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Abstract. In this paper we obtain refinement of the Holder’s inequality and its related inequalities
including integral Minkowski’s inequality and some Hardy type inequalities on time scales.

1. Introduction

Inequalities are used everywhere in mathematics. Among the inequalities, some
of the most important inequalities are given by Holder, Minkowski, Hardy, Hilbert,
and Polya—Knopp. These inequalities are given both for sums and integrals. After the
development of time scales theory [1, 3, 4, 5, 6], these inequalities are also investigated
on time scales (see Chapter 10, [2]). In this paper, we give some refinements of these
inequalities on time scales.

A time scale is usually denoted by T and is defined as a nonempty closed subset of
the real numbers. For the basic time scales calculus, we refer the readers [ 3, 4]. Multiple
integration on time scales is given by Martin Bohner and Gusein Sh. Guseinov [5, 6].
They compare the Lebesgue A-integral with the Riemann A-integral.

Let p € N be fixed. For time scales, T, i € {1,...,p}, let

AP =Ty x.. . xTp={x=(X1,...,%p) : X € Tj, 1 <i<p} @)

an p-dimensional time scale. Suppose that i, is the o -additive Lebesgue A-measure
on AP and .# isthe collection of A-measurable subsetsof AP. If o € 4, (o, M , Up)
is a time scale measure space, and s: .« — R is a A-measurable function, then the cor-
responding A-integral of s over <7 is denoted by (see [6, (3.18)])

/s(xl,...,xp)Alxl...Apxp, /S(X)Ax, /sduA, or /s(x)duA(x).
o o o o
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All theorems of the general Lebesgue integration theory also hold for Lebesgue A-
integrals on AP (see [6, Section 3]).
Specifically, if the interval [a,b) C T contains only isolated points, then

b
[ stoduax) = 2 (a9 -0
a ab

In the following theorem we present Fubini’s theorem on time scales (see [ 2, The-
orem 1.8]), it is used in the proofs of our main results.

THEOREM 1. Let (&7, .#,up) and (A,.Z,va) be two finite-dimensional time
scale measure spaces. If s: .o/ x 8 — R is a A-integrable function and if we define
the functions

o) = [ sxyjdus(x forae ye#

and
l//(x)z/ s(x,y)dva(y) forae xe.o,
B

then ¢ is A-integrableon & and v is A-integrableon <7 and

/duA / (X,y)dva(Y) /dvA / (%,y)dpia (X). @)

2. Refinement of Holder’sinequality on time scales

Holder’s inequality on time scales is given in the following theorem.

THEOREM 2. (see [1]) For m=£1, definen=m/(m—1). Let («7,.# ,us) bea
time scale measure space. Assume w, S, t are nonnegative functions such that ws™,
wt", wst are A-integrableon 7. If m> 1, then

/W (x)dpa (x (/ w(x)s"(X)dua (X ))1/'“
(/ WOOE(X)dt (X >)l/n. )

A new improvement of Holder’s inequality for sums and integrals is given by Iscan
in [8].

THEOREM 3. Let | e N. For r € {1,...,1}, let s,t; > 0. If mn> 1 such that

1 l
&+ =1, thenwe have

BeweH (&) (&) "+ (Bee) " (Reee) )

(4)
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THEOREM 4. Let mn>1 suchthat 1 +1=1.1f st:[ab] — R aresuchthat

&, ", and t"(x) areintegrablefunctionson[a,b], then we have

/ " St(x)dx )

< %{ (/:(b—x)sm(x)dx> o </:(b Xt )dx) B
+</ab(x—a)sm(x)dx>1/m (/ab(x aj ()dx)l/n}.

Now our first result is the refinement of the Holder’s inequality on time scales
as well as generalization of the improved version of Holder’s inequality for sums and
integrals.

THEOREM 5. Let mn> 1 suchthat 1+ 1 =1 andlet (,.#,us) beatime
scale measure space. If 6, ¥, w, s, t are nonnegative functions on .« such that
0+ =1and Ows™, dws", owmt", dwt", Ows, dwst, wst are A-integrable, then
we obtain

/w (X)dia(x) < A (6)

(/%W (X)dpa(x )1/'“ (/ W)t (X)dpa (X ))1/”
where
= (f omoosmogauax )l/m( 0 (WO ()l (x >)l/n
([ 0w ) | DOOWO )30 "
(L, )

Proof. By using Holder’s inequality on time scales (3), we get

/ WO)S(X)t(x)da (¥)
X)t(X) + B (WS (X)) dtta (X)
t(x)dtta (X) + / B ()W(X)S(X)t(X)dpta (X)

(/MG(X)W( )Sm( )dpa (X )1/m (/ 0(x (X)da (X ))1/n
- (/,Qyﬁ(x)w( )Sm( )dpa (X )1/m (/ B (x (X)dua(x ))l/n

N [
\ \
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which shows the first inequality in (6).
The second inequality in (6) is proved by using the discrete Hélder’s inequality:

1
n

3=

UV + UV < (U + Up) ™ (V] +V3) 7, Uz, Up, Vi, V2 > 0.

Putting in the above inequality

(/ 0(x (x)dua(x) )1/”" (/ B(x (x)dua(x ))1/’“7
(/ 0(x (x)dua(x) )1/”7 (/ (X (x)dua(x ))1/"’

we get the second inequality in (6). [

REMARK 1. From (1), let p=1, AP=N, [a,b)={1,2,...,I} CN, 6(x) = {,
B (X) = 'T—X S(X) = s«, t(X) =tx, and w(x) = 1. Then (6) implies the inequality (4).

If AP=R, (p=1), [a,b]CR, 6(x) = %, ¥(x) = §=2, and w(x) = 1, then (6)
implies the inequality (5).

By taking t(x) = 1 for all x € 7 in Theorem 5, we obtain the following useful
result for a power mean.

COROLLARY 1. Let mn>1suchthat 1+ %=1 andlet («/,.#,us) beatime
scale measure space. If 6, ¥, w, and s are nonnegative functions on .7 such that
0+ =1 and ows™, dws", Ow, dw, Ows, Yws, ws are A-integrable, then we
obtain

(fd <><x>duA<x>>”‘
Jor W) (X)
([ Uy 00W)S™(X)dtta (%)™ ([ O(IW(x)dpaa (X)) "
b Jor WO dHs (%)

Uy DOWE)S" (9dta (9) ™ ([ ()W dpa (X)) ) i

)
Jor W) dpta(X)
< Jyr WIS (X)dpa(X)

Jor WO)dua(x)

3. Refinement of Minkowski’s, Hardy’sand Hilbert’sinequalities on time scales

Following theorem is the refinement of the integral Minkowski’s inequality on time
scales given in [2, Theorem 9.1]. In the sequel, we assume that all occurring integrals
are finite.
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THEOREM 6. Let (&7, . ,up) and (#4,.Z,va) betime scale measure spacesand
let u, v, and s be nonnegativefunctionson <7, 4, and <7 x A, respectively. If m>1,
6 and ¥ are nonnegativefunctionson .7 suchthat 6 + 9 = 1, then

Iy s<x,y>v<y>dvA<y>)mu(x)dwx)}#’ @
< (f, (], sty >)mu<x>duA<x>) "
< [, (f #rocsputuscx ) V)dva(y)
holds proviced tht al integralsin (7) exist, where
B= /(/e (X)dpa (X >>#x
x</de<x>< o
SiR—
" /ﬂx)( o

Proof. Let
HOO = [ sxyvy)dva(y).

By using Fubini’s theorem (Theorem 1) and Holder’s inequality (Theorem 2) on time
scales, we have

() u(x)dpta (X) /H X)H™ L (x)u(x)dua (x)
] eysva () ) H™ s (9

(/) s<x,y>Hm1<x>u<x>duA<x>) vdva(y)
( | 68y s (x ) (/, eoommoguauaco)
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m-1

(L oo (] ) s
_ @(/ﬂs}“(xy JU(X)dita (X) ) v(y)dva(y (/H e )mml

m-1

Now dividing by ([, H™(X)u(x)dua(x)) ™ we obtain the required inequalities in
(7M. O

REMARK 2. If we take T; =R in (1), then (7) implies the refinement of the inte-
gral Minkowski inequality for Lebesgue integrals.

([ sxmave) o) "%

<[, ([ soxymonavin) "wooaun] ™ l [ (f ewsoenuanix) "
X(/Aye(x) (/%5<x,y)v(y)dv(y)>rj( Ja (X )mm (y)dv(y)
+ [ ([, owsepuuco)
([ 0w (/, stxymnavin) "uouca) N V(y)dv(y).]

< [ #oxnuoasucs) ey

In this section, we let

Bl

(@) (o, up) and (B,Z,va) be finite dimensional time scale measure spaces.

(b) k: .o x 8 — R is anon-negative kernel and
= //3 k(X y)dva(y) <ee, x€ ..

(c) u:.o — Ry isa ua-integrable function and

wy) = [ LI, ye

Now we obtain the refinement of the Hardy’s inequality on time scales given in [2,
Theorem 10.1].



REFINEMENTS OF SOME CLASSICAL INEQUALITIES 257

THEOREM 7. Let (a), (b) and (c) be satisfied. If m>1and s, 6, and ¢ are
nonnegative functionson % suchthat 6 + % =1, then

/ ux ( / s3I ) G ®

X) + 2(X)) " dua ()

Jm

/W y)dva(y
:</,%9(y)k(x’y) y)dva(y >l/m(/9 K(x,y)dva(y )l/n

) = ([ omoxysrnsn) ([ ookoons)

Proof. By using the Corollary 1 and Fubini theorem on time scales, we obtain

/ ( /kxys Ydva(y )duA(x)

A (f”};iidivfiy))md“A<X>

</ ((f,@ (VKOS W)dva ()™ ([ O k(X Y)va(y) "
o

hold, where

and

JzK(x,y)dva(y)

] 1/m 1/n\ M
+ut%0<y>k<x7y)ﬁ“(y)ﬁ(y;)y)d v(jt@;%y)k(xy)dw)) ) L00a 00

Jz k(% y)s"(y)dva(y)
o fj’ (X y)dVA( ) u(x)d.uA(X)

- / / (y)dva(y)dua(x)

B (X, y)u(x)
= [ /M T Ha(avay)

_/ W(y)S(y)dva(y). O

~

COROLLARY 2. Let (a) and (b) be satisfied with & = % = [ag,b1) X ... X
[ap,bp)r. Let m>1, % beanonnegativefunctionon <7 and's, 6, ¥ benonnegative
functionson # suchthat 6 + ¢ =1 and

[ Y Yek(X )% (X)
7 _/ X1 ) o (Xp)J(X) QX < o




258 R. BiBI

Then the inequalities

by m diaXy ... diaXp
S _ 9
L X ()™ o ©)
bp % X) duaxq ... duax
H3(X) + (X)) TP
/a 2 IM(X) § (4509 + #500) o (x0) -0 (%)
- / /bp dVAYl dVAYp
Say Yi--Yp
hold provided that all mtegraJsm (9) exist, where
by
/ k X,Y)S(y)dvaYs ... dvaYp,
1/m
(/a k(x,y)s"(y)dvayi . --dVAYp)
1/n
( /a k(X,y)dvays .. dVAYp)
and
1/m
( /a (xy)s" (Y)dVAY1~~~dVAYp>
by 1/n
(/ k(X,y)dvay1 .. dVAYp) :
Proof. The inequalities in (9) follows from Theorem 7 by substituting
% (x)
ux)= ——. [
) o(X1)...0(Xp)
In the following corollary, we present a refinement of Hardy—Hilbert type inequal-
ity.

COROLLARY 3. Let (b) be satisfied with &7 = # = [0,e0)1. If M>1, s, 6, ¥
be nonnegative functionson [0,e) suchthat 6 + ¥ =1 and

o (Y —1/m o (Y 1-1/m
100 = [T o, w= [T,
then
/°°J%"“<x> ( /O t(+y>ydv ) duaty 10
< 300 (509 + H6(0) " ()

< /0 B (y)dva(y)
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hold provided that all integralsin (10) exist, where

- y\1-1/m ym y\—1/m 1/n
%(X):</O o t"‘(y)dvA(y)) (/0 e(y)%dm(y))

and

- ( )171/m Yym (Z)fl/m /n
%<x>:</0 20)5 tm(y)dvA(y)> (/0 ﬁ(y)XXTydvAw)) .

Proof. By substituting s(y) = t(y)y/™, u(x) = 2% and

X<

0, otherwise

I
k(x7y): X)(T» if X#Ovy#ov X+y7é07

in Theorem 7, we get

= [ S [ Kt

L _ %)
=5k ey =

Now the inequalities in (10) follows from (8). [

REMARK 3. If we take T = R, then

N( ) 1/m l 1/m -
[ o= [ o s .

Now the inequalities in (10) implies

/000 </0w ;(J)r/)ydy> mdx < /Ow (5(X) + H5(x))™dx
< (M ) ALY

which is the refinement of classical Hilbert inequality [ 7], where

- yy1-1/m ym yy—1/m 1/n
%(X>=</O O(y)(x)zw t’“(y)dy> (/0 9(y)(xx)+y dy)

and

. y\1-1/m ym o yy-1/m o\ /0
%<x>:</0 - tm<y>dy> (/0 o dy) .
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REMARK 4. From Theorem 7 we can also obtain refinements of several other

inequalities of Hardy, Hilbert, and P6lya-Knopp type as a special case. Further, results
in this paper are obtained for delta integrals, but these results can also be obtained
for other time scales integrals, e.g., nabla integrals, diamond- o integrals and diamond
integrals, in a similar way.

Our results can also be more generalized for k number of function instead of two

functions 6 and . For example, let m, n, w, sand t be defined as in Theorem 5 and

k
oi (i€1,2,...,k) be nonnegative functions defined on <7 such that ¥ oj = 1, then

i=1

the inequality (6) holds with

[1]
[2]
[3]
[4]
[5]
[6]
[71
(8]

1/n

A— il ( [ @ (x>w<x>é“<x>dmx>) . ( [ @ <x>w<x>t“<x>dm<x>)
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