|k/(2';“Hde(f)”vad||=7fﬁ‘p(’ﬂ‘d’1),x’
< 2*r|k/‘k/(72')€||2*fkd(kd +2) 7 Lz pm) % .7, p(me-1)

P:Xd

CrK L —
pxg < |27 ‘k,(ZI)CHde(f)H(}pr(’ﬂ‘dfl)x’

d
_ otk [Tki+2)7%|f \\jﬁp(rd)' -

Let the univariate operator gk be defined for k€ Z ., by
Ok = Qu ) — Qu-1,, K>0, Go:=Qyy,

and in the manner of the definition of (19), the multivariate operator gy for k € Z4 , by

d
Ok == qu]’~
=1

For k € 9, we write k — oo if kj — oo foreach j € Ny.

THEOREM 4. Let 1 < p< oo, 1 <1 <o, 0< K < and the function A be a
mask of type (r, k). Thenevery f € %ﬁ(ﬁl‘d) can be represented as the series

f= 3 af) (20)

kezd
converging in LP-norm, and we have for k € Z9 ,
ek (F)llp < C2 MKk £l o) (21)

with some constant C independent of f and k.
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Proof. Let f € éﬁp(Td). In a way similar to the proof of Lemma 3, we can show
that
7= Que(P)llp < max2 5k ¥l g5 e

and therefore,
[f—Qu(f)l[p— 0, k — o,

where 2K = (24 : j € Ng). On the other hand,

Q= Y af).

sj<kj, jeNg
This proves (20). To prove (21) we notice that from the definition it follows that

G = > (-1,

eCNy

where k€ is defined by kj = k; if j € e, and kf =kj — 1 if j ¢ e. Hence, by Lemma 3

lak(Dllp < 3 [TelD)llp< X 27Uk ™Il ,r0)

eCNy eCNy

—rlkly, —
< 27" lk(2§||f\\%p@d). 0

For approximation of f € %p(Td) , we introduce the linear operator P,,m € N,

by
= > a(f). (22)

[k|<m

We give an upper bound for the error of the approximation of functions f € %Lp(Td)
by the operator Py, in the following theorem.

THEOREM 5. Let 1 < p< oo, 1 <1 <o, 0< K <o and the function A be a
mask of type (r, k). Then, we have for every me N and f € %Lp(?l‘d),

I = Pm(F)lp < C27™MM ]|y o)
with some constant C independent of f and m.

Proof. From Theorem 4 we deduce that

It =Fa(Dllp=] 3 a(] < 3 laDlp

|k|>m |k|>m
k k
<<‘k|z 27"kl A 1l yrey < 1L ey z 27 My
>m

< Zfrmmdflf'c H f ||)fp}b p(Td)' ‘:l
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3.2. Convergencerate

We choose a positive integer m€ N, a lattice vector k € Z9 with |k| < m and
another lattice vector s= (s; : j € Ng) € [Tjen, Z[2 7 + 1] to define the vector yy s =

(E’% Tje Nd> . The Smolyak grid on T9 consists of all such vectors and is given

GY(m) := {ykﬁz k| < Ms€ ®jen,Z[247 +1]}.
A simple computation confirms, for m — o that

\Gd(m)| _ z H (ij+l+1) = ded—l’

[k|<mjeNg

so, GY(m) is a sparse subset of a full grid of cardinality 29™. Moreover, by the defi-
nition of the linear operator Py given in equation (22) we see that the range of Py, is
contained in the subspace

span{@; a(- —y) 1y € G*(m)}.

Other words, Pn, defines a multivariate method of approximation by translates of the
function ¢, 4 on the sparse Smolyak grid GY(m). An upper bound for the error of this
approximation of functions from %A7p(11‘d) is given in Theorem 5.

Now, we are ready to prove the next theorem, thereby establishing an upper bound

of Mn(Uj p, #3.d)p-

THEOREM 6. If 1< p<oo, 1< <o, 0< Kk <o andthefunction A beamask
of type (r, k), then

Mn(U p(T%), @1.4)p < n~"(logn) "+ HE=1=x,

Proof. If n€ N and m is the largest positive integer such that |G9(m)| < n, then
n = 2"m-1 and by Theorem 5 we have that

Mn(ULp(Td)a(PLd)p < sup [[F=Pa(F)llp
feU; p(T9)

< o—rmpd—1-x _ nfr(log n)(r+1)(dfl)71c' 0

For p =2, we are able to establish a lower bound for Mn(Um(Td),(pw)z. We
prepare some auxiliary results. Let Po(R') be the set of algebraic polynomials on R!
of total degree at most g, and

EM:={t=(tj:j € Nm):[tj|=1,j € Nm}.
We define the polynomial maifold
Minq:={ (Pi(U) : ] € Nm) : P} € Pg(R'),j € Nm,u € R' .

Denote by ||x||2 the Euclidean norm of a vector x in R™. The following lemma was
proven in [5].



LINEAR COMBINATIONS OF TRANSLATES OF A SINGLE FUNCTION 183

LEMMA 4. Let m,l,q e N satisfy theinequality | Iog(“i—"m) < 7. Thenthereisa
vector t € E™ and a positive constant ¢ such that

inf { ||t —x||2: X € M g} > cm‘/2,

THEOREM 7. If 1 <1 <o, 0 < Kk < o and the function A be a mask of type
(r, k), then we have that

n~"(logn)" @275 <« My(Uy 5)2 < n~"(logn)FHA-D-x, (23)

Proof. The upper bound of (23) is in Theorem 6. Let us prove the lower bound by
developing a technique used in the proofs of [5, Theorem 1.1] and [1, Theorem 4.4] .
For a positive number a we define a subset H(a) of lattice vectors by

. (. d. .
H(a):= {k=(kj: ] €Ng) € Z .jENIdkjga}.

Notice that |H(a)| < a(loga)9~* when a — . To apply Lemma 4, for any n€ N, we
take g = |n(logn)~9+2] + 1, m=5(2d+1)[nlogn| and | = (2d + 1)n. With these
choices we obtain

|H(a)| < m (24)

and
g = m(logm)~9+1 (25)

as n — oo. Moreover, we have that

- 4emq 1
pim s () = .

and therefore, the assumption of Lemma 4 is satisfied for n — oo.
Now, let us specify the polynomial manifold M 4. To this end, we put { :=
g "m %/2(logq) 9% and let Y be the set of trigonometric polynomials on T¢, defined
by
Y= {f =¢ Y at:t=(t:k € H(g) eE'H(q>‘}.
keH(q)

If feY and
f=0 > a,

keH(q)

then f = ¢, 4 * g for some trigonometric polynomial g such that

lolZeipe < 62 Y [AK)[2
keH(a)
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Since

2 Y A2 |IongJ\
keH(q

keH(q)

4«2 or z ’Zlogkj‘

keH(q
< §%q? (log @) 2 [H(q)| = m~*|H(q)],

by (24) that there is a positive constant ¢ such that |g|| 2pa) < ¢ for all n€ N. There-
fore, we can either adjust functions in Y by dividing them by c, or we can assume
without loss of generality that c =1, and obtain Y C U;L72("JI‘d).

We are now ready to prove the lower bound for Mn(Um(Td))z. We choose any
@ € L2(T9) and let v be any function formed as a linear combination of n translates of

the function ¢:
v=Y cjp(-—

j€eNp
By the well-known Bessel inequality we have for a function

f=¢ ) atey,

keH(q)
that 510 ;
If V|||_2 Td) >0 Y ‘tk—(pT D Cjel(yj’k)‘ . (26)
keH(q) j€Np

We introduce a polynomial manifold so that we can use Lemma 4 to get a lower
bound for the expressions on the left hand side of inequality (26). To this end, we define
the vector c= (c;j : j € Ny) € R" and for each j € Ny, let zj = (z;, : | € Ngy) be a vector
in CY and then concatenate these vectors to form the vector z = (zj : j € N) € C.
We employ the standard multivariate notation

IJ(ZH%'('J

leNy

and require vectors w = (c,z) € R" x C™ and u = (¢,%z,32) € R' to be written in
concatenate form. Now, we introduce for each k € H(q) the polynomial gy defined at

w as
Z G2.
jeH(a)
We only need to consider the real part of gy, namely, px = Rqk since we have that

inf{ D ’tk—@ S Cjei(yj’k>’2:Cj ER,Yj er}

keH(q) j€NRp

> inf{ T [te— pe(u)?:u GR'}.

keH(q)

“S)

gk (W C
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Therefore, by Lemma 4 and (25) we conclude there is a vector t° = (2 : k € H(q)) € EMa
and the corresponding function

0=¢ Y ey
keH(q)

for which there is a positive constant ¢ such that for every v of the form

v=>Y cio(--vj),

j€Np
we have that

i d-2)—dx

110 = VIl 2(pa) > c{m2 = q " (logg) ~** =< n""(logn)""

which proves the lower bound of (23). O

Similar to the proof of the above theorem, we can prove the following theorem for
the case —e < x < 0.

THEOREM 8. If 1 <r < oo, —o0 < k¥ < 0 and the function A be a mask of type
(r, k), then we have that

" (logn) (@2 =¥ <« My (U, 5(T9)), < n~"(logn)(r+1(@-1)-dx,
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