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APPROXIMATION BY LINEAR COMBINATIONS

OF TRANSLATES OF A SINGLE FUNCTION

DINH DŨNG AND VU NHAT HUY ∗

(Communicated by Z. Ditzian)

Abstract. We study approximation of periodic functions by arbitrary linear combinations of n
translates of a single function. We construct some linear methods of this approximation for
univariate functions in the class induced by the convolution with a single function, and prove
upper bounds of the Lp -approximation convergence rate by these methods, when n → ∞ , for
1 � p � ∞ . We also generalize these results to classes of multivariate functions defined as the
convolution with the tensor product of a single function. In the case p = 2 , for this class, we
also prove a lower bound of the quantity characterizing best approximation of by arbitrary linear
combinations of n translates of arbitrary function.

1. Introduction

The present paper continues investigating the problem of function approximation
by arbitrary linear combinations of n translates of a single function which has been
studied in [1, 3]. In the last papers, some linear methods were constructed for approxi-
mation of periodic functions in a class induced by the convolution with a given function,
and prove upper bounds of the L p -approximation convergence rate by these methods,
when n → ∞ , for the case 1 < p < ∞ . The main technique of the proofs of the results
is based on Fourier analysis, in particular, the multiplier theory. However, this tech-
nique cannot be extended to the two important cases p = 1 and p = ∞ . In the present
paper, we aim at this approximation problem for the cases p = 1 and p = ∞ by using
a different technique. For convenience of presentation we will do this for 1 � p � ∞ .

We shall begin our discussion here by introducing notation used throughout the
paper. In this regard, we merely follow closely the presentation in [ 1, 3]. The d -
dimensional torus denoted by Td is the cross product of d copies of the interval [0,2π ]
with the identification of the end points. When d = 1, we merely denote the d -torus
by T . Functions on Td are identified with functions on Rd which are 2π periodic in
each variable. Denote by Lp(Td) , 1 � p � ∞ , the space of integrable functions on Td

equipped with the norm

‖ f‖p :=

{
(2π)−d/p (

∫
Td | f (x)|pdx)1/p , 1 � p < ∞,

ess supx∈Td | f (x)|, p = ∞.
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We will consider only real valued functions on Td . However, all the results in this
paper are true for the complex setting. Also, we will use Fourier series of a real valued
function in complex form.

Here, we use the notation Nm for the set {1,2, . . . ,m} . For vectors x := (xl : l ∈
Nd) and y := (yl : l ∈ Nd) in Td we use (x,y) := ∑l∈Nd

xlyl for the inner product of x
with y . Also, for notational convenience we allow N0 and Z0 to stand for the empty
set. Given any integrable function f on Td and any lattice vector j = ( jl : l ∈Nd)∈Zd ,
we let f̂ (j) denote the j-th Fourier coefficient of f defined by the equation

f̂ (j) := (2π)−d
∫

Td
f (x)e−i(j,x) dx.

Frequently, we use the superscript notation Bd to denote the cross product of d copies
of a given set B in Rd .

Let S
′
(Td) be the space of distributions on Td . Every f ∈ S

′
(Td) can be identified

with the formal Fourier series

f = ∑
j∈Zd

f̂ (j)ei(j,.),

where the sequence ( f̂ (j) : j ∈ Zd) forms a tempered sequence.
Let λ : R → R \ {0} be a bounded function. With the univariate λ we associate

the multivariate tensor product function λd given by

λd(x) :=
d

∏
l=1

λ (xl), x = (xl : l ∈ Nd),

and introduce the function ϕλ ,d , defined on Td by the equation

ϕλ ,d(x) := ∑
j∈Zd

λd(j)ei(j,x). (1)

Moreover, in the case that d = 1 we merely write ϕλ for the univariate function ϕλ ,1 .
We introduce a subspace of Lp(Td) defined as

Hλ ,p(T
d) :=

{
f : f = ϕλ ,d ∗ g, g ∈ Lp(Td)

}
,

with norm
‖ f‖Hλ ,p(Td) := ‖g‖p,

where f1 ∗ f2 is the convolution of two functions f1 and f2 on Td .
As in [1, 3], we are concerned with the following concept. Let W be a prescribed

subset of Lp(Td) and ψ ∈ Lp(Td) be a given function. We are interested in the approx-
imation in Lp(Td)-norm of all functions f ∈ W by arbitrary linear combinations of n
translates of the function ψ , that is, by the functions in the set {ψ(·− y l) : yl ∈ Td ,
l ∈ Nn} and measure the error in terms of the quantity

Mn(W,ψ)p := sup
f∈W

inf
{ ∥∥∥ f − ∑

l∈Nn

clψ(·−yl)
∥∥∥

p
: cl ∈ R,yl ∈ T

d
}
.
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The aim of the present paper is to investigate the convergence rate, when n → ∞ , of
Mn(Uλ ,p(Td),ψ)p for 1 � p � ∞ , where

Uλ ,p(T
d) :=

{
f ∈ Hλ ,p(T

d) : ‖ f‖Hλ ,p(Td) � 1
}

is the unit ball in Hλ ,p(Td) . We shall also obtain a lower bound for the convergence
rate as n → ∞ of the quantity

Mn(Uλ ,2(T
d))2 := inf

{
Mn(Uλ ,2(T

d),ψ)2 : ψ ∈ L2(Td)
}

,

which gives information about the best choice of ψ .
This paper is organized in the following manner. In Section 2, we give the nec-

essary background from Fourier analysis and construct a method for approximation of
functions in the univariate case. In Section 3, we extend the method of approxima-
tion developed in Section 2 to the multivariate case, in particular, prove upper bounds
for the approximation error and convergence rate, we also prove a lower bound of
Mn(Uλ ,2(Td))2 .

2. Univariate approximation

In this section, we construct a linear method in the form of a linear combination of
translates of a function ϕβ defined as in (1) for approximation of univariate functions
in Hλ ,p(T) . We give upper bounds of the approximation error for various λ and β .

Let λ ,β ,ϑ : R → R be given 2-times continuously differentiable functions and
ϑ be such that

ϑ(x) :=

{
1, if x ∈ [− 1

2 , 1
2 ],

0, if x �∈ (−1,1).

Corresponding to these functions we define the functions G and Hm as

G (x) :=
λ (x)
β (x)

, Hm(x) := ∑
k∈Z

ϑ(k/m)G (k)eikx. (2)

For a function f ∈ Hλ ,p(T) represented as f = ϕλ ∗ g , g ∈ Lp(T) , we define the
operator

Qm,β ( f ) :=
1

2m+ 1

2m

∑
k=0

Vm(g)
(

2πk
2m+ 1

)
ϕβ

(
·− 2πk

2m+ 1

)
, (3)

where Vm(g) := Hm ∗ g. Finally, we define for a function h : R → R ,

σm(h; f )(x) := ∑
k∈Z

h(k/m) f̂ke
ikx.

Let us obtain upper estimates for the error of approximating a function f ∈H λ ,p(T)
by the trigonometric polynomial Qm,β ( f ) a linear combination of 2m+ 1 translates of
the function ϕβ .



172 D. DŨNG AND V. NHAT HUY

DEFINITION 1. A 2-times continuously differentiable function ψ : R→R is called
a function of monotone type if there exists a positive constant c 0 such that

|ψ(x)| � c0|ψ(y)|, |ψ ′′
(x)| � c0|ψ ′′

(y)| for all 2|y| � |x| � |y|/2.

We put

εm := Jm(λ )+ sup
|x|∈[−m,m]

(
|G (x)|+m2 sup

|x|∈[−m,m]
|G ′′

(x)|
)

Jm(β ),

where for a 2-times continuously differentiable function ψ ,

Jm(ψ) :=
∫
|x|�m

(∣∣∣∣ψ(x)
m

∣∣∣∣+ ∣∣∣xψ
′′
(x)
∣∣∣)dx.

THEOREM 1. Let 1 � p � ∞ . Assume that the functions λ ,β are of monotone
type. Then there exists a positive constant c such that for all f ∈ Hλ ,p(T) and m ∈ N ,

‖ f −Qm,β ( f )‖p � cεm‖ f‖Hλ ,p(T).

Before we give the proof of the above theorem, we recall a lemma proved in [ 6],
[7].

LEMMA 1. Let 1 � p � ∞ , f ∈ Lp(T) and h : R→R be 2-times continuously dif-
ferentiable function, supported on [−1,1] . Then there exists a constant c 1 independent
of f ,h,m such that

‖σm(h; f )||p � c1‖h
′′‖∞‖ f‖p.

We also need a Landau’s inequality for derivatives [4].

LEMMA 2. Let f ∈ L∞(R) be 2-times continuously differentiable function. Then

‖ f
′ ‖2

∞ � 4‖ f‖∞‖ f
′′ ‖∞.

In particular,
‖ f

′ ‖∞ � ‖ f‖∞ +‖ f
′′‖∞.

Proof of Theorem 1. Let f ∈ Hλ ,p(T) be represented as ϕλ ,d ∗ g for some g ∈
Lp(T) . We define the kernel Pm(x,t) for x,t ∈ T as

Pm(x, t) :=
1

2m+ 1

2m

∑
k=0

ϕβ

(
x− 2πk

2m+ 1

)
Hm

(
2πk

2m+ 1
− t

)
.

It is easy to obtain from the definition (3) that

Qm,β ( f )(x) =
1

2π

∫
T

Pm(x,t)g(t)dt.
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We now use equation (1), the definition of the trigonometric polynomial Hm given in
equation (2) and the easily verified fact, for k,s ∈ Z,s ∈ [−m,m] , that

1
2m+ 1

2m

∑
�=0

eik(t−(2π�/(2m+1)))eis((2π�/(2m+1))−t) =

⎧⎨⎩0, if k−s
2m+1 �∈ Z,

ei(k−km)t , if k−s
2m+1 ∈ Z,

to conclude that
Pm(x,t) = ∑

k∈Z

γ(k)eikxe−ikmt ,

where γ(k) = ϑ(km/m)G (km)β (k) and km ∈ [−m,m] satisfy (k− km)/(2m + 1) ∈ Z .
Hence,

Qm,β ( f )(x) = ∑
k>m

γ(k)eikxĝ(km)+ ∑
k<−m

γ(k)eikxĝ(km)+
m

∑
k=−m

γ(k)eikxĝ(km)

=: Am(x)+Bm(x)+Cm(x).

Consequently,

‖ f −Qm,β ( f )‖p � ‖Am‖p +‖Bm‖p +‖ f −Cm‖p. (4)

For each j ∈ N , we define the functions Λ j,m(x) , Jm(x) , K j,m(x) , D j,m(x) and the
set I j,m as follows

Λ j,m(x) := β (mx+ j(2m+ 1)), Jm(x) := G (mx),

K j,m(x) := Λ j,m(x)ϑ(x)Jm(x), D j,m(x) := ∑
k∈Ij,m

γ(k)eikxĝ(km),

I j,m := {k ∈ Z : (2m+ 1) j−m � k � (2m+ 1) j +m}.
Then we have

Am(x) = ∑
j∈N

∑
k∈Ij,m

γ(k)eikxĝ(km) = ∑
j∈N

D j,m(x), (5)

and for all k ∈ I j,m ,

γ(k) = β (k)ϑ(km/m)G (km) = β ( j(2m+ 1)+ km)ϑ(km/m)G (km)

= Λ j,m(km/m)ϑ(km/m)G (km) = Λ j,m(km/m)ϑ(km/m)Jm(km/m)

= K j,m(km/m).

Hence,

D j,m(x) = ∑
k∈Ij,m

γ(k)eikxĝ(km) = ∑
km∈[−m,m]

K j,m(km/m)ei( j(2m+1)+km)xĝ(km)

= ei j(2m+1)x ∑
km∈[−m,m]

K j,m(km/m)eikmxĝ(km) = ei j(2m+1)xσm(K j,m;g).
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Therefore, by Lemma 1, there exists a constant c1 such that

‖D j,m‖p � c1‖(K j,m)
′′ ‖∞‖g‖p.

Then it follows from (5) that

‖Am‖p � ∑
j∈N

‖D j,m‖p � c1 ∑
j∈N

‖(K j,m)
′′ ‖∞‖g‖p. (6)

From the definition of K j,m , suppϑ ⊂ [−1,1] , and ‖ϑ‖∞ � 2‖ϑ ′‖∞ � 4‖ϑ ′′‖∞, we
deduce that

‖(K j,m)
′′ ‖∞ � 4‖ϑ

′′‖∞ sup
x∈[−1,1]

(
|Λ j,m(x)Jm(x)|+ |(Λ j,mJm)

′
(x)|+ |(Λ j,mJm)

′′
(x)|
)

� 4‖ϑ
′′‖∞

[
sup

x∈Ij,m

(
|β (x)|+m|β ′

(x)|+m2|β ′′
(x)|
)

sup
x∈[−m,m]

|G (x)|

+m sup
x∈Ij,m

(
|β (x)|+m|β ′

(x)|
)

sup
x∈[−m,m]

|G ′
(x)|

+m2 sup
x∈Ij,m

|β (x)| sup
x∈[−m,m]

|G ′′
(x)|
]
.

Hence,

‖(K j,m)
′′ ‖∞ � 4‖ϑ

′′‖∞ sup
x∈Ij,m

(
|β (x)| + m|β ′

(x)|+m2|β ′′
(x)|
)
×

× sup
x∈[−m,m]

(
|G (x)|+ m|G ′

(x)|+m2|G ′′
(x)|
)

for all j ∈ N . Therefore, it follows from (6) that

‖Am‖p � 4c1‖ϑ
′′‖∞ ∑

j∈N

sup
x∈Ij,m

(
|β (x)|+m|β ′

(x)|+m2|β ′′
(x)|
)
×

× sup
x∈[−m,m]

(
|G (x)|+m|G ′

(x)|+m2|G ′′
(x)|
)
‖g‖p.

So, by Lemma 2, we have

‖Am‖p � 16c1‖ϑ
′′‖∞ ∑

j∈N

sup
x∈Ij,m

(
|β (x)|+m2|β ′′

(x)|
)
×

× sup
x∈[−m,m]

(
|G (x)|+m2|G ′′

(x)|
)
‖g‖p. (7)

Since the function α,β is of monotone type, there exists a positive constant c 0 such
that

|α(x)| � c0|α(y)|, |α ′′
(x)| � c0|α ′′

(y)|, |β (x)| � c0|β (y)|, |β ′′
(x)| � c0|β ′′

(y)| (8)
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for all 4|y| � |x| � |y|/4. Hence,

sup
|x|∈Ij,m

|β (x)| � c0

m

∫
|x|∈Ij,m

|β (x)|dx,

sup
|x|∈Ij,m

|m2β
′′
(x)| � c0m

∫
|x|∈Ij,m

|β ′′
(x)|dx.

So,

∑
j∈N

sup
|x|∈Ij,m

(
|β (x)|+ |m2β

′′
(x)|
)

� c0

∫
|x|�m

( |β (x)|
m

+
∣∣mβ

′′
(x)
∣∣)dx � c0Jm(β ).

Combining this with (7), we obtain that

‖Am‖p � 16c0c1‖ϑ
′′ ‖∞εm‖g‖p. (9)

Similarly,
‖Bm‖p � 16c0c1‖ϑ

′′‖∞εm‖g‖p. (10)

Next, we will estimate ‖ f −Cm‖p . Notice that γ(k)= ϑ(k/m)G (k)β (k)= ϑ(k/m)λ (k)
for k ∈ [−m,m] , and then

σm(ϑ ; f )(x) = ∑
k∈Z

ϑ(k/m) f̂ (k)eikx =
m

∑
k=−m

ϑ(k/m)λ (k)ĝ(k)eikx

=
m

∑
k=−m

γ(k)ĝ(k)eikx = Cm(x),

and therefore,
‖ f −Cm‖p = ‖ f −σm(ϑ ; f )‖p. (11)

We define the functions S(x) , Φ j,m(x) and Ψ j,m(x) as

S(x) := ϑ(x)−ϑ(x/2), Φ j,m(x) := λ (2 jmx), Ψ j,m(x) := S(x)Φ j,m(x).

Clearly, we have that

(ϑ(k/(2 j+1m))−ϑ(k/(2 jm)))λ (k) = S(k/(2 jm))Φ j,m(k/(2 jm)) = Ψ j,m(k/(2 jm)),

which together with

σ2 j+1m(ϑ ; f )−σ2 jm(ϑ ; f ) = ∑
k∈Z

(ϑ(k/(2 j+1m))−ϑ(k/(2 jm)) f̂ (k)eikx

= ∑
k∈Z

(ϑ(k/(2 j+1m))−ϑ(k/(2 jm)))λ (k)ĝ(k)eikx

implies that

σ2 j+1m(ϑ ; f )−σ2 jm(ϑ ; f ) = ∑
k∈Z

Ψ j,m(k/(2 jm))ĝ(k)eikx = σ2 jm(Ψ j,m;g).
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Then by Lemma 1, we obtain

‖σ2 j+1m(ϑ ; f )−σ2 jm(ϑ ; f )‖p � c1‖Ψ
′′
j,m‖∞‖g‖p. (12)

Moreover, from the definition of Ψ j,m , suppS ⊂ [−2,−1/2]∪ [1/2,2] , and ‖S‖∞ �
2‖S

′‖∞ � 4‖S
′′‖∞ � 8‖ϑ ′′‖∞, we have that

|Ψ′′
j,m(x)| = |S′′

(x)Φ j,m(x)+ 2S
′
(x)Φ

′
j,m(x)+S(x)Φ

′′
j,m(x)|

� 8‖ϑ
′′‖∞ sup

|x|∈[1/2,2]

(
|Φ j,m(x)|+ Φ

′
j,m(x)|+ |Φ′′

j,m(x)|
)

� 16‖ϑ
′′‖∞ sup

|x|∈[1/2,2]

(
|Φ j,m(x)|+ |Φ′′

j,m(x)|
)

= 16‖ϑ
′′‖∞ sup

|x|∈[2 j−1m,2 j+1m]

(
|λ (x)|+(2 jm)2|λ ′′

(x)|
)

� 64‖ϑ
′′‖∞ sup

|x|∈[2 j−1m,2 j+1m]

(
|λ (x)|+ |x2λ

′′
(x)|
)

.

Combining this and (12), we deduce

‖σ2 j+1m(ϑ ; f )−σ2 jm(ϑ ; f )‖p � 64c1‖ϑ
′′ ‖∞ sup

|x|∈[2 j−1m,2 j+1m]

(
|λ (x)|+ |x2λ

′′
(x)|
)
‖g‖p.

Therefore, by (11) and limm→∞ ‖ f −σ2 jm(ϑ ; f )‖p = 0, we have that

‖ f −Cm‖p �
∞

∑
j=0

‖σ2 j+1m(ϑ ; f )−σ2 jm(ϑ ; f )‖p

� 64c1‖ϑ
′′‖∞

∞

∑
j=0

sup
|x|∈[2 j−1m,2 j+1m]

(
|λ (x)|+ |x2λ

′′
(x)|
)
‖g‖p. (13)

Since (8),

sup
|x|∈[2 j−1m,2 j+1m]

|λ (x)| � c0

2 jm

∫
|x|∈[2 jm,2 j+1m]

|λ (x)|dx � c0

m

∫
|x|∈[2 jm,2 j+1m]

|λ (x)|dx,

and
sup

|x|∈[2 j−1m,2 j+1m]
|x2λ

′′
(x)| � 2c0

∫
|x|∈[2 jm,2 j+1m]

|xλ
′′
(x)|dx.

So,

∞

∑
j=0

sup
|x|∈[2 j−1m,2 j+1m]

(
|λ (x)|+ |x2λ

′′
(x)|
)

� 2c0

∫
|x|�m

( |λ (x)|
m

+ |xλ
′′
(x)|
)

dx

= 2c0Jm(λ ).
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Hence, by (13), we deduce

‖ f −Cm‖p � 128c0c1‖ϑ
′′‖∞εm‖g‖p. (14)

Combining (9), (10) and (14) we have

‖ f −Qm,β ( f )‖p � cεm‖ f‖Hλ ,p(T). �

From the above theorem, by letting λ = β , we obtain the following corollary.

COROLLARY 1. Let 1 � p � ∞ and λ be of monotone type. Then there exists a
positive constant c such that for all f ∈ Hλ ,p(T) and m ∈ N ,

‖ f −Qm,λ ( f )‖p � cJm(λ )‖ f‖Hλ ,p(T).

DEFINITION 2. Let r,κ ∈ R . A function f : R → R will be called a mask of
type (r,κ) if f is an even, 2 times continuously differentiable such that for t � 1,
f (t) = |t|−r(log(|t|+ 1))−κF(log |t|) for some F : R → R such that |F (k)(t)| � a1 for
all t � 1,k = 0,1,2.

THEOREM 2. Let 1 � p � ∞ , 1 < r < ∞ , κ ∈ R and the function λ be a mask of
type (r,κ) . Then there exists a positive constant c such that for all f ∈ Hλ ,p(T) and
m ∈ N ,

‖ f −Qm,λ ( f )‖p � cm−r(logm)−κ ‖ f‖Hλ ,p(T).

Proof. Since the function λ be a mask of type (r,κ) and r > 1,∫
|x|�m

∣∣∣∣λ (x)
m

∣∣∣∣dx � a1

∫
|x|�m

|x|−r(log(|x|+ 1))−κ

m
dx � a2m−r(log(m+1))−κ ∀m∈N.

(15)
On the other hand,∫

|x|�m
|xλ

′′
(x)|dx

�
∫
|x|�m

|x|
(
(|x|−r(log(|x|+ 1))−κ)

′′ |F(log |x|)|+(|x|−r(log(|x|+ 1))−κ)
′

× |F ′
(log |x|)|/|x|+(|x|−r(log(|x|+ 1))−κ)|F ′′

(log |x|)−F
′
(log |x|)|/x2

)
dx

� a1

∫
|x|�m

|x|
(
(|x|−r(log(|x|+ 1))−κ)

′′
+ 2(|x|−r(log(|x|+ 1))−κ)

′
/|x|

+ 2(|x|−r(log(|x|+ 1))−κ)/x2
)

dx � a3m−r(log(m+ 1))−κ .

Hence, by (15), we deduce

Jm(λ ) � a4m−r(log(m+ 1))−κ .

From this and Corollary 1, we complete the proof. �
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COROLLARY 2. For 1 � p � ∞ , 1 < r < ∞ and λ (x) = β (x) = x−r for x �= 0 ,
Hλ ,p(T) becomes the Korobov space Kr

p(T) . Then we have the estimate as in [1]:

Mn(Uλ ,p(T),κr)p � cm−r

where κr is the Korobov function.

DEFINITION 3. A function f : R → R is called a function of exponent type if f
is 2 times continuously differentiable and there exists a positive constant s such that
f (t) = e−s|t|F(|t|) for some decreasing function F : [0,+∞) → (0,+∞).

THEOREM 3. Let 1 � p � ∞, 1 < r < ∞, κ ∈ Z , the function λ be a mash of
type (r,κ) , the function β of exponent type. Then there exists a positive constant c
such that for all f ∈ Hλ ,p(T) and m ∈ N , we have

‖ f −Qm,β ( f )‖p � cm−r(log(m+ 1))−κ‖ f‖Hλ ,p(T).

Proof. We will use the notation in the proof of Theorem 1. For k ∈ I j,m we have
km = k− j(2m+ 1) and then

|γ(k)| =
∣∣∣β (km + j(2m+ 1))ϑ(km/m)

λ (km)
β (km)

∣∣∣
= e−s j(2m+1)) |λ (km)F(km + j(2m+ 1))|

|F(km)| � b1e−s j(2m+1)).

Hence, ∥∥∥ ∑
k∈Ij,m

γ(k)eikxĝ(km)
∥∥∥

p
� 3b1me−s j(2m+1))‖g‖p.

This implies that

‖Am‖p =
∥∥∥∑

j∈N

∑
k∈Ij,m

γ(k)eikxĝ(km)
∥∥∥

p

� 3b1 ∑
j∈N

me−s j(2m+1))‖g‖p � b2m−r(log(m+ 1))−κ‖g‖p.

(16)

Similarly,
‖Bm‖p � b2m−r(log(m+ 1))−κ‖g‖p. (17)

We also known that in the proof of Theorem 1 that

‖ f −Cm‖p � b3

∞

∑
j=0

sup
|x|∈[2 j−1m,2 j+1m]

(
|λ (x)|+ |x2λ

′′
(x)|
)
‖g‖p. (18)

We see that

sup
|x|∈[2 j−1m,2 j+1m]

|λ (x)| � b4

∫
|x|∈[2 jm,2 j+1m]

|λ (x)|
|x| dx
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sup
|x|∈[2 j−1m,2 j+1m]

|x2λ
′′
(x)| � b4

∫
|x|∈[2 jm,2 j+1m]

|xλ
′′
(x)|dx.

So,

∞

∑
j=0

sup
|x|∈[2 j−1m,2 j+1m]

(
|λ (x)|+ |x2λ

′′
(x)|
)

� b4

∫
|x|�m

( |λ (x)|
|x| +

∣∣xλ
′′
(x)
∣∣)dx.

Hence, by (18), we deduce that

‖ f −Cm‖p � b3b4‖g‖p

∫
|x|�m

( |λ (x)|
|x| +

∣∣xλ
′′
(x)
∣∣)dx � b5m−r(log(m+ 1))−κ‖g‖p.

Combining this, (16), (17) and (4), we complete the proof. �

3. Multivariate approximation

In this section, we make use of the univariate operators Qm,λ to construct multi-
variate operators on sparse Smolyak grids for approximation of functions from H λ ,p(Td) .
Based on this approxiation with certain restriction on the function λ we prove an
upper bound of Mn(Uλ ,p(Td),ϕλ ,d)p for 1 � p � ∞ as well as a lower bound of
Mn(Uλ ,2(Td))2 . The results obtained in this section generalize some results in [1, 2].

3.1. Error estimates for functions in the space Hλ ,p(Td)

For m ∈ Nd , let the multivariate operator Qm in Hλ ,p(Td) be defined by

Qm :=
d

∏
j=1

Qmj ,λ , (19)

where the univariate operator Qmj ,λ is applied to the univariate function f by consid-

ering f as a function of variable x j with the other variables held fixed, Zd
+ := {k ∈

Zd : k j � 0, j ∈ Nd} and k j denotes the j th coordinate of k .
Set Zd

−1 := {k ∈ Zd : k j � −1, j ∈ Nd} . For k ∈ Z−1 , we define the univariate
operator Tk in Hλ ,p(T) by

Tk := I−Q2k,λ , k � 0, T−1 := I,

where I is the identity operator. If k ∈ Zd
−1 , we define the mixed operator Tk in

Hλ ,p(Td) in the manner of the definition of (19) as

Tk :=
d

∏
i=1

Tki .

Set |k| := ∑ j∈Nd
|k j| for k ∈ Zd

−1 and k−κ
(2) = ∏d

j=1(k j + 2)−κ .
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LEMMA 3. Let 1 � p � ∞ , 1 < r < ∞ , 0 � κ < ∞ and the function λ be a mask
of type (r,κ) . Then we have for any f ∈ Hλ ,p(Td) and k ∈ Zd

−1 ,

‖Tk( f )‖p � Ck−κ
(2) 2−r|k|‖ f‖Hλ ,p(Td)

with some constant C independent of f and k .

Proof. We prove the lemma by induction on d . For d = 1 it follows from Theo-
rems 2. Assume the lemma is true for d−1. Set x ′ := {x j : j ∈ Nd−1} and x = (x′,xd)
for x ∈ Rd . We temporarily denote by ‖ f‖ p,x′ and ‖ f‖Hλ ,p(Td−1),x′ or ‖ f‖p,xd and

‖ f‖Hλ ,p(T),xd
the norms applied to the function f by considering f as a function of

variable x′ or xd with the other variable held fixed, respectively. For k = (k ′,kd) ∈
Zd
−1 , we get by Theorems 2 and the induction assumption

‖Tk( f )‖p = ‖‖Tk′Tkd ( f )‖p,x′‖p,xd � ‖2−r|k′|k′−κ
(2)‖Tkd ( f )‖Hλ ,p(Td−1),x′‖p,xd

= 2−r|k′|k′−κ
(2)‖‖Tkd ( f )‖p,xd‖Hλ ,p(Td−1),x′

� 2−r|k′|k′−κ
(2)‖2−rkd (kd + 2)−κ‖ f‖Hλ ,p(T),xd

‖Hλ ,p(Td−1),x′

= 2−r|k|
d

∏
j=1

(k j + 2)−κ‖ f‖Hλ ,p(Td). �

Let the univariate operator qk be defined for k ∈ Z+ , by

qk := Q2k,λ −Q2k−1,λ , k > 0, q0 := Q1,λ ,

and in the manner of the definition of (19), the multivariate operator qk for k ∈ Zd
+ , by

qk :=
d

∏
j=1

qkj .

For k ∈ Zd
+ , we write k → ∞ if k j → ∞ for each j ∈ Nd .

THEOREM 4. Let 1 � p � ∞ , 1 < r < ∞ , 0 � κ < ∞ and the function λ be a
mask of type (r,κ) . Then every f ∈ Hλ ,p(Td) can be represented as the series

f = ∑
k∈Zd

+

qk( f ) (20)

converging in Lp -norm, and we have for k ∈ Zd
+ ,

‖qk( f )‖p � C2−r|k|k−κ
(2)‖ f‖Hλ ,p(Td) (21)

with some constant C independent of f and k .
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Proof. Let f ∈Hλ ,p(Td) . In a way similar to the proof of Lemma 3, we can show
that

‖ f −Q2k( f )‖p � max
j∈Nd

2−rk j k−κ
j ‖ f‖Hλ ,p(Td),

and therefore,
‖ f −Q2k( f )‖p → 0, k → ∞,

where 2k = (2k j : j ∈ Nd) . On the other hand,

Q2k = ∑
s j�k j , j∈Nd

qs( f ).

This proves (20). To prove (21) we notice that from the definition it follows that

qk = ∑
e⊂Nd

(−1)|e|Tke ,

where ke is defined by ke
j = k j if j ∈ e , and ke

j = k j −1 if j /∈ e . Hence, by Lemma 3

‖qk( f )‖p � ∑
e⊂Nd

‖Tke( f )‖p � ∑
e⊂Nd

2−r|ke|(ke
(2))

−κ‖ f‖Hλ ,p(Td)

� 2−r|k|k−κ
(2)‖ f‖Hλ ,p(Td). �

For approximation of f ∈ Hλ ,p(Td) , we introduce the linear operator Pm,m ∈ N ,
by

Pm( f ) := ∑
|k|�m

qk( f ). (22)

We give an upper bound for the error of the approximation of functions f ∈ H λ ,p(Td)
by the operator Pm in the following theorem.

THEOREM 5. Let 1 � p � ∞ , 1 < r < ∞ , 0 � κ < ∞ and the function λ be a
mask of type (r,κ) . Then, we have for every m ∈ N and f ∈ Hλ ,p(Td) ,

‖ f −Pm( f )‖p � C 2−rmmd−1−κ ‖ f‖Hλ ,p(Td)

with some constant C independent of f and m.

Proof. From Theorem 4 we deduce that

‖ f −Pm( f )‖p =
∥∥∥ ∑
|k|>m

qk( f )
∥∥∥

p
� ∑

|k|>m

‖qk( f )‖p

� ∑
|k|>m

2−r|k|k−κ
(2)‖ f‖Hλ ,p(Td) �‖ f‖Hλ ,p(Td) ∑

|k|>m

2−r|k|k−κ
(2)

� 2−rmmd−1−κ ‖ f‖Hλ ,p(Td). �
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3.2. Convergence rate

We choose a positive integer m ∈ N , a lattice vector k ∈ Zd
+ with |k| � m and

another lattice vector s = (s j : j ∈ Nd) ∈ ∏ j∈Nd
Z[2k j+1 +1] to define the vector yk,s =(

2πs j

2k j+1+1
: j ∈ Nd

)
. The Smolyak grid on Td consists of all such vectors and is given

as
Gd(m) :=

{
yk,s : |k| � m,s ∈⊗ j∈Nd Z[2k j+1 + 1]

}
.

A simple computation confirms, for m → ∞ that

|Gd(m)| = ∑
|k|�m

∏
j∈Nd

(2k j+1 + 1) 2dmd−1,

so, Gd(m) is a sparse subset of a full grid of cardinality 2dm . Moreover, by the defi-
nition of the linear operator Pm given in equation (22) we see that the range of Pm is
contained in the subspace

span{ϕλ ,d(·−y) : y ∈ Gd(m)}.
Other words, Pm defines a multivariate method of approximation by translates of the
function ϕλ ,d on the sparse Smolyak grid Gd(m) . An upper bound for the error of this
approximation of functions from Hλ ,p(Td) is given in Theorem 5.

Now, we are ready to prove the next theorem, thereby establishing an upper bound
of Mn(Uλ ,p,ϕλ ,d)p .

THEOREM 6. If 1 � p � ∞ , 1 < r < ∞ , 0 � κ < ∞ and the function λ be a mask
of type (r,κ) , then

Mn(Uλ ,p(T
d),ϕλ ,d)p � n−r(logn)(r+1)(d−1)−κ .

Proof. If n ∈ N and m is the largest positive integer such that |Gd(m)| � n , then
n  2mmd−1 and by Theorem 5 we have that

Mn(Uλ ,p(T
d),ϕλ ,d)p � sup

f∈Uλ ,p(Td)
‖ f −Pm( f )‖p

� 2−rmmd−1−κ  n−r(logn)(r+1)(d−1)−κ . �

For p = 2, we are able to establish a lower bound for Mn(Uλ ,2(Td),ϕλ ,d)2 . We
prepare some auxiliary results. Let Pq(Rl) be the set of algebraic polynomials on R l

of total degree at most q , and

E
m := {t = (t j : j ∈ Nm) : |t j| = 1, j ∈ Nm}.

We define the polynomial maifold

Mm,l,q :=
{

(p j(u) : j ∈ Nm) : p j ∈ Pq(Rl), j ∈ Nm,u ∈ R
l
}

.

Denote by ‖x‖2 the Euclidean norm of a vector x in Rm . The following lemma was
proven in [5].
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LEMMA 4. Let m, l,q ∈ N satisfy the inequality l log( 4emq
l ) � m

4 . Then there is a
vector t ∈ Em and a positive constant c such that

inf
{‖t−x‖2 : x ∈ Mm,l,q

}
� cm1/2.

THEOREM 7. If 1 < r < ∞ , 0 � κ < ∞ and the function λ be a mask of type
(r,κ) , then we have that

n−r(logn)r(d−2)−dκ � Mn(Uλ ,2)2 � n−r(logn)(r+1)(d−1)−κ . (23)

Proof. The upper bound of (23) is in Theorem 6. Let us prove the lower bound by
developing a technique used in the proofs of [5, Theorem 1.1] and [1, Theorem 4.4] .
For a positive number a we define a subset H(a) of lattice vectors by

H(a) :=
{

k = (k j : j ∈ Nd) ∈ Z
d : ∏

j∈Nd

|k j| � a
}
.

Notice that |H(a)|  a(loga)d−1 when a → ∞ . To apply Lemma 4, for any n ∈ N , we
take q = �n(logn)−d+2�+ 1, m = 5(2d + 1)�n logn� and l = (2d + 1)n . With these
choices we obtain

|H(q)|  m (24)

and

q  m(logm)−d+1 (25)

as n → ∞ . Moreover, we have that

lim
n→∞

l
m

log

(
4emq

l

)
=

1
5
,

and therefore, the assumption of Lemma 4 is satisfied for n → ∞ .
Now, let us specify the polynomial manifold Mm,l,q . To this end, we put ζ :=

q−rm−1/2(logq)−dκ and let Y be the set of trigonometric polynomials on Td , defined
by

Y :=
{

f = ζ ∑
k∈H(q)

aktk : t = (tk : k ∈ H(q)) ∈ E
|H(q)|

}
.

If f ∈ Y and

f = ζ ∑
k∈H(q)

aktk,

then f = ϕλ ,d ∗ g for some trigonometric polynomial g such that

‖g‖2
L2(Td) � ζ 2 ∑

k∈H(q)
|λ (k)|−2.
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Since

ζ 2 ∑
k∈H(q)

|λ (k)|−2 � ζ 2q2r ∑
k∈H(q)

∣∣∣ log
d

∏
j=1

k j

∣∣∣2κ

� ζ 2q2r ∑
k∈H(q)

∣∣∣ n

∑
j=1

logk j

∣∣∣2dκ

� ζ 2q2r(logq)2dκ |H(q)| = m−1|H(q)|,
by (24) that there is a positive constant c such that ‖g‖L2(Td) � c for all n ∈ N . There-
fore, we can either adjust functions in Y by dividing them by c , or we can assume
without loss of generality that c = 1, and obtain Y ⊆Uλ ,2(Td) .

We are now ready to prove the lower bound for Mn(Uλ ,2(Td))2 . We choose any
ϕ ∈ L2(Td) and let v be any function formed as a linear combination of n translates of
the function ϕ :

v = ∑
j∈Nn

c jϕ(·−y j).

By the well-known Bessel inequality we have for a function

f = ζ ∑
k∈H(q)

aktk ∈ Y,

that

‖ f − v‖2
L2(Td) � ζ 2 ∑

k∈H(q)

∣∣∣tk − ϕ̂(k)
ζ ∑

j∈Nn

c je
i(y j ,k)

∣∣∣2. (26)

We introduce a polynomial manifold so that we can use Lemma 4 to get a lower
bound for the expressions on the left hand side of inequality ( 26). To this end, we define
the vector c = (c j : j ∈Nn)∈Rn and for each j ∈Nn , let z j = (z j,l : l ∈Nd) be a vector
in Cd and then concatenate these vectors to form the vector z = (z j : j ∈ Nn) ∈ Cnd .
We employ the standard multivariate notation

zk
j = ∏

l∈Nd

zkl
j,l

and require vectors w = (c,z) ∈ Rn ×Cnd and u = (c,ℜz,ℑz) ∈ Rl to be written in
concatenate form. Now, we introduce for each k ∈ H(q) the polynomial q k defined at
w as

qk(w) :=
ϕ̂(k)

ζ ∑
j∈H(q)

cjz
j.

We only need to consider the real part of qk , namely, pk = ℜqk since we have that

inf
{

∑
k∈H(q)

∣∣∣tk − ϕ̂(k)
ζ ∑

j∈Nn

c je
i(y j ,k)

∣∣∣2 : c j ∈ R,y j ∈ T
d
}

� inf
{

∑
k∈H(q)

|tk − pk(u)|2 : u ∈ R
l
}
.
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Therefore, by Lemma 4 and (25) we conclude there is a vector t0 =(t0
k : k∈H(q))∈Ehq

and the corresponding function

f 0 = ζ ∑
k∈H(q)

t0
kχk ∈ Y

for which there is a positive constant c such that for every v of the form

v = ∑
j∈Nn

c jϕ(·−y j),

we have that

‖ f 0 − v‖L2(Td) � cζm
1
2 = q−r(logq)−dκ  n−r(logn)r(d−2)−dκ

which proves the lower bound of (23). �

Similar to the proof of the above theorem, we can prove the following theorem for
the case −∞ < κ < 0.

THEOREM 8. If 1 < r < ∞,−∞ < κ < 0 and the function λ be a mask of type
(r,κ) , then we have that

n−r(logn)r(d−2)−κ � Mn(Uλ ,2(T
d))2 � n−r(logn)(r+1)(d−1)−dκ .
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