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OPTIMAL CONSTANTS OF THE MIXED

LITTLEWOOD INEQUALITIES: THE COMPLEX CASE

WASTHENNY CAVALCANTE, DANIEL NÚÑEZ-ALARCÓN ∗ ,
DANIEL PELLEGRINO AND PILAR RUEDA

(Communicated by I. Perić)

Abstract. In this paper, among other results, we obtain an extension of a kind of Khinchine
inequality given by R. Blei, namely, the Blei–Khinchine inequality. As an application we obtain
the optimal constants of the mixed Littlewood inequalities, for complex scalars.

1. Introduction

The origins of the theory of summability of multilinear forms and absolutely sum-
ming multilinear operators are probably associated to Littlewood’s (� 1, �2) mixed in-
equalities, published in 1930. A very detailed introduction to the theory of absolutely
summing operators can be found in [10], while the multilinear theory has been recently
explored in different contexts by various authors (see [ 8, 19, 20, 25] and the references
therein) with applications in other fields as Quantum Information Theory and Theoret-
ical Computer Science (see [3, 21, 29] and the references therein).

From now on K will denote the real scalar field R or the complex scalar field C

and, for any s � 1, we denote the conjugate index of s by s ∗, i.e., 1/s+ 1/s∗ = 1 (as
usual we consider 1/0 = ∞ and 1/∞ = 0). Littlewood’s (�1, �2) -mixed inequalities
([17], 1930) assert that there are (optimal) constants L K

(2,1) � 1 and L K
(1,2) � 1 such

that
∞

∑
j=1

(
∞

∑
k=1

∣∣A(e j,ek)
∣∣2) 1

2

� L K
(2,1) ‖A‖ (1.1)

and ⎛⎝ ∞

∑
k=1

(
∞

∑
j=1

∣∣A(e j,ek)
∣∣)2

⎞⎠ 1
2

� L K
(1,2) ‖A‖ (1.2)
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for all continuous bilinear forms A : c0 × c0 → K . Here and henceforth en represents
the canonical vector with 1 at the n-th entry, and zero otherwise, in a sequence space
and

‖A‖ := sup{|A(x,y)| : ‖x‖ � 1 and ‖y‖ � 1} .

The inequality (1.2) was obtained in 1933 by Orlicz, working in a different context (see
[6, pages 23–25]).

The exponents of Littlewood’s (�1, �2)-mixed inequalities are optimal in the sense
that, fixing the exponent 1, the exponent 2 cannot be replaced by a smaller exponent
(nor the exponent 1 can be replaced by a smaller one). On the other hand, the optimality
of the constants L K

(1,2) and L K
(2,1) is summarized in the following way (see [6, page

31]): ⎧⎨⎩L R
(1,2) = L R

(2,1) =
√

2,

L C
(1,2) = L C

(2,1) = 2/
√

π .

In 1934 Hardy and Littlewood [14] pushed the subject further, extending the above
results to bilinear forms defined on � p spaces (when p = ∞, as usual, we consider c0

instead of �∞, and for any function f we shall consider f (∞) := lims→∞ f (s)): for
p,q � 2, with 1/p+ 1/q < 1, there is a (optimal) constant L K

(p,q,2,λ ) � 1 such that⎛⎝ ∞

∑
j=1

(
∞

∑
k=1

∣∣A(e j,ek)
∣∣2) λ

2
⎞⎠

1
λ

� L K
(p,q,2,λ )‖A‖ (1.3)

with λ := pq
pq−p−q , for all continuous bilinear forms A : � p × �q → K . Observe that

the inequality (1.3) is the extension of the inequality (1.1) to bilinear forms defined on
�p × �q . On the other hand, note that when 1/p + 1/q � 1/2 we have λ = pq

pq−p−q �
2, and by a well-known result sometimes credited to Minkowski (see [ 12, Corollary
5.4.2]), we obtain⎛⎝ ∞

∑
k=1

(
∞

∑
j=1

∣∣A(e j,ek)
∣∣λ) 2

λ
⎞⎠

1
2

�

⎛⎝ ∞

∑
j=1

(
∞

∑
k=1

∣∣A(e j,ek)
∣∣2) λ

2
⎞⎠

1
λ

.

Therefore, for p,q � 2, with 1/p+1/q� 1/2, there is a (optimal) constant L K
(p,q,λ ,2) �

1 such that ⎛⎝ ∞

∑
k=1

(
∞

∑
j=1

∣∣A(e j,ek)
∣∣λ) 2

λ
⎞⎠

1
2

� L K
(p,q,λ ,2)‖A‖ , (1.4)

for all continuous bilinear forms A : � p × �q → K . Observe that this is the extension
of the inequality (1.2) to bilinear forms defined on � p × �q . The inequalities (1.3) and
(1.4) were obtained in 1934 by Hardy and Littlewood (see [ 14, Theorems 1 and 4]).
The exponents in the inequalities (1.3) and (1.4) are optimal in the sense that λ can not
be improved keeping the exponent 2 nor the exponent 2 can be improved keeping the
exponent λ . Looking at this result, the natural question is: why does 1/p+1/q = 1/2
separate the rank of validity of the two extensions (1.3) and (1.4)? This question is
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answered in [9, Appendix]. On the other hand, we observe that fixing the parameter
q = ∞ (or p = ∞), the sum 1/p + 1/q is always less than or equal to 1/2, whenever
p � 2 (or q � 2), and hence the two extensions (1.3) and (1.4) are valid, and look as
follows:

THEOREM 1.1. (Littlewood’s (� p∗ , �2) mixed inequality) Let p � 2 . There is a
(optimal) constant L K

(p,∞,2,p∗) such that⎛⎜⎝ ∞

∑
j=1

(
∞

∑
k=1

|A(e j,ek)|2
) p∗

2

⎞⎟⎠
1

p∗

� L K
(p,∞,2,p∗)‖A‖,

for all continuous bilinear forms A : � p × c0 → K .

THEOREM 1.2. (Littlewood’s (�2, �p∗) mixed inequality) Let p � 2 . There is a
(optimal) constant L K

(p,∞,p∗,2) such that⎛⎝ ∞

∑
k=1

(
∞

∑
j=1

|A(e j,ek)|p∗
) 2

p∗
⎞⎠

1
2

� L K
(p,∞,p∗,2)‖A‖,

for all continuous bilinear forms A : � p × c0 → K .

REMARK 1.3. The optimal constants L K
(p,∞,p∗,2) and L K

(p,∞,2,p∗) , for all p � 2,
were obtained, in the real case, in the recent papers [22, 23]. In fact, it was proved that
for all p � 2 we have

L R
(p,∞,p∗,2) = L R

(p,∞,2,p∗) = A−1
p

p−1
,

where A p
p−1

denotes the optimal constant in the Khinchine inequality (formally intro-

duced in Section 2). On the other hand, in the complex case, the only known estimates
for the optimal constants are

1 � L C
(p,∞,p∗,2) � 2√

π
, and 1 � L C

(p,∞,2,p∗) � 2√
π

,

for all p � 2.

Theorems 1.1 and 1.2 are usually called mixed Littlewood inequalities (see [18,
22, 23]).

The first main goal of the present paper is to obtain, for all p � 2 , the optimal val-
ues of L C

(p,∞,p∗,2) and L C
(p,∞,2,p∗) . We recall that the optimal estimates for L R

(p,∞,p∗,2)

and L R
(p,∞,2,p∗) are presented in [22, 23] , as a consequence of the Khinchine inequality,

a result from Probability frequently used in Functional Analysis. In fact, many modern
proofs of the Hardy–Littlewood and related inequalities depend on this inequality. The
second main objective of this work is to extend the Khinchine inequality to an appro-
priate environment that will allow us to obtain the optimal estimates of L C

(p,∞,p∗,2) and

L C
(p,∞,2,p∗) .
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This paper is organized as follows: in Section 2, inspired by a result of [ 6], we
obtain an extension of the Khinchine inequality, namely, the Blei–Khinchine inequality.
In Section 3, we use the results of Section 2 for the sake of reaching our main goal. The
last section sketches consequences of our approach to the multilinear setting; one of
them is obtaining optimal estimates for the constants in the multilinear version of the
mixed Littlewood inequalities.

2. An extension of the Khinchine inequality

The Khinchine inequality, proved in 1923 by A. Khinchine ([ 15]), asserts that for
any p > 0 there is a constant A p > 0 such that

Ap

(
N

∑
j=1

∣∣a j
∣∣2) 1

2

�

⎛⎝ 1
2N ∑

η∈{1,−1}N

∣∣∣∣∣ N

∑
j=1

η ja j

∣∣∣∣∣
p
⎞⎠ 1

p

(2.1)

for all sequences of scalars (a j)N
j=1 and all positive integers N. This inequality is

strongly related to the development of the theory of summing linear and multilinear
operators.

Obviously, Ap = 1 for all p � 2. In 1982 Haagerup ([13]) furnished the optimal
values of the constant Ap for all p > 0.

The counterpart for the average 1
2N ∑

η∈{1,−1}N

∣∣∣∣∣ N
∑
j=1

η ja j

∣∣∣∣∣
p

in the complex frame-

work is (
1

2π

)N ∫ 2π

0
. . .

∫ 2π

0

∣∣∣∣∣ N

∑
j=1

a je
it j

∣∣∣∣∣
p

dt1 · · ·dtN . (2.2)

For the sake of simplicity we shall denote (2.2) by

E

∣∣∣∣∣ N

∑
j=1

a jε j

∣∣∣∣∣
p

where ε j are Steinhaus variables; i.e. variables which are uniformly distributed on the
circle S1 . The following version of the Khinchine inequality holds and in this case it is
known as the Khinchine inequality for Steinhaus variables:

THEOREM 2.1. (Khinchine’s inequality for Steinhaus variables) For every 0 < p
< ∞ , there is a (optimal) constant Ãp such that

Ãp

(
N

∑
n=1

|an|2
) 1

2

�
(

E

∣∣∣∣∣ N

∑
n=1

anεn

∣∣∣∣∣
p) 1

p

(2.3)

for every positive integer N and all scalars a1, . . . ,aN , where εn are Steinhaus vari-
ables.
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Obviously, Ãp = 1 for all p � 2. Recently, in 2014 König [16] proved that the

optimal constants Ãp are

Ãp =
(

Γ
(

p+ 2
2

)) 1
p

, for 0.4756 ≈ p1 � p < 2 (2.4)

and

Ãp =
√

2

⎛⎝ Γ
(

p+1
2

)
Γ
(

p+2
2

)√
π

⎞⎠
1
p

, for 0 < p < p1 ≈ 0.4756. (2.5)

Above and henceforth Γ denotes the famous Gamma function. The exact definition of
the critical value p1 is the following: p1 ∈ (0,1) is the unique real number satisfying

1 =
√

2

⎛⎝ Γ
(

p1+1
2

)
√

πΓ
( p1

2 + 1
)2

⎞⎠
1
p

.

In [6, chapter II: section 6] it was introduced a kind of Khinchine inequality that ex-
tends and unifies the inequalities (2.1) and (2.3). Before stating this Blei–Khinchine
inequality, we need to introduce some notation and results.

Let p1, p2 ∈ [1,∞] and N be a positive integer. We recall that for a continuous
bilinear form A : �N

p1
× �N

p2
→ C , the sup-norm of A is given by

‖A‖ = sup

{∣∣∣∣∣ N

∑
i, j=1

ai jxiy j

∣∣∣∣∣ : ‖x‖�N
p1

� 1,‖y‖�N
p2

� 1

}
,

where A(ei,e j) = ai j , for all i, j ∈ {1, . . . ,N} , and �N
pk

is CN , endowed with the �pk

norm (we remember that, when pk = ∞ , we consider c0 instead of �∞ ).
For each integer M � 2, we consider{

TM :=
{

exp
(

2 jπ
M i

)
: j = 0, . . . ,M−1

}
,

T∞ = {exp(ti) : t ∈ [0,2π)}.
and

DM := conv(TM) and D∞ := conv(T∞) ,

where conv means the convex hull. Observe that D ∞ is the closed unit disk D and,
trivially, DM ⊆ D∞ . Obviously, DM is a convex and closed absorbing set in C .

LEMMA 2.2. Let M � 3 be an integer. If rM :=
( 1

2 + 1
2 cos

( 2π
M

)) 1
2 , then

B[0,rM] ⊆ DM,

where B[0,rM] denotes the closed ball with center in 0 and radius rM.

Proof. Note that 0 ∈ DM . In fact,

0 =
1
M

+
1
M

exp

(
2π
M

i

)
+ · · ·+ 1

M
exp

(
2(M−1)π

M
i

)
,
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and ∑M−1
i=0

1
M = 1. We also know that DM is a regular polygon with apothem given by∣∣∣∣1

2
exp

(
2 jπ
M

i

)
+

1
2

exp

(
2( j + 1)π

M
i

)∣∣∣∣ .
Computing the apothem, we have∣∣∣∣1

2
exp

(
2 jπ
M

i

)
+

1
2

exp

(
2( j + 1)π

M
i

)∣∣∣∣2
=

1
4

((
cos

(
2 jπ
M

)
+ cos

(
2( j + 1)π

M

))2

+
(

sin

(
2 jπ
M

)
+ sin

(
2( j + 1)π

M

))2
)

=
1
4

((
2+ 2cos

(
2 jπ
M

)
cos

(
2( j + 1)π

M

))
+ 2sin

(
2 jπ
M

)
sin

(
2( j + 1)π

M

))
=

1
4

(
2+ 2cos

(
2π
M

))
= r2

M.

Thus, it is possible to draw a circle inside DM with radius rM . �

Let N and M be positive integers, M � 3. For any bilinear form A : �N
p × cN

0 → C

we define the norm

‖A‖M := sup
{
|A(x,y)| : ‖x‖�p

� 1 and y ∈ T N
M

}
.

The following basic result, whose aim is to get approximations of the sup-norm
‖A‖ , is a simple consequence of Lemma 2.2:

THEOREM 2.3. Let N,M be positive integers, M � 3 , and p ∈ [1,∞] . Then

‖A‖M � ‖A‖ � r−1
M ‖A‖M,

for all bilinear forms A : �N
p × cN

0 → C , where rM is as in Lemma 2.2.

For each M � 2, let

ΩM :=
{

2 jπ
M

: j = 0, . . . ,M −1

}
.

Let (an)N
n=1 be an array of scalars, 0 < p < ∞, and M � 2. We define

EM,p
(
(an)N

n=1

)
=

⎛⎝(
1
M

)N

∑
β∈ΩN

M

∣∣∣∣∣ N

∑
n=1

aneiβn

∣∣∣∣∣
p
⎞⎠ 1

p

.

Using the Dominated Convergence Theorem it is possible to prove that

lim
M→∞

EM,p
(
(an)N

n=1

)
=

(
E

∣∣∣∣∣ N

∑
n=1

anεn

∣∣∣∣∣
p) 1

p

.

We need the following auxiliary result:
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LEMMA 2.4. Let (an)N
n=1 be an array of scalars, 0 < p < ∞, and M � 2 . Then

EM,p
(
(an)N

n=1

)
= EM,p

(
(aneisn)N

n=1

)
for all s = (s1, . . . ,sN) ∈ ΩN

M .

Proof. If s = (s1, . . . ,sN) ∈ ΩN
M , then

EM,p
(
(aneisn)N

n=1

)
=

⎛⎝(
1
M

)N

∑
β∈ΩN

M

∣∣∣∣∣ N

∑
n=1

aneisneiβn

∣∣∣∣∣
p
⎞⎠ 1

p

=

⎛⎝(
1
M

)N

∑
β∈ΩN

M

∣∣∣∣∣ N

∑
n=1

anei(sn+βn)

∣∣∣∣∣
p
⎞⎠ 1

p

=

⎛⎝(
1
M

)N

∑
γ∈ΩN

M

∣∣∣∣∣ N

∑
n=1

aneiγn

∣∣∣∣∣
p
⎞⎠ 1

p

= EM,p
(
(an)N

n=1

)
. �

Now, we enunciate and prove the announced extension of the Khinchine inequal-
ity, for 1 � p � 2, that extends and unifies the inequalities (2.1) and (2.3). We empha-
size that the theorem below was introduced by Blei for p = 1, in [6, Chapter II: Section
6].

THEOREM 2.5. (Blei–Khinchine inequality) For every 1 � p � 2 , and M � 2 ,
there is a (optimal) constant BM,p such that(

N

∑
n=1

|an|2
)1/2

� BM,p ·EM,p
(
(an)N

n=1

)
, (2.6)

for every positive integer N and all scalars a1, . . . ,aN . Moreover, for all M � 3,

BM,p � L C
(p∗,∞,p,2) · r−1

M , (2.7)

where

rM =
(

1
2

+
1
2

cos

(
2π
M

)) 1
2

.

Observe that the inequality (2.6) in Theorem 2.5 is a direct consequence of Lemma
2.2. However, since the estimate (2.7) will be used in the next section, we give the
following proof of the Blei–Khinchine inequality:

Proof. The case M = 2 is the inequality (2.1) and thus we only need to prove
the case M � 3. Let 1 � p � 2, and let (an)N

n=1 be an array of scalars, such that
EM,p

(
(an)N

n=1

)
= 1. Then, by the previous lemma,

EM,p
(
(aneisn)N

n=1

)
=

⎛⎝(
1
M

)N

∑
β∈ΩN

M

∣∣∣∣∣ N

∑
n=1

aneisneiβn

∣∣∣∣∣
p
⎞⎠ 1

p

= 1,
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for all s ∈ ΩN
M . Thus, ⎛⎝(

1
M

)N

∑
r∈T N

M

∣∣∣∣∣ N

∑
n=1

anwnrn

∣∣∣∣∣
p
⎞⎠ 1

p

= 1,

for all w ∈ T N
M . Note that⎛⎝(

1
M

)N

∑
r∈T N

M

∣∣∣∣∣ N

∑
n=1

anwnrn

∣∣∣∣∣
p
⎞⎠ 1

p

=

((
1
M

)N MN

∑
i=1

∣∣∣∣∣ N

∑
n=1

anτ(i)
n wn

∣∣∣∣∣
p) 1

p

= 1 (2.8)

for all w ∈ T N
M , where τ (i)

n ∈ TM , for all n ∈ {1, . . . ,N} and i ∈ {
1, . . . ,MN

}
.

Consider the bilinear form A : �MN

p∗ × cN
0 → C given by

A(ei,en) =
anτ(i)

n

M
N
p

, n ∈ {1, . . . ,N} and i ∈ {
1, . . . ,MN} .

Note that ‖A‖M � 1. In fact, using Hölder’s inequality and the equality ( 2.8) we get∣∣∣∣∣M
N

∑
i=1

N

∑
n=1

A(ei,en)wnzi

∣∣∣∣∣ =

∣∣∣∣∣M
N

∑
i=1

N

∑
n=1

anτ(i)
n

M
N
p

wnzi

∣∣∣∣∣
�

(
MN

∑
i=1

∣∣∣∣∣ N

∑
n=1

anτ(i)
n

M
N
p

wn

∣∣∣∣∣
p) 1

p

·
(

MN

∑
i=1

|zi|p
∗
) 1

p∗

�
((

1
M

)N MN

∑
i=1

∣∣∣∣∣ N

∑
n=1

anτ(i)
n wn

∣∣∣∣∣
p) 1

p

(2.8)
= 1

for all w ∈ T N
M , and z ∈ �p∗ , with ‖z‖�p∗ � 1. Therefore, ‖A‖M � 1. Moreover, using

Theorem 1.2 and Theorem 2.3, and the above norm estimate, we have(
N

∑
n=1

|an|2
)1/2

=

⎛⎝ N

∑
n=1

(
MN

∑
i=1

∣∣∣∣∣
(

1
M

)N
p

anτ(i)
n

∣∣∣∣∣
p)2/p

⎞⎠
1
2

=

⎛⎝ N

∑
n=1

(
MN

∑
i=1

|A(ei,en)|p
)2/p

⎞⎠
1
2

� L C
(p∗,∞,p,2)‖A‖

� L C
(p∗,∞,p,2) · r−1

M ‖A‖M

� L C
(p∗,∞,p,2) · r−1

M .

Thus, the inequality follows and

BM,p � L C
(p∗,∞,p,2) · r−1

M ,

as asserted. �
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3. Applications of the Blei–Khinchine inequality

In this section, as an application of the Blei–Khinchine inequality, we obtain the
optimal constants L C

(p,∞,p∗,2) and L C
(p,∞,2,p∗) , for all p � 2. We start with the following

proposition, showing that L C
(p,∞,p∗,2) � Ã p

p−1

−1
, for all p � 2. This estimate is some-

what new; for real scalars, in [22, Theorem 2] it was proved that L R
(p,∞,p∗,2) � A−1

p
p−1

but

for complex scalars the only known estimate is L C
(p,∞,p∗,2) � 2√

π . The proof is simple
and follows the lines of the proof of [22, Theorem 2]. We shall include a short proof
for the sake of completeness.

PROPOSITION 3.1. (Littlewood’s (�p∗ , �2) mixed inequality) Let p ∈ [2,∞] . We
have

L C
(p,∞,2,p∗) � Ã p

p−1

−1
.

Proof. Let T : �n
p × cn

0 → C be a bilinear form with p � 2. Then, invoking the
Khinchine inequality for Steinhaus variables and recalling that the weak p ∗ -norm of

(e j)
n
j=1 in �n

p is 1 and that all continuous linear functionals are absolutely
(

p
p−1 , p

p−1

)
-

summing with constant 1, we have⎛⎝ n

∑
i=1

(
n

∑
j=1

∣∣T (ei,e j)
∣∣2) 1

2
p

p−1
⎞⎠

p−1
p

� Ã p
p−1

−1

⎛⎝ n

∑
i=1

∫ 1

0

∣∣∣∣∣ n

∑
j=1

r j(t)T (ei,e j)

∣∣∣∣∣
p

p−1

dt

⎞⎠
p−1

p

= Ã p
p−1

−1

⎛⎝∫ 1

0

n

∑
i=1

∣∣∣∣∣T
(

ei,
n

∑
j=1

r j(t)e j

)∣∣∣∣∣
p

p−1

dt

⎞⎠
p−1

p

� Ã p
p−1

−1

⎛⎝∫ 1

0

∥∥∥∥∥T

(
·,

n

∑
j=1

r j(t)e j

)∥∥∥∥∥
p

p−1

dt

⎞⎠
p−1

p

� Ã p
p−1

−1 ‖T‖ ,

for all bilinear forms T : �n
p × cn

0 → C . Thus, the inequality follows and

L C
(p,∞,2,p∗) � Ã p

p−1

−1
,

as asserted. �
If p � 2, we have p∗ � 2, and thus by [12, Corollary 5.4.2] and Proposition 3.1

we obtain⎛⎝ ∞

∑
j=1

(
∞

∑
i=1

|T (ei,e j)|p∗
) 2

p∗
⎞⎠

1
2

�

⎛⎜⎝ ∞

∑
i=1

(
∞

∑
j=1

|T (ei,e j)|2
) p∗

2

⎞⎟⎠
1
p∗

� L C
(p,∞,2,p∗)‖T‖.

for all continuous bilinear forms T : � p × c0 → C . Then, Proposition 3.1 implies the
next result:
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PROPOSITION 3.2. (Littlewood’s (�2, �p∗) mixed inequality) Let p ∈ [2,∞] . We
have

L C
(p,∞,p∗,2) � L C

(p,∞,2,p∗).

On the other hand, inequality (2.7) combined with Proposition 3.1 and Proposition
3.2 give us

rM ·BM, p
p−1

� L C
(p,∞,p∗,2) � L C

(p,∞,2,p∗) � Ã p
p−1

−1

for all M � 3 and for all p ∈ [2,∞] . Thus, making M → ∞ , we have that r M turns 1,

and BM, p
p−1

turns Ã p
p−1

−1
, and the above inequalities become

L C
(p,∞,p∗,2) = L C

(p,∞,2,p∗) = Ã p
p−1

−1

for all p ∈ [2,∞] . In short, we have proved the following:

THEOREM 3.3. For all p ∈ [2,∞] , the optimal constants in the complex mixed
Littlewood inequalities are

L C
(p,∞,2,p∗) = L C

(p,∞,p∗,2) = Ã p
p−1

−1
.

REMARK 3.4. We recall that the particular case p = ∞ was previously obtained
in [6, page 31].

4. Remarks on the multilinear case

Let m be a positive integer and 1 � p1, . . . , pm � ∞ . From now on, for p :=
(p1, . . . , pm) ∈ [1,+∞]m , let ∣∣∣∣1

p

∣∣∣∣ :=
1
p1

+ · · ·+ 1
pm

.

In the last 40 years, several multilinear variants of the classical Hardy–Littlewood in-
equalities have appeared. As in the bilinear case, if we want all mixed inequalities to be
valid, the condition that must be imposed is |1/p| � 1/2. In this environment, one of
the most general versions of the Hardy–Littlewood inequality for m-linear forms was
presented in [1] (following our convention, c0 is understood as the proper substitute of
�∞ when the parameter p j → ∞):

THEOREM 4.1. (Hardy–Littlewood inequality, [1]) Let 2 � p1, . . . , pm � ∞ , with

|1/p|� 1/2 and q := (q1, . . . ,qm) ∈
[
(1−|1/p|)−1 ,2

]m
. The following assertions are

equivalent:

(a) There is a constant CK
m,p,q � 1 such that⎛⎜⎜⎝ ∞

∑
i1=1

⎛⎝· · ·
(

∞

∑
im=1

|A(ei1 , . . . ,eim)|qm

) qm−1
qm

· · ·
⎞⎠

q1
q2

⎞⎟⎟⎠
1

q1

� CK
m,p,q ‖A‖

for every continuous m-linear form A : � p1 ×·· ·× �pm → K .
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(b) The exponents q1, . . . ,qm ∈
[
(1−|1/p|)−1 ,2

]
satisfy

1
q1

+ · · ·+ 1
qm

� m+ 1
2

−
∣∣∣∣1
p

∣∣∣∣ .
REMARK 4.2. According to [1] and [2], the constants CR

m,p,q are dominated by(√
2
)m−1

, while CC
m,p,q are dominated by

(
2/

√
π
)m−1

.

Observe that, for k ∈ {1, . . . ,m} , if we consider t = (t1, . . . ,tm) , with 1
tk

= 1−
∣∣∣ 1

p

∣∣∣ ,

and t j = 2 for every j 	= k , we have

1
t1

+ · · ·+ 1
tm

=
m+ 1

2
−
∣∣∣∣1
p

∣∣∣∣ .
Thus, the following inequality is a particular case of Theorem 4.1:

THEOREM 4.3. (see [27]) Let p1, . . . , pm ∈ [2,∞] be such that 0 < |1/p| � 1/2.
Define

Λ :=
1

1−
∣∣∣ 1

p

∣∣∣ ,
and, for k ∈ {1, . . . ,m} , consider tk = Λ , and t j = 2 for every j 	= k. Then, there are
constants CK

m,p,q � 1 such that⎛⎜⎜⎝ n

∑
i1=1

⎛⎜⎝. . .

(
n

∑
im=1

|A(ei1 , . . . ,eim)|tm
) tm−1

tm

. . .

⎞⎟⎠
t1
t2

⎞⎟⎟⎠
1
t1

� CK
m,p,q‖A‖, (4.1)

for all continuous m-linear forms A : � p1 ×·· ·× �pm → K .

If we look for a common thread in the “different” historical proofs of the Hardy–
Littlewood inequalities, we necessarily observe that Theorem 4.3 implies a Hardy–
Littlewood inequality (and for this reason it has its own special interest).

The Hardy–Littlewood inequalities appeared for the first time for bilinear forms
in 1930 [17, Theorem 1], with � p1 = �p2 = c0 , and then in 1931 [7, Theorem I], 1934
[14, Theorem 1], 1981 [27, Theorem A], 2016 [11, Proposition 3.1], 2016 [1, Lemma
2.1]. The role of Theorem 4.3, in the proofs of the Hardy–Littlewood inequalities in the
above references, is essentially the same (this is described in Bayart’s paper [4] in what
he calls Abstract Hardy–Littlewood Method). In fact, in these references, Theorem 4.3
was always used as the starting point of the proof of the respective Hardy–Littlewood
inequality.

Using Theorem 4.3 we can get the following extension of Theorem 1.1 and Theo-
rem 1.2: for p ∈ [2,∞] and m ∈ N , m � 2, there are positive constants

L K
1,m,(p,∞,...,∞), L K

2,m,(p,∞,...,∞), · · · , L K
m,m,(p,∞,...,∞)
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such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ ∞

∑
j1=1

(
∞

∑
j2,···, jm=1

∣∣A(e j1 , · · · ,e jm)
∣∣2) p∗

2

⎞⎟⎠
1

p∗

� L K
1,m,(p,∞,...,∞) ‖A‖ ,

...⎛⎝ ∞

∑
j2,···, jm=1

(
∞

∑
j1=1

∣∣A(e j1 , · · · ,e jm)
∣∣p∗

) 2
p∗
⎞⎠

1
2

� L K
m,m,(p,∞,...,∞) ‖A‖ ,

(4.2)

for all continuous m-linear forms A : � p × c0 × ·· · × c0 → K . These are also called
mixed Littlewood inequalities (see [22, 23]).

The inequalities in (4.2) have their own interest; for instance, in [23] it was proved
that the real mixed Littlewood inequalities are equivalent to the Khinchine inequality.

According to Remark 4.2,

L R
k,m,(p,∞,...,∞) �

(√
2
)m−1

and L C
k,m,(p,∞,...,∞) �

(
2/

√
π
)m−1

.

In the recent years, several authors ([22, 23, 24, 26]) have worked on estimating the
optimal constants of (4.2) and managed to solve the problem for the case K = R . The
following table summarizes the results obtained thus far:

Case Year Optimal constant

(i) 2016, [24] L R
1,m,(∞,...,∞) =

(√
2
)m−1

(ii) 2018, [26] L R
k,m,(∞,...,∞) =

(√
2
)m−1

(iii) 2019, [22, 23] L R
k,m,(p,∞,...,∞) = A−(m−1)

p
p−1

; p ∈ [2,∞] .

In the case of complex scalars, despite the results achieved in the real case, the
optimal constants for all values of p are unknown. In this section we will obtain the
optimal constants for the cases (i)-(iii) when K = C .

By [12, Corollary 5.4.2] it is simple to verify that the constants in (4.2) satisfy the
following estimate:

L C
m,m,(p,∞,...,∞) � · · · � L C

2,m,(p,∞,...,∞) � L C
1,m,(p,∞,...,∞). (4.3)

The following two well-known theorems are natural and useful extensions of the
Khinchine inequalities, for Rademacher functions and Steinhaus variables, to the mul-
tilinear setting (see [23, 28]):

THEOREM 4.4. (Multiple Khinchine inequality) For every 0 < p < ∞ and m ∈N

there is a (optimal) constant Jm,p � 1 , such that regardless of the array of scalars
(yi1...im)∞

i1,...,im=1 we have

Jm,p

(
N

∑
i1,...,im=1

|yi1...im |2
) 1

2

�
(∫ 1

0
. . .

∫ 1

0

∣∣∣∣∣ N

∑
i1,...,im=1

ri1 (t1) . . . rim (tm)yi1...im

∣∣∣∣∣
p

dt1 . . .dtm

) 1
p

,

for all N ∈ N , where ri j (t j) are the Rademacher functions, for all j ∈ {1, . . . ,m} and
i j ∈ {1, . . . ,N} .
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For the sake of simplicity, we write

Em

∣∣∣∣∣ N

∑
n1,...,nm=1

an1...nmε(1)
n1 · · ·ε(m)

nm

∣∣∣∣∣
p

=
(

1
2π

)Nm ∫ 2π

0
. . .

∫ 2π

0

∣∣∣∣∣ N

∑
n1,...,nm=1

eit
(1)
n1 · · ·eit

(m)
nm an1...nm

∣∣∣∣∣
p

dt(1)
1 · · ·dt(1)

N · · ·dt(m)
1 · · ·dt(m)

N ,

where ε ( j)
n j are Steinhaus variables and then, the multiple Khinchine inequality for

Steinhaus variables reads as follows:

THEOREM 4.5. (Multiple Khinchine inequality for Steinhaus variables) For every
0 < p < ∞ and m ∈ N there is a (optimal) constant Sm,p � 1 , such that regardless of
the array of scalars (ai1,...,im)∞

i1,...,im=1 we have

Sm,p

(
N

∑
i1...im=1

|ai1,...,im |2
)1/2

�
(

Em

∣∣∣∣∣ N

∑
i1,...,im=1

ε(1)
i1

· · ·ε(m)
im ai1...im

∣∣∣∣∣
p) 1

p

,

for all N ∈ N , where ε( j)
i j

are the Steinhaus variables, for all j ∈ {1, . . . ,m} and i j ∈
{1, . . . ,N} .

The final solution giving the optimal constant Jm,p in Theorem 4.4 was obtained
in 2019 [23]:

Jm,p = (Ap)m

for all m ∈ N and for all 0 < p < ∞ , where A p is the optimal value of the constant in
(2.1). By using the same technique in [23] (in the case of Steinhaus variables, we use
[16, Theorem 1] instead of [13, p. 239], according [23, Lemma 3.3]), we can obtain the
following optimal estimates for the constants in Theorem 4.5:

Sm,p =
(

Ãp

)m

for all m ∈ N and for all 0 < p < ∞ , where Ãp denotes the best constants in the
Khinchine inequality for Steinhaus variables.

The multiple Khinchine inequality for Steinhaus variables plays a crucial role to
improve the estimates for the constants in the Hardy–Littlewood inequalities for com-
plex scalars (see [2, 5, 28]). In our case, it will help us to obtain the following estimate:

PROPOSITION 4.6. (Multilinear mixed Littlewood inequality) Let p ∈ [2,∞] and
m � 2 . We have

L C
1,m,(p,∞,...,∞) �

(
Ãp∗

)−(m−1)
. (4.4)

Since, for complex scalars, the only known estimate was the mentioned in Remark
4.2, the above estimate is somewhat new. However, the proof is simple and follows the
lines of the proof of Proposition 3.1.
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As in the linear case, we can provide an extension of the Blei–Khinchine inequal-
ity, for the multilinear setting. Before, we need to introduce some notation. Let m ∈ N ,
and (an1...nm)N

n1,...,nm=1 be an array of scalars, and 0 < p < ∞, and M � 2. We define

Em,M,p
(
(an1,...,nm)N

n1,...,nm=1

)
=

⎛⎝(
1
M

)Nm

∑
(t(1),...,t(m))∈(ΩN

M)m

∣∣∣∣∣ N

∑
n1,...,nm=1

an1...nmeit
(1)
n1 · · · · · eit(m)

nm

∣∣∣∣∣
p
⎞⎠ 1

p

.

Using the Dominated Convergence Theorem it is possible to prove that

lim
M→∞

(
Em,M,p

(
(ai1,...,im)N

n1,...,nm=1

))
=

(
Em

∣∣∣∣∣ N

∑
n1,...,nm=1

an1...nmε(1)
n1 · · · · · ε(m)

nm

∣∣∣∣∣
p) 1

p

and, as in the linear case, we can observe that if m � 1, and (a n1...nm)N
n1,...,nm=1 is an

array of scalars, and 0 < p < ∞, and M � 2, then

Em,M,p
(
(an1,...,nm)N

n1,...,nm=1

)
= Em,M,p

(
(an1,...,nmeis

(1)
n1 · · · · · eis

(m)
nm )N

n1,...,nm=1

)
for all s = (s(1), . . . ,s(m)) ∈ (

ΩN
M

)m
.

Now, we enunciate the announced extension of the Blei–Khinchine inequality for
the multilinear setting. The proof is similar to the one we have given in the linear case,
and for this reason it will be omitted.

THEOREM 4.7. (Multiple Blei–Khinchine inequality) For every 1 � p � 2 , and
m � 1 , and M � 2 , there is a (optimal) constant Bm,M,p such that regardless of the
array of scalars (an1,...,nm)∞

n1,...,nm=1 we have(
N

∑
n1,...,nm=1

|an1...nm |2
)1/2

� Bm,M,p ·Em,M,p
(
(an1...nm)N

n1,...,nm=1

)
,

for all N ∈ N . Moreover,

Bm,M,p � L C
m+1,m+1,(p∗,∞,...,∞) · r−m

M ,

where

rM :=
(

1
2

+
1
2

cos

(
2π
M

)) 1
2

.

We observe that making M → ∞ , Theorem 4.7 recovers Theorem 4.5, for 1 � p �
2, and the estimate

Bm,M,p � L C
m+1,m+1,(p∗,∞,...,∞) · r−m

M

becomes (
Ãp

)−m
= (Sm,p)−1 � L C

m+1,m+1,(p∗,∞,...,∞). (4.5)
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Combining the inequalities (4.3), (4.4), and (4.5) we conclude that for all m � 2,
and for all p ∈ [2,∞] , the optimal constants in (4.2), for the complex case are

L C
m,m,(p,∞,...,∞) = · · · = L C

2,m,(p,∞,...,∞) = L C
1,m,(p,∞,...,∞) =

(
Ãp∗

)−(m−1)
,

where the notation is as in the Khinchine inequality for Steinhaus variables (Theorem
2.1).

In short, we have proved the following:

THEOREM 4.8. For all m � 2 , for all k ∈ {1, . . . ,m} , and for all p ∈ [2,∞] , the
optimal constants in the complex mixed Littlewood inequalities are

L C
k,m,(p,∞,...,∞) =

(
Ãp∗

)−(m−1)
.
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