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Abstract. We study continuity properties for multilinear operators between generalized Zyg-
mund spaces of L logL type, in the variable exponent setting with different weights. In order to
attack this goal we consider generalized bump conditions on the weights involved.

We shall be dealing with two different classes of operators. The former deals with op-
erators dominated by multilinear sparse forms and the latter are potential operators and their
commutators. These classes includes the multilinear Calderón-Zygmund operators, the bilinear
Hilbert transform, the multilinear fractional integral operator and the multilinear Bessel poten-
tial, among others. The symbols of the commutators belong to some generalized spaces that
include bounded mean oscillation spaces and the classical Lipschitz spaces.

1. Introduction

The main purpose of this paper is to give sufficient conditions on a family of
weights that guarantee weighted norm inequalities for multilinear versions of operators
from harmonic analysis between generalized Zygmund spaces of L logL type. In order
to obtain this objective we consider certain conditions on the multilinear weights which
are perturbations of the of the well known classes given in the literature [ 28, 3, 22].

We shall be dealing with two different classes of operator. The former deals
with operators dominated by multilinear sparse forms. This includes the multilinear
Calderón-Zygmund operators (CZO’s) and the bilinear Hilbert transform, among oth-
ers. The second class is the family of potential operators and their commutators. Exam-
ples of operators of this type are provided by the multilinear fractional integral operator
and the multilinear Bessel potential. The symbols of the commutators belong to a gen-
eralized Lipschitz spaces that include bounded mean oscillation spaces (BMO) and the
classical Lipschitz spaces.

In [34], Sawyer and Wheeden obtained power bump type conditions on a pair of
weights in order to prove boundedness results for the fractional integral operator I α ,
between Lebesgue spaces with different weights. These type of conditions appear as
suitable analogues for the Muckenhoupt conditions that characterize the boundedness of
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Iα for the case of one weight (see [29]). Motivated by the results above, in [31], Pérez
considered weaker norms than those involved in the conditions in [ 34], and obtained
two-weighted boundedness estimates for potential type operators. Later in [ 23], two
weighted norm inequalities in the spirit of those in [31] were proved for the higher
order commutators associated to potential operators with BMO symbols. Recently
these results were extended to the context of spaces with variable exponents in [ 25] and
[26].

On the other hand, in [10] the author studied a similar problem for CZO’s and their
commutators with BMO symbols. In that paper, Cruz Uribe and Pérez conjectured
that weaker conditions involving Young functions, are sufficient to obtain the desired
results. This conjecture have been studied extensively, for a complete history we refer
the reader to [9, 8, 7, 19] and [11] for the references that they contain. The problem
considered in [10] was approached in the general setting of variable exponents in [ 27].

Motivated by the work in [21], K. Moen ([28]) considered the multilinear frac-
tional integral operator and proved two weighted L p−Lq estimates, generalizing to the
multilinear context some results given in [31]. Later, Bernardis, Gorosito and Pradolini
([3]) extend the result to multilinear potential operators and their commutators with
BMO symbols.

One of our main results generalizes the main theorem in [3] not only by consider-
ing power bump type conditions involving Musielak-Orlicz spaces but also by dealing
with variable Lebesgue spaces. Moreover, the classes of the symbols in our results is
wider than the corresponding considered in [3].

Related with the results involving operators controled by sparse forms, our re-
sults consider power bump type conditions involving Musielak-Orlicz spaces and ex-
tend those from [10] to the multilinear context and the general setting of the generalized
Zygmund spaces of L logL type.

As far as we know the main results of this work are new even in the classical
setting.

The paper is organized as follows. In Section 2 we introduce basic definitions and
known results to state and prof our main results. In Section 3 we present the classes of
multilinear operators wich are our focus of study and our main results associated to it.
Finally, in Section 4 and 5 we prove our main results.

2. Preliminaries

2.1. Musielak-Orlicz spaces

With F we denote the set of all Lebesgue real valued, measurable functions on
R

n .
A convex function ψ : [0,∞) → [0,∞) with ψ(0) = 0, limt→0+ ψ(t) = 0 and

limt→∞ ψ(t) = ∞ is called a Φ-function.
A real function Ψ : R

n × [0,∞) → [0,∞) is said to be a generalized Φ-function
(GΦ-function), and we denote Ψ ∈ Φ(Rn) , if Ψ(x,t) is Lebesgue-measurable in x for
every t � 0 and Ψ(x, ·) is a Φ-function for every x ∈ R

n .
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If Ψ ∈ Φ(Rn) , then the set

LΨ(Rn) =
{

f ∈ F :
∫

Rn
Ψ(x, | f (x)|) dx < ∞

}
defines a Banach function space equipped with the Luxemburg norm given by

‖ f‖Ψ(·,·) = inf

{
λ > 0 :

∫
Rn

Ψ
(

x,
| f (x)|

λ

)
dx � 1

}
.

The space LΨ(Rn) is called a Musielak-Orlicz (MO) space (or generalized Orlicz
space). The MO spaces provide the framework for a variety of different function
spaces, including classical (weighted) Lebesgue and Orlicz spaces, generalized Zyg-
mund spaces of L logL type and variable exponent Lebesgue spaces. We refer the
reader to [17, 13, 6] for a detailed description of these spaces or some particular cases
of these and their properties. Below we shall describe some definitions and results in
these spaces relevant for the present work.

Let Ψ ∈ Φ(Rn) , then for any x∈R
n we denote by Ψ∗(x, ·) the conjugate function

of Ψ(x, ·) which is defined by

Ψ∗(x,u) = sup
t�0

(tu−Ψ(x,t)), u � 0.

Also we can define Ψ−1 , the generalized inverse function of Ψ by

Ψ−1(x,t) = inf{u � 0 : Ψ(x,u) � t}, x ∈ R
n, t � 0.

The following result is a generalization of the classical Hölder inequality to the
MO spaces.

LEMMA 1. Let Ψ ∈ Φ(Rn) , then∫
Rn

f (x)g(x)dx � ‖ f‖Ψ(·,·) ‖g‖Ψ∗(·,·) (1)

for all f ∈ LΨ(Rn) and g ∈ LΨ∗
(Rn) .

For Ψ ∈ GΦ(Rn) wich satisfies that every simple function belongs to LΨ∗
(Rn) ,

we have the following norm conjugate formula,

‖ f‖Ψ(·,·) � sup
‖g‖Ψ∗(·,·)�1

∫
Rn

| f (x)g(x)|dx (2)

for every function f ∈ LΨ(Rn) (see [[14], Corollary 2.7.5]).
For Ψ ∈ Φ(Rn) and r > 0, a rescaling of Ψ is given by

rΨ(x,t) = Ψ(x,tr). (3)

It follows directly from the definition of the Luxemburg norm that,

‖ f‖r
rΨ(·,·) = ‖ f r‖Ψ(·,·) . (4)
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2.1.1. Generalized Zygmund space of L logL type

We say that p(·)∈P(Rn) if p(·) : R
n → [1,∞) is measurable function. We denote

p− = inf
x∈Rn

p(x) and p+ = sup
x∈Rn

p(x).

Let p′(·) the conjugate exponent of p(·) given by p ′(·)=p(·)/(p(·)−1) . It is not hard to
prove that (p′)− = (p+)′ and (p′)+ = (p−)′ .

For p(·) ∈ P(Rn) and q(·):Rn → R such that q+ < ∞ , we define the function

ϕp(·),q(·)(x,t) = t p(x)(log(e+ t))q(x) (5)

for t � 0 and x ∈ R
n , with the convention ∞ · 0 = 0. To guarantee the convexity

property of ϕp(·),q(·) we suppose that the two exponents satisfies the inequality

2(p(x)−1)+q(x) � 0,

for all x ∈ R
n . Then ϕp(·),q(·) ∈ Φ(Rn) .

The generalized Zygmund space of L logL type, is the MO space associated to
ϕp(·),q(·) , Lϕp(·),q(·) (Rn) . We shall denote this space Lp(·)(logL)q(·)(Rn) .

When q(·)≡ 0, Lp(·)(logL)q(·)(Rn)= Lp(·)(Rn) is the well known variable Lebesgue
space. We denote ‖ f‖Lp(·)(logL)0 = ‖ f‖p(·) (see [6] and [14] for more information).

By [Lp(·)(logL)q(·)]loc(Rn) we denote the space of the functions f such that f ∈
Lp(·)(logL)q(·)(K) for every compact set K ⊂ R

n .
A locally integrable function w defined in R

n which is positive almost every-
where is called a weight. For a given weight w , we define the weighted generalized
Zygmund space of L logL type [Lp(·)(logL)q(·)]w(Rn) as the set of the measurable func-
tions f defined on R

n such that f w ∈ Lp(·)(logL)q(·)(Rn) . When q(·) ≡ 0, we denote

[Lp(·)(logL)q(·)]w(Rn) = Lp(·)
w (Rn) .

A stardar prove show that if p(·) ∈ P(Rn) , q(·) : R
n → [0,∞) with p+,q+ < ∞

and w∈ [Lp(·)(logL)q(·)]loc(Rn) , then the set of bounded functions with compact support
is dense in [Lp(·)(logL)q(·)]w(Rn) .

Simple calculus shows that ϕ ∗
p(·),q(·)(x,t) � t p′(x)(log(e + t))−q(x)/(p(x)−1). Then,

from (2) we can deduce the following result.

LEMMA 2. Let p(·) ∈ P(Rn) with p− > 1 , q : R
n → [0,∞) with q+ < ∞ and w

a weight, then

‖ f‖[Lp(·)(logL)q(·)]w � sup
g

∫
Rn

| f (x)g(x)|dx, (6)

holds for every measurable function f , where the supremun is taken over all functions
g such that

∥∥gw−1
∥∥

Lp′(·)(logL)−q(·)/(p(·)−1) � 1 .

The following classes of exponents appear in connection with the boundedness
properties of different operators from harmonic analysis on the spaces defined above.
We say that p(·)∈P log(Rn) if p(·)∈P(Rn) and satisfy the following inequalities∣∣∣∣ 1

p(x)
− 1

p(y)

∣∣∣∣� C
log(e+ 1/|x− y|) , x,y ∈ R

n
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and ∣∣∣∣ 1
p(x)

− 1
p∞

∣∣∣∣� C
log(e+ |x|) , x ∈ R

n (7)

for some positive constants C and p∞ . It is easy to see that the inequality (7) implies
that lim|x|→∞ 1/p(x) = 1/p∞ .

Let q(·) :Rn → R , we say that q(·) ∈ P loglog(Rn) , if is bounded, i.e. it satisfies
−∞<q− �q+ <∞ , and there exists a positive constant C such that

|q(x)−q(y)|� C
log(e+ log(e+ 1/|x− y|)) , ∀x,y ∈ R

n.

In [24], the authors proved that p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ and
q(·)∈P loglog(Rn) are sufficient conditions in order that the Hardy-Littlewood maximal
operator M is continuous in Lp(·)(logL)q(·)(Rn) .

2.1.2. Variable Lebesgue spaces

When we deal with variable Lebesgue spaces, we have the following known results
that we shall be using throughout this paper.

LEMMA 3. ([14], Lemma 3.2.20) Let s(·), p(·),q(·)∈P(Rn) be such that 1/s(·)=
1/p(·)+ 1/q(·) . Then

‖ f g‖s(·) � ‖ f‖p(·) ‖g‖q(·) . (8)

Particularly, if s(·) ≡ 1 , the inequality above gives∫
Rn

| f (y)g(y)|dy � ‖ f‖p(·) ‖g‖p′(·) (9)

which is an extension of the classical Hölder inequality.

LEMMA 4. ([14], Lemma 3.2.6) Let p(·) ∈ P(Rn) and s be a constant such that
s � 1/p− . Then ‖| f |s‖p(·) = ‖ f‖s

sp(·) .

LEMMA 5. ([14], see Corollary 4.5.9) Let p(·)∈P log(Rn) . Then ‖χQ‖p(·) ‖χQ‖p′(·)
� |Q|, for every cubes Q ⊂ R

n .

Moreover, we have the following result.

COROLLARY 1. Let p(·),d(·) ∈ P log(Rn) such that p(·) � d(·) . Suppose that
1/p(·) = 1/β (·)+ 1/d(·) then, for every cube Q ⊂ R

n ,

‖χQ‖p(·) � ‖χQ‖β (·) ‖χQ‖d(·) .
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LEMMA 6. ([26], Lemma 3.7) Let k be a positive integer and p(·) ∈ P log(Rn)
such that 1< p−� p+<∞ . Let a ∈ T∞ and b ∈ La . Then for every Q ∈ Q ,∥∥χQ(b−bQ)k

∥∥
p(·)

‖χQ‖p(·)
� a(Q)k ‖b‖k

La
.

LEMMA 7. ([26], Lemma 3.8) Let a ∈ T∞ and b ∈ La , then the following in-
equality

|b3Q −bQ| � a(3Q)‖b‖La

holds for every Q ∈ Q .

LEMMA 8. ([26], Lemma 3.9) Let d(·) ∈ P log(Rn) with d∞ � d(·) � d+ < ∞
and δ (·) be defined as in (29) and b ∈ L(δ (·)) . Let Q be a cube in R

n and z ∈ kQ for
some positive integer k . Then

|b(z)−bQ| � ‖χQ‖n/δ (·) .

The following lemma can be deduced from [[14], Corollary 7.3.21].

LEMMA 9. ([14]) Let p(·) ∈ P log(Rn) and G ⊂ Q a disjoint family. Then∥∥∥∥∥∑
Q∈G

χQ

‖ f χQ‖p(·)
‖χQ‖p(·)

∥∥∥∥∥
p(·)

�
∥∥∥∥∥∑

Q∈G

f χQ

∥∥∥∥∥
p(·)

for every f ∈ Lp(·)
loc (Rn) .

The following lemma gives a doubling property for the functional define by f(Q) :=
‖χQ‖Lp(·) with p(·) ∈ P log(Rn) .

LEMMA 10. ([33], Equation (2.11)) If p(·) ∈P log(Rn) with p+ < ∞ , then there
exists a positive constant Cp such that the inequality

‖χ2Q‖p(·) � Cp ‖χQ‖p(·) (10)

holds for every cube Q ⊂ R
n .

Let γ > 0, by iteration of inequality (10) it is not difficult to prove that∥∥χγQ
∥∥

p(·) � ‖χQ‖p(·) (11)

holds for every cube Q ⊂ R
n , with an appropriate constant depending on γ and C p .

Let p(·),q(·) ∈ P log(Rn) such that p(·) � q(·) , then

‖χQ f‖p(·)
‖χQ‖p(·)

�
‖χQ f‖q(·)
‖χQ‖q(·)

, f ∈ L1
loc(R

n). (12)

Indeed, let β (·) be defined by 1/β (·) = 1/p(·)− 1/q(·) . Then β (·) ∈ P log(Rn) and,
by Hölder’s inequality (8) and Corollary 1 we obtain (12).
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2.1.3. Maximal operators

A corresponding maximal operator associated to Ψ ∈ Φ(Rn) is

MΨ(·,·) f (x) = sup
Q�x

‖χQ f‖Ψ(·,·)
‖χQ‖Ψ(·,·)

(13)

and, the fractional type version of this maximal operator is given by

Mβ (·),Ψ(·,·) f (x) = sup
Q�x

‖χQ‖β (·)
‖χQ f‖Ψ(·,·)
‖χQ‖Ψ(·,·)

, (14)

where β (·) ∈ P(Rn) .
For the case of a rescaling of Ψ , taking into account (4), the maximal operator

satisfies

MrΨ(·,·) f (x) = sup
Q�x

(‖χQ f r‖Ψ(·,·)
‖χQ‖Ψ(·,·)

)1/r

. (15)

If Ψ(x, t) = ts(x) , then MΨ = Ms(·) was introduced in [14] and Mβ (·),Ψ = Mβ (·),s(·)
was defined in [25].

Notice that, when s(·) ≡ 1 and β (·) ≡ n/α , Ms(·) = M and Mβ (·),s(·) = Mα where
M and Mα are the Hardy-Littlewood maximal function and its fractional version, re-
spectively.

The next boundedness result for Mβ (·),s(·) was proved in [25] in generalized Zyg-
mund space of L logL type.

THEOREM 1. Let p(·),r(·) ∈P log(Rn) such that p(·) � r(·) � r+ < ∞ and q(·) ∈
P loglog(Rn) a non-negative function. Suppose that β (·) is the exponent define by
1/β (·) = 1/p(·)−1/r(·) and s(·) ∈ P log(Rn) satisfies (p/s)− > 1 . Then

Mβ (·),s(·) : Lp(·)(logL)q(·)(Rn) ↪→ Lr(·)(logL)q(·)(Rn).

REMARK 1. For the case s(·)≡ S , where S is a constant, if p(·) ∈P log(Rn) with
1 � S < p− � p+ < ∞ and q(·)∈P loglog(Rn) , from the result of [24] it can be deduced
that MS : Lp(·)(logL)q(·)(Rn) ↪→ Lp(·)(logL)q(·)(Rn) .

2.2. Sparse family

We now introduce the dyadic structures we will working with. These definitions
and a substantial treatise on dyadic calculus can be found in [20].

We say that a collection of cubes D in R
n is a dyadic grid if it satisfies the fol-

lowing properties:

1. If Q ∈ D , then �(Q) = 2k for some k ∈ Z .

2. If P,Q ∈ D , then P∩Q ∈ {P,Q, /0} .
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3. For every k ∈ Z , the cubes Dk = {Q ∈ D : �(Q) = 2k} form a partition of R
n .

We shall use the following proposition that contain the so called 2 n dyadic lattices
trick. The origin of this result is obscure. A very careful history of this result is given
by Cruz-Uribe in [5] (see the footnote following Theorem 3.4) where the credit is given
to Okikiolu [30]. We state the result from [[18], Proof of Theorem 1.10].

PROPOSITION 1. There are 2n dyadic grids Dt , such that for any cube Q ⊂ R
n

there exists a cube Qt ∈ Dt satisfying Q ⊂ Qt and �(Qt) � 6�(Q) .

Given a dyadic grid D , a set S ⊂ D is sparse if there exist η ∈ (0,1) such that
(S1) For every Q ∈ S there exist E(Q) ⊂ Q such that η |Q| � |E(Q)|.
(S2) The sets E(Q) are pairwise disjoint.

The classic example of a dyadic grid is the standard dyadic grid on R
n and an

example of a sparce family can obtain by a careful construction of Calderón-Zygmund
cubes associated with an L1

loc function at an infinite number of levels (for details see
[32, 5]).

3. Statement of the main results

3.1. Operators dominated by multilinear sparse forms

In this subsection we present a class of operators related to a class of multilinear
sparse forms, and state the main results associated with these operators.

Given a dyadic grid D , a sparse family S ⊂ D , and �r = (r1, . . . ,rm+1) with ri �
1, for every 1 � i � m+1, let us consider the multilinear sparse form Λ S ,�r introduced
in [22] as

ΛS ,�r(h, f1, . . . , fm) = ∑
Q∈S

|Q|
(

1
|Q|

∫
Q

h(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

,

(for the definition of dyadic grid and sparse family see Subsection 2.2).
Our goal is to give weighted boundedness results for operators which are con-

trolled by multilinear sparse forms ΛS ,�r . We denote T ∈ D(Λ�r) if T is an operator
such that for every h, f1, . . . , fm non-negative bounded functions with compact support
on R

n , ∫
Rn

h|T (( f1, . . . , fm))|dx � sup
S

ΛS ,�r(h, f1, . . . , fm), (16)

where the sup is taken over all sparse families and � means that there exists a positive
constant C such that (16) holds with � replaced by � C .

We now present some operators satisfying the assumption (16). The first example
is the multilinear Calderón-Zygmund operator. Let T be an m-linear operator satisfy-
ing

T ( f1, . . . , fm)(x) =
∫

Rnm
K(x,y1, . . . ,ym) f1(y1) . . . fm(ym)dy1 . . .dym
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whenever f1, . . . , fm ∈ C ∞
c (Rn) and x /∈ ∪m

j=1supp f j . We say that T is a multilinear
Calderón-Zygmund operator if it can be extended as a bounded operator from L p1 ×
. . .× Lpm to Lp for some 1 < p1, . . . , pm < ∞ with 1/p1 + . . . + 1/pm = 1/p . The
kernel K satisfies two conditions: the size estimate and the smoothness condition. The
size estimate is

|K(y0 . . . ,ym)| � 1(
∑m

i, j=0 |yi − y j|
)nm .

The smoothness condition assume

|K(y0, . . . ,y j, . . . ,ym)−K(y0, . . . ,y
′
j, . . . ,ym)|

� ω

(
|y j − y′j|

∑m
i, j=0 |yi − y j|

)
1(

∑m
i, j=0 |yi − y j|

)nm ,

for all 0 � j � m , whenever |y j − y′j| � 1
2 max0�k�m |y j − yk| , where ω is a modulus

of continuity, i.e. a positive nondecreasing continuous and doubling function.
If T is a multilinear Calderón-Zygmund operator, independently and simultane-

ously, in [4] and [20], the authors proved the following pointwise sparse bound that
is stronger and imply form bounds like (16). Let D a dyadic grid, S ⊂ D a sparse
family and

TS ( f1, . . . , fm)(x) = ∑
Q∈S

χQ(x)
m

∏
i=1

| fi|Q.

Then there exists 3n dyadic grids Di and associated sparse families Si ⊂ Di such the
inequality

|T ( f1, . . . , fm)| �
3n

∑
i=1

TSi( f1, . . . , fm) (17)

holds for every f1, . . . , fm ∈ C ∞
c (Rn) . Hence (17) shows that (16) holds with �r =

(1, . . . ,1) .
The second example is a class of rough bilinear singular integrals studied by A.

Barron [1]. Suppose Ω ∈ Lq(S2n−1) for some q > 1 with
∫

S2n−1 Ωdσ = 0, the rough
bilinear operator is define by

TΩ( f1, f2)(x) = p.v.
∫

Rn

∫
Rn

f1(x− y1) f2(x− y2)
Ω((y1 − y2)/(y1,y2)

|(y1,y2)|2n dy1dy2.

In [1] the author prove that (16) holds for �r = (r,r,r) with any 1<r<∞ .
The last and the most prominent example is the bilinear Hilbert transform defined

as

BH( f ,g)(x) = p.v.
∫

R

f (x− t)g(x+ t)
dt
t

.

In [[12], Theorem 2] (see also [2]), this operator and some other bilinear multipliers
have been shown to satisfy (16) with �r = (r1,r2,r3) satisfying 1 < r1,r2,r3 < ∞ and

1
min{r1,2} +

1
min{r2,2} +

1
min{r3,2} < 2.
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The next theorem gives a continuity property for T ∈ D(Λ�r) acting between gen-
eralized Zygmund space of L logL type with different weights. For notational conve-
nience, we write Lpi(·)(logL)q(·)(Rn) = Lpi(·)(logL)q(·), and by Q we denote the set of
cubes in R

n with sides parallel to the coordinate axes.
To state the result we give the following definition. We say that a pair of GΦ-

functions (ϒ,Ψ) satisfy condition AV , and we denote (ϒ,Ψ) ∈ AV , if it satisfies

1
|Q|

∫
Q

f (x)g(x)dx �
‖ f χQ‖ϒ(·,·)
‖χQ‖ϒ(·,·)

‖gχQ‖Ψ(·,·)
‖χQ‖Ψ(·,·)

. (18)

We shall give later some examples of GΦ-functions satisfying condition AV .

THEOREM 2. Let �r = r1, . . . ,rm+1 � 1 and T ∈ D(Λ�r) . Let q(·) ∈ P loglog(Rn)
be a non-negative function and p1(·), . . . , pm(·) ∈P log(Rn) with p−i > 1 and 1/p(·) =
∑m

i=1 1/pi(·) such that

ri < p−i � p+
i < ∞ for 1 � i � m and 1 < p− � p+ < r′m+1.

Let (ϒi,Ψi) , 1 � i � m+ 1 pairs of GΦ-functions satisfying condition AV ,

MriΨi(·,·) : Lpi(·)(logL)q(·) ↪→ Lpi(·)(logL)q(·) for 1 � i � m (19)

and
Mrm+1Ψm+1(·,·) : Lp′(·)(logL)−q(·)/(p(·)−1) ↪→ Lp′(·)(logL)−q(·)/(p(·)−1). (20)

Suppose that (v1, . . . ,vm,w) is any m + 1-tuple of weights such that vi belongs to
[Lpi(·)(logL)q(·)]loc , 1 � i � m, and that satisfies

sup
Q∈Q

‖χQwrm+1‖1/rm+1
ϒm+1(·,·)

‖χQ‖1/rm+1
ϒm+1(·,·)

m

∏
i=1

∥∥χQv−1
i

∥∥1/ri

ϒi(·,·)
‖χQ‖1/ri

ϒi(·,·)
< ∞. (21)

Then

T :
[
Lp1(·)(logL)q(·)

]
v1
× . . .×

[
Lpm(·)(logL)q(·)

]
vm

↪→
[
Lp(·)(logL)q(·)

]
w
.

We can also obtain continuity properties for T ∈ D(Λ�r) acting between variable
Lebesgue spaces associated to different exponents.

THEOREM 3. Let �r = r1, . . . ,rm+1 � 1 and T ∈ D(Λ�r) . Let p1(·), . . . , pm(·) and
d(·) exponents in P log(Rn) , with p−i > 1 and 1/p(·) = ∑m

i=1 1/pi(·) such that

ri < p−i � p+
i < ∞ and 1 < p− � p(·) � d(·) � d+ < r′m+1,

Let (ϒi,Ψi) , 1 � i � m+ 1 , pairs of GΦ-functions satisfying condition AV ,

MriΨi(·,·) : Lpi(·) ↪→ Lpi(·) for 1 � i � m (22)
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and
Mβ (·),rm+1Ψm+1(·,·) : Ld′(·) ↪→ Lp′(·) (23)

where β (·) is defined by 1/β (·) = 1/p(·)−1/d(·) . Suppose that (v1, . . . ,vm,w) is any

m + 1-tuple of weights such that vi belongs to Lpi(·)
loc (Rn) , 1 � i � m, and that satisfies

sup
Q∈Q

‖χQ‖d(·)
‖χQ‖p(·)

‖χQwrm+1‖1/rm+1
ϒm+1(·,·)

‖χQ‖1/rm+1
ϒm+1(·,·)

m

∏
i=1

∥∥χQv−1
i

∥∥1/ri

ϒi(·,·)
‖χQ‖1/ri

ϒi(·,·)
< ∞. (24)

Then
T : Lp1(·)

v1 × . . .×Lpm(·)
vm ↪→ Ld(·)

w .

Let us now give some examples of GΦ-functions that satisfy the hypothesis of the
theorems above. In order to check the examples see the details in [ 26].

EXAMPLE 1. Let p(·)∈P log(Rn) and R,r � 1 two constants such that r < p− �
p+ < ∞ and

R >
[(p/r)′]+

[(p/r)′]−
.

If s(·) = R(p(·)/r)′ , ϒ(x,t) = ts(x) and Ψ(x,t) = t s′(x), then (ϒ,Ψ) ∈ AV . Also, note
that MrΨ(·,·) = Mrs′(·) . Then by Theorem 1, for some non-negative function q(·) ∈
P loglog(Rn) ,

MrΨ(·,·) : Lp(·)(logL)q(·)(Rn) ↪→ Lp(·)(logL)q(·)(Rn).

EXAMPLE 2. Let p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ and

σ >
(p′)+

(p′)−
.

If we define ϒ1(x, t) = tσ p′(x)(log(e+ t))σ p′(x) and Ψ1(x, t) = t(σ p′)′(x) then (ϒ1,Ψ1) ∈
AV . Also,

MΨ1(·,·) : Lp(·)(Rn) → Lp(·)(Rn).

EXAMPLE 3. Let d(·) ∈ P log(Rn) with 1 < d− � d+ < ∞ and

η >
d+

d− .

If ϒ2(x, t)= tηd(x)(log(e+t))ηd(x) and Ψ2(x,t)= t(ηd)′(x) then (ϒ2,Ψ2) ∈ AV . More-
over, if p(·) ∈ P log(Rn) satisfies d′(·) � p′(·) � (p′)+ < ∞ and β (·) is the exponent
define by 1/β (·) = 1/d ′(·)−1/p′(·) , then

Mβ (·),Ψ2(·,·) : Ld′(·)(Rn) → Lp′(·)(Rn).
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EXAMPLE 4. Let p(·) , η and Ψ2 as in the above example. Let μ(·) ∈ P log(Rn)
with 1 < μ− � μ+ < ∞ such that

1
η p′(·) −

1
μ(·) > ε

for some constant ε ∈ (0,1) and ν(·) ∈ P loglog(Rn) . If we define

ϒ2(x,t) = tμ(x)(log(e+ t))ν(x)μ(x),

then (ϒ2,Ψ2) ∈ AV .

3.2. Multilinear potential operators and their commutators

We now consider the multilinear potential operator defined in [ 3] as

PΓ( f1, . . . fm)(x) =
∫

Rnm
Γ(x− y1, . . . ,x− ym)

m

∏
i=1

fi(yi)dy1 . . .dym,

where Γ is a non-negative function defined on R
nm . We also deal with the commutator

associated to this operator, given by

PΓ,�b ( f1, . . . fm)(x) =
m

∑
j=1

PΓ,b j ( f1, . . . fm)(x), (25)

where

PΓ,b j ( f1, . . . fm)(x) = b j(x)PΓ ( f1, . . . fm)(x)−PΓ ( f1, . . . ,b j f j, . . . , fm)(x).

In this subsection we present two weighted strong type inequalities for the operators
above. As in [3] we assume that the function Γ satisfies a growth condition. More pre-
cisely, we say that a non-negative locally integrable function Γ defined in R

nm satisfies
a R-condition (or that Γ ∈ R) if there exist two positive constants ε and δ such that
the inequality

sup
w1...wm∈A(2k ,1,0)

Γ(w1 . . .wm) � C
2knm

∫
A(2k ,δ ,ε)

Γ(y1 . . .ym)dy1 . . .dym

holds for every k ∈ Z , where

A(t,δ ,ε) =

{
y1, . . . ,ym : δ (1− ε)t <

m

∑
i=1

|yi| � δ (1+ ε)2t

}
, t > 0. (26)

Although the basic example of operators of this type is provided by the multilinear
fractional integral operator defined by the kernel

Γ(w1, . . . ,wm) =

(
m

∑
i=1

|wi|
)α−nm

,
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for 0 < α < nm , another important example is the multilinear Bessel potential. For
α > 0 the kernel of this operator is given by

Γα(x1, . . . ,xm) = Cα ,n,m

∫ ∞

0
e−t e−

(∑m
i=1 |xi|)2

4t t
α−nm

2
dt
t

,

where Cα ,n,m = 1
2nmγ(α/2)πnm/2 and γ(·) is the gamma function. As in [3], Γα satisfies

the R-condition.
We now define the functional related with the space where the symbol �b belongs.

We consider a functional a : Q → [0,∞) . We say that a satisfies the T∞ condition, and
we denote by a ∈ T∞ , if there exists a finite positive constant t∞ such that for every
Q,Q′ ∈ Q such that Q′ ⊂ Q ,

a(Q′) � t∞ a(Q). (27)

We denote the least constant t∞ in (27) by ‖a‖t∞ . Clearly, ‖a‖t∞ � 1.
Let 0 < ρ < ∞ and a ∈ T∞ . We say that a function b ∈ L1

loc(R
n) belongs to the

generalized Lipschitz space L ρ
a if

sup
Q

1
a(Q)

(
1
|Q|

∫
Q
|b−bQ|ρ dx

)1/ρ
< ∞

where the supremum is taken over all cubes Q⊂R
n and bQ denote the average 1

|Q|
∫

Q b .

We consider the vector of symbols �b = (b1, . . . ,bm) ∈ (L ρ
a )m .

We denote Γ̃ the function definded by

Γ̃(t) =
∫
|z|�t

Γ(z)dz.

THEOREM 4. Let p1(·), . . . , pm(·),r(·)∈P log(Rn) , such that p−i > 1 and 1/p(·)=
∑m

i=1 1/pi(·) that satisfies

1 < p− � p(·) � r(·) � r+ < ∞

and Γ∈R . Let 1 � ρ < ∞ , a∈ T∞ and�b∈ (L ρ
a )m . Suppose that (v1, . . . ,vm,w) is any

m + 1-tuple of weights such that vi ∈ Lpi(·)
loc and, for some constants Ri > (p′i)+/(p′i)−

and S > r+/r− ,

sup
Q∈Q

a(Q) Γ̃(�(Q))
‖χQ‖r(·)
‖χQ‖p(·)

‖χQw‖Sr(·)
‖χQ‖Sr(·)

m

∏
i=1

∥∥χQv−1
i

∥∥
Ri p′i(·)

‖χQ‖Ri p′i(·)
< ∞. (28)

Then
PΓ,�b : Lp1(·)

v1 × . . .×Lpm(·)
vm ↪→ Lr(·)

w .

Let us observe that, if a(Q) = |Q|δ/n , 0 < δ < 1, then a ∈ T∞ . It is known
that L 1

a := L(δ ) coincides with the classical Lipschitz spaces Λδ define as the set of
functions b such that

|b(x)−b(y)|� |x− y|δ
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for every x,y ∈ R
n .

On the other hand, if d(·) ∈ P log(Rn) , 0 < α < n such that n/d− � α and δ (·)
is the exponent defined by

δ (·)
n

=
α
n
− 1

d(·) , (29)

the functional a(Q) = ‖χQ‖n/δ (·) satisfies the T∞ condition and La = L(δ (·)) is a
variable version of the spaces L(δ ) defined above.

For Ψ1, . . . ,Ψm GΦ-functions, we define the following multilinear version of the
maximal operator MΨ given in (13), as follows

MΨ1(·,·),...,Ψm(·,·)( f1, . . . , fm)(x) = sup
Q�x

m

∏
i=1

‖χQ fi‖Ψi(·,·)
‖χQ‖Ψi(·,·)

.

When Ψ1 ≡ . . .≡Ψm ≡ 1, the maximal operator MΨ1(·,·),...,Ψm(·,·) =M was introduced

in [21]. When Ψi(x, t) = tsi(x) , we denote MΨ1(·,·),...,Ψm(·,·) = Ms1(·),...,sm(·)
An auxiliaty result for prove the Theorem 4 is the following that gives a variation

of the classical Calderón-Zygmund decomposition, associated to the maximal operator
Ms1(·),...,sm(·) (for the result that describes the classical Calderón-Zygmund decomposi-
tion we refer the reader to [15, 16]). For a dyadic drid D we define

M D
s1(·),...,sm(·)( f1, . . . , fm)(x) = sup

Q∈D :Q�x

m

∏
i=1

‖χQ fi‖si(·)
‖χQ‖si(·)

.

PROPOSITION 2. Let s1(·), . . . ,sm(·) ∈ P log(Rn) with 1/s(·)= ∑m
i=11/si(·) such

that s(·) � 1 and D be a dyadic grid. Suppose that f 1, . . . , fm are measurable functions
such that

lim
|Q|→∞

m

∏
i=1

‖χQ fi‖si(·)
‖χQ‖si(·)

= 0. (30)

Then the following are true:

1. For each λ > 0 , there exists a disjoint collection of maximal cubes {Q j} j∈N ⊂D
such that

Eλ =
{

x ∈ R
n : M D

s1(·),...,sm(·)( f1, . . . , fm)(x) > λ
}

=
⋃
j∈N

Qj, (31)

and for every j ,

λ <
m

∏
i=1

∥∥χQj fi
∥∥

si(·)∥∥χQj

∥∥
si(·)

� C2m
s λ . (32)

2. There exists a positive constant σ such that, if α > σ and for each k ∈ Z we
consider {Qk

j} j∈N the collection of maximal dyadic cubes from (1) with

Ωk =
{

x ∈ R
n : M D

s1(·),...,sm(·)( f1, . . . , fm)(x) > αk
}

=
⋃

j

Qk
j,
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then S = {Qk
j} j∈N,k∈Z is a sparse family.

Particularly, if b ∈ L(δ (·)) , we can improve the Theorem 4 in the sense that we
can introduce certain type of norms in the conditions on the weights involving GΦ-
functions.

THEOREM 5. Let p1(·), . . . , pm(·),r(·)∈P log(Rn) such that p−i > 1 and 1/p(·)=
∑m

i=1 1/pi(·) that satisfies

1 < p− � p(·) � r(·) � r+ < ∞

and Γ ∈ R . Let β (·) be a function such that

1
β (·) =

1
p(·) −

1
r(·) .

Let d(·) ∈ P log(Rn) and δ (·) defined as in (29), such that d∞ � d(·) and let �b ∈
(L(δ (·)))m . Let (ϒi,Ψi) , 1 � i � m + 1 , pairs of GΦ-functions satisfying condition
AV ,

MΨ1(·,·),...,Ψm(·,·) : Lp1(·) × . . .×Lpm(·) → Lp(·) (33)

and
Mβ (·),Ψm+1(·,·) : Lr′(·) → Lp′(·), i = 1, . . . ,m. (34)

Suppose that (v1, . . . ,vm,w) is any m+ 1-tuple of weights such that vi ∈ Lpi(·)
loc and

sup
Q∈Q

‖χQ‖n/δ (·) Γ̃(�(Q))
‖χQ‖r(·)
‖χQ‖p(·)

‖χQw‖ϒm+1(·,·)
‖χQ‖ϒm+1(·,·)

m

∏
i=1

∥∥χQv−1
i

∥∥
ϒi(·,·)

‖χQ‖ϒi(·,·)
< ∞. (35)

Then
PΓ,�b : Lp1(·)

v1 × . . .×Lpm(·)
vm ↪→ Lr(·)

w .

REMARK 2. Note that condition (35) with ϒm+1(x, t) = tσr(x)(log(e+t))σr(x) and
ϒi(x,t) = tη p′(x)(log(e + t))η p′(x) is weaker than condition (28) since, if σ < R and
η < S , we have

‖χQw‖ϒm+1(·,·)
‖χQ‖ϒm+1(·,·)

�
‖χQw‖Rr(·)
‖χQ‖Rr(·)

and

∥∥χQv−1
∥∥

ϒi(·,·)
‖χQ‖ϒi(·,·)

�
∥∥χQv−1

∥∥
Sp′(·)

‖χQ‖Sp′(·)
.

4. Proofs of theorems from subsection 3.1

In this section we present the proofs of Theorem 2 and Theorem 3.

Proof of Theorem 2. Since vi ∈ [Lpi(·)(logL)q(·)]loc implies that the set of bounded
functions with compact support is dense in [L pi(·)(logL)q(·)]vi(R

n) , it is enough to show
that

‖T ( f1, . . . , fm)‖[Lp(·)(logL)q(·)]w �
m

∏
i=1

‖ fi‖[Lpi(·)(logL)q(·)]vi
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for each f1, . . . , fm � 0 a bounded function with compact support. This is in turn equiv-
alent by duality to∫

Rn
|T ( f1, . . . , fm)(x)|w(x)g(x)dx �

m

∏
i=1

‖ fi‖[Lpi(·)(logL)q(·)]vi

for all non-negative bounded functions with compact support f 1, . . . , fm and g with
‖g‖Lp′(·)(logL)−q(·)/(p(·)−1)(·) � 1. Let f1, . . . , fm and g be functions with these properties.
By (16) it is enough to prove that, for every spase family S ⊂ D a dyadic grid,

∑
Q∈S

|Q|
(

1
|Q|

∫
Q

g(x)rm+1w(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

�
m

∏
i=1

‖ fi‖[Lpi(·)(logL)q(·)]vi
. (36)

By condition AV we have

∑
Q∈S

|Q|
(

1
|Q|

∫
Q

g(x)rm+1w(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

� ∑
Q∈S

|Q|

⎛⎜⎝
∥∥∥χγQk

j
grm+1

∥∥∥
Ψm+1(·,·)∥∥∥χγQk

j

∥∥∥
Ψm+1(·,·)

∥∥∥χγQk
j
wrm+1

∥∥∥
ϒm+1(·,·)∥∥∥χγQk

j

∥∥∥
ϒm+1(·,·)

⎞⎟⎠
1/rm+1

×
m

∏
i=1

⎛⎜⎝
∥∥∥χγQk

j
f ri
i vri

i

∥∥∥
Ψi(·,·)∥∥∥χγQk

j

∥∥∥
Ψi(·,·)

∥∥∥χγQk
j
v−1

i

∥∥∥
ϒi(·,·)∥∥∥χγQk

j

∥∥∥
ϒi(·,·)

⎞⎟⎠
1/ri

(37)

Consequenly by the hypothesis on the weights (21) and (4) we have

∑
Q∈S

|Q|
(

1
|Q|

∫
Q

g(x)rm+1w(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

� ∑
Q∈S

|Q|

∥∥∥χγQk
j
g
∥∥∥

rm+1Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
rm+1Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
riΨi(·,·)∥∥∥χγQk

j

∥∥∥
riΨi(·,·)

.

Using that S is a sparse family and Hölder inequality (1) we obtain

∑
Q∈S

|Q|
(

1
|Q|

∫
Q

g(x)rm+1w(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

� ∑
Q∈S

|E(Q)|

∥∥∥χγQk
j
g
∥∥∥

rm+1Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
rm+1Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
riΨi(·,·)∥∥∥χγQk

j

∥∥∥
riΨi(·,·)
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�
∫

Rn
Mrm+1Ψm+1(·,·)(g)(y)

m

∏
i=1

MriΨi(·,·)( fivi)(y)dy

�
∥∥Mrm+1Ψm+1(·,·)(g)

∥∥
Lp′(·)(logL)−q(·)/(p(·)−1)

m

∏
i=1

∥∥MriΨi(·,·)( fivi)
∥∥

Lpi(·)(logL)q(·) .

Thus by conditions (19) and (20) we can conclude (36) and complete the proof of
Theorem 2. �

Proof of Theorem 3. Proceeding in the same way as in the proof of Theorem 2
(see (37)) replacing the corresponding spaces we obtain

∑
Q∈S

|Q|
(

1
|Q|

∫
Q

g(x)rm+1w(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

� ∑
Q∈S

|Q|

⎛⎜⎝
∥∥∥χγQk

j
grm+1

∥∥∥
Ψm+1(·,·)∥∥∥χγQk

j

∥∥∥
Ψm+1(·,·)

∥∥∥χγQk
j
wrm+1

∥∥∥
ϒm+1(·,·)∥∥∥χγQk

j

∥∥∥
ϒm+1(·,·)

⎞⎟⎠
1/rm+1

×
m

∏
i=1

⎛⎜⎝
∥∥∥χγQk

j
f ri
i vri

i

∥∥∥
Ψi(·,·)∥∥∥χγQk

j

∥∥∥
Ψi(·,·)

∥∥∥χγQk
j
v−1

i

∥∥∥
ϒi(·,·)∥∥∥χγQk

j

∥∥∥
ϒi(·,·)

⎞⎟⎠
1/ri

Consequenly the hypothesis on the weights (24) we have

∑
Q∈S

|Q|
(

1
|Q|

∫
Q

g(x)rm+1w(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

� ∑
Q∈S

|Q|
‖χQ‖d(·)
‖χQ‖p(·)

∥∥∥χγQk
j
g
∥∥∥

rm+1Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
rm+1Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
riΨi(·,·)∥∥∥χγQk

j

∥∥∥
riΨi(·,·)

.

By Corollary 1 the last sum is equivalent to

∑
Q∈S

|Q|‖χQ‖β (·)

∥∥∥χγQk
j
g
∥∥∥

rm+1Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
rm+1Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
riΨi(·,·)∥∥∥χγQk

j

∥∥∥
riΨi(·,·)

.

Using that S is a sparse family and Hölder inequality (9) we obtain

∑
Q∈S

|Q|
(

1
|Q|

∫
Q

g(x)rm+1w(x)rm+1 dx

)1/rm+1 m

∏
i=1

(
1
|Q|

∫
Q

fi(x)ri dx

)1/ri

� ∑
Q∈S

|E(Q)|‖χQ‖β (·)

∥∥∥χγQk
j
g
∥∥∥

rm+1Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
rm+1Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
riΨi(·,·)∥∥∥χγQk

j

∥∥∥
riΨi(·,·)
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�
∫

Rn
Mβ (·),rm+1Ψm+1(·,·)(g)(y)

m

∏
i=1

MriΨi(·,·)( fivi)(y)dy

�
∥∥Mβ (·),rm+1Ψm+1(·,·)(g)

∥∥
p′(·)

m

∏
i=1

∥∥MriΨi(·,·)( fivi)
∥∥

pi(·)

� ‖g‖d′(·)
m

∏
i=1

‖ fivi‖pi(·) =
m

∏
i=1

‖ fi‖L
pi(·)
vi

,

where we have used conditions (22) and (23). This concludes the proof of Theorem
3. �

5. Proof of results from subsection 3.2

In this section we present the proofs of Theorem 4, Proposition 2 and Theorem 5.
In order to give the proof of Theorem 4 we state and prove three auxiliary results.

LEMMA 11. Let s1(·), . . . ,sm(·) ∈ P log(Rn) , with 1/s(·) = ∑m
i=1 1/si(·) such that

s(·) � 1 . Let ν ∈ Z and Q0 ∈ D . If we define

O = {Q : Q ∈ D , Q ⊂ Q0 y �(Q) = 2−ν},
then

∑
Q∈O

‖gχQ‖s′(·)
m

∏
i=1

‖ fiχQ‖si(·) �
∥∥gχQ0

∥∥
s′(·)

m

∏
i=1

∥∥ fiχQ0

∥∥
si(·) (38)

for every fi ∈ Lsi(·)
loc (Rn) and g ∈ Ls′(·)

loc (Rn) .

Proof. Let fi ∈ Lsi(·)
loc (Rn) and g ∈ Ls′(·)

loc (Rn) . By Lemma 5 we have

∑
Q∈O

‖gχQ‖s′(·)
m

∏
i=1

‖ fiχQ‖si(·) � ∑
Q∈O

|Q|
‖gχQ‖s′(·)
‖χQ‖s′(·)

m

∏
i=1

‖ fiχQ‖si(·)
‖χQ‖si(·)

�
∫

Rn
∑

Q∈O

χQ(x)
‖gχQ‖s′(·)
‖χQ‖s′(·)

m

∏
i=1

‖ fiχQ‖si(·)
‖χQ‖si(·)

dx

�
∫

Rn

(
∑

Q∈O

χQ(x)
‖gχQ‖s′(·)
‖χQ‖s′(·)

)
m

∏
i=1

(
∑

Q∈O

χQ(x)
‖ fiχQ‖si(·)
‖χQ‖si(·)

)
dx.

Hence, by Hölder’s inequality (8) we obtain

∑
Q∈O

‖gχQ‖s′(·)
m

∏
i=1

‖ fiχQ‖si(·)

�
∥∥∥∥∥ ∑

Q∈O

χQ

‖gχQ‖s′(·)
‖χQ‖s′(·)

∥∥∥∥∥
s′(·)

m

∏
i=1

∥∥∥∥∥ ∑
Q∈O

χQ

‖ fiχQ‖si(·)
‖χQ‖si(·)

∥∥∥∥∥
si(·)

.
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Since O is a disjoint family, by Lemma 9, we conclude that

∑
Q∈O

‖gχQ‖s′(·)
m

∏
i=1

‖ fiχQ‖si(·) �
∥∥∥∥∥g ∑

Q∈O

χQ

∥∥∥∥∥
s′(·)

m

∏
i=1

∥∥∥∥∥ fi ∑
Q∈O

χQ

∥∥∥∥∥
si(·)

�
∥∥gχQ0

∥∥
s′(·)

m

∏
i=1

∥∥ fiχQ0

∥∥
si(·) �

Recall that Γ̃ is definded by

Γ̃(t) =
∫
|z|�t

Γ(z)dz,

and we introduce the function Γ as

Γ(t) = sup
y1,...,ym∈At,1,0

Γ(y1, . . . ,ym),

where A(t,δ ,ε) is the set defined in (26).

LEMMA 12. Let μ(·) ∈ P log(Rn) , Γ ∈ R and Q0 ∈ D . Then, for every h ∈
Lμ(·)

loc (Rn) , we have

∑
Q∈D :Q⊂Q0

Γ
(

�(Q)
2

)
|Q|m+1

‖χQh‖μ(·)
‖χQ‖μ(·)

� Γ̃[δ (1+ ε)�(Q0)]|Q0|
∥∥χQ0h

∥∥
μ(·)∥∥χQ0

∥∥
μ(·)

, (39)

where ε,δ are the constants provided by condition R .

Proof. Let h ∈ Lμ(·)
loc (Rn) . Suppose that �(Q0) = 2−d0 with d0 ∈ Z . By the equiv-

alence (5) and Lemma 11 we have

∑
Q∈D :Q⊂Q0

Γ
(

�(Q)
2

)
|Q|m+1

‖χQh‖μ(·)
‖χQ‖μ(·)

� ∑
d�d0

2−dnmΓ(2−d−1) ∑
Q⊂Q0 :�(Q)=2−d

‖hχQ‖μ(·) ‖χQ‖μ ′(·)

�
∥∥hχQ0

∥∥
μ(·)
∥∥χQ0

∥∥
μ ′(·) ∑

d�d0

2−dnmΓ(2−d−1). (40)

Note that, by condition R ,

∑
d�d0

2−dnmΓ(2−d−1) � ∑
d�d0

∫
δ (1−ε)2−d−1<|y|�δ (1+ε)2−d

Γ(y)dy

�
∫
|y|�δ (1+ε)2−d0

Γ(y)

(
∑

d�d0

χδ (1−ε)2−d−1<|y|�δ (1+ε)2−d(y)

)
dy

�
∫
|y|�δ (1+ε)�(Q0)

Γ(y)dy = Γ̃[δ (1+ ε)�(Q0)],

since the overlap is finite. Combining this and (40) yields inequality (39). �
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LEMMA 13. Let k be a positive integer and p(·) ∈ P log(Rn) such that 1< p−�
p+<∞ . Let a ∈ T∞ and b ∈ La with ‖b‖La

�= 0 . If H ∈ L1
loc(R

n) , then

1
|dQ|

∫
dQ

|b(y)−bQ|kH(y)dy � a(dQ)k ‖b‖k
La

‖χdQH‖p(·)
‖χdQ‖p(·)

, (41)

for every Q ∈ Q , where d = 1 or d = 3 .

Proof. Suppose d = 3, the argument to prove the case d = 1 is similar. Let Q ∈
Q . By Hölder inequality (9) and Lemma 5 we have

1
|3Q|

∫
3Q

|b(y)−bQ|kH(y)dy �
∥∥χ3Q|b−bQ|k

∥∥
p′(·)

‖χ3Q‖p′(·)

‖χ3QH‖p(·)
‖χ3Q‖p(·)

. (42)

By Lemmas 6 ans 7, we can estimate the first factor of this product as follows∥∥χ3Q|b−bQ|k
∥∥

p′(·)
‖χ3Q‖p′(·)

�
∥∥χ3Q|b−b3Q|k

∥∥
p′(·)

‖χ3Q‖p′(·)
+

∥∥χ3Q|b3Q −bQ|k
∥∥

p′(·)
‖χ3Q‖p′(·)

� a(3Q)k ‖b‖k
La

.

Hence, combining (42) with the previous inequality we deduce (41). �

Proof of Theorem 4. Since vi ∈Lpi(·)
loc (Rn) implies that the set of bounded functions

with compact support is dense in Lpi(·)
vi (Rn) , it is enough to show that∥∥∥PΓ,�b ( f1, . . . , fm)

∥∥∥
L

r(·)
w

�
m

∏
i=1

‖ fi‖L
pi(·)
vi

for each f1, . . . , fm � 0 bounded functions with compact support. This is in turn equiv-
alent by duality to∫

Rn
|PΓ,�b ( f1, . . . , fm)(x)|w(x)g(x)dx �

m

∏
i=1

‖ fi‖
L

pi(·)
vi

for all non-negative bounded functions with compact support f 1, . . . , fm and g with
‖g‖r′(·) � 1. Let f1, . . . , fm and g be functions with these properties. By definition of
commutators (see (25)) it is enough to prove that, for every j = 1, . . . ,m ,∫

Rn
|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx �

m

∏
i=1

‖ fi‖L
pi(·)
vi

. (43)

For each t > 0, we set Γ(t) = supy1,...,ym∈At,1,0
Γ(y1, . . . ,ym) , where A(t,δ ,ε) is the

set defined in (26). It was proved in [[3], Proof of Lemma 4.1] that, for x ∈ R
n , we can
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discretize the commutator as follows

|PΓ,b j ( f1, . . . , fm)(x)| � ∑
Q∈D

Γ
(

�(Q)
2

)
|b j(x)− (b j)Q|χQ(x)

m

∏
i=1

∫
3Q

fi(yi)dyi

+ ∑
Q∈D

Γ
(

�(Q)
2

)
χQ(x)

m

∏
i=1, i�= j

∫
3Q

fi(yi)dyi

×
∫

3Q
|b j(y j)− (b j)Q| f j(y j)dy j.

Hence ∫
Rn

|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� ∑
Q∈D

Γ
(

�(Q)
2

)∫
Q
|b j(x)− (b j)Q|w(x)g(x)dx

m

∏
i=1

∫
3Q

fi(yi)dyi

+ ∑
Q∈D

Γ
(

�(Q)
2

)∫
Q

w(x)g(x)dx
m

∏
i=1, i�= j

∫
3Q

fi(yi)dyi

×
∫

3Q
|b j(y j)− (b j)Q| f j(y j)dy j, (44)

where D is the standard dyadic grid. Let us denote s i(·) = Rip′i(·) and l(·) = Jr(·) .
Since (p′i)

+ < Ri(p′i)
− and r+ < Jr− , we have (s′i)

+ = (s−i )′ < p−i and (l′)+ = (l−)′ <
(r+)′. Then we can take constants ηi and θ such that

(s′i)
+ < ηi < p−i and (l′)+ < θ < (r+)′,

and ωi(·),μ(·) define by

1
ωi(·) =

1
si(·) +

1
ηi

and
1

μ(·) =
1

l(·) +
1
θ

. (45)

Observe that ωi(·),τ(·) ∈ P log(Rn) since s(·), l(·) ∈ P log(Rn) . Thus, by (44), using
Lemma 13 twice with H = gw , p(·) = μ(·) , d = 1 and H = f j , p(·) = ω j(·) , d = 3
respectively, we obtain that∫

Rn
|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� ‖b‖La ∑
Q∈D

Γ
(

�(Q)
2

)
|Q|a(Q)

‖χQwg‖μ(·)
‖χQ‖μ(·)

m

∏
i=1

∫
3Q

fi(yi)dyi

+‖b‖La ∑
Q∈D

Γ
(

�(Q)
2

)∫
Q

w(x)g(x)dx
m

∏
i=1, i�= j

∫
3Q

fi(yi)dyi

×|Q|a(3Q)

∥∥χ3Q f j
∥∥

ω j(·)
‖χ3Q‖ω j(·)

(46)



282 L. MELCHIORI

Notice that, by inequalities (12) and (11), condition a ∈ T∞ and Proposition 1 we can
estimate (46) as follows∫

Rn
|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� ‖b‖La ∑
3Q:Q∈D

Γ
(

�(3Q)
2

)
|Q|m+1a(3Q)

‖χ3Qwg‖μ(·)
‖χ3Q‖μ(·)

m

∏
i=1

∥∥χ3Q f j
∥∥

ωi(·)
‖χ3Q‖ωi(·)

� ‖b‖La

2n

∑
t=1

∑
Q∈Dt

Γ
(

�(Q)
2

)
|Q|m+1a(Q)

‖χQwg‖μ(·)
‖χQ‖μ(·)

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

. (47)

Consequently, it is enough to estimate

‖b‖La ∑
Q∈D

Γ
(

�(Q)
2

)
|Q|m+1a(Q)

‖χQwg‖μ(·)
‖χQ‖μ(·)

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

,

for every dyadic grid D .
Let D be a dyadic grid. The next task is to replace the sum over D , by the sum

over cubes from a sparse family. Since f1, . . . , fm are bounded functions with compact
support, we have that

lim
|Q|→∞

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

�
m

∏
i=1

‖ fi‖∞ lim
|Q|→∞

∥∥χsupp fi

∥∥
ωi(·)

‖χQ‖ωi(·)
= 0.

Let σ > 0 the constant provided by the Proposition 2 for ω1(·) , . . . ,ωm(·) , f1, . . . , fm
and D . If α > max{σ ,κ} , where κ is the constant involved in the inequality ( 32),
there exist a sparse family {Qk

j} j∈N,k∈Z ⊂ D that satisfies

αk <
m

∏
i=1

∥∥∥χQk
j
fi
∥∥∥

ωi(·)∥∥∥χQk
j

∥∥∥
ωi(·)

� κ αk < αk+1. (48)

For k ∈ Z we define the set

Ck =

{
Q ∈ D : αk <

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

� αk+1

}
.

Then every cube Q ∈ D for wich

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

�= 0

belongs to exactly one Ck . Furthermore, if Q ∈ Ck , it follows that Q ⊂ Qk
j for some
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j ∈ N . Then we obtain that

∥∥b j
∥∥

La ∑
Q∈D

a(Q)Γ
(

�(Q)
2

)
|Q|m+1

‖χQwg‖μ(·)
‖χQ‖μ(·)

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

�
∥∥b j
∥∥

La ∑
k

∑
Q∈Ck

a(Q)Γ
(

�(Q)
2

)
|Q|m+1

‖χQgw‖μ(·)
‖χQ‖μ(·)

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

�
∥∥b j
∥∥

La ∑
k∈Z

∑
j∈N

αk+1 ∑
Q∈Ck :Q⊂Qk

j

a(Q)Γ
(

�(Q)
2

)
|Q|m+1

‖χQgw‖μ(·)
‖χQ‖μ(·)

�
∥∥b j
∥∥

La
α ∑

k∈Z

∑
j∈N

m

∏
i=1

∥∥∥χQk
j
fi
∥∥∥

ωi(·)∥∥∥χQk
j

∥∥∥
ωi(·)

a(Qk
j)

× ∑
Q∈Ck:Q⊂Qk

j

Γ
(

�(Q)
2

)
|Q|m+1

‖χQgw‖μ(·)
‖χQ‖μ(·)

�
∥∥b j
∥∥

La ∑
k∈Z

∑
j∈N

a(Qk
j)Γ̃[δ (1+ ε)�(Qk

j)] |Qk
j|

∥∥∥χQk
j
gw
∥∥∥

μ(·)∥∥∥χQk
j

∥∥∥
μ(·)

m

∏
i=1

∥∥∥χQk
j
fi
∥∥∥

ωi(·)∥∥∥χQk
j

∥∥∥
ωi(·)

where ε,δ are the constants provided by condition R , Γ̃(t) =
∫
|z|�t Γ(z)dz and we

have used Lemma 12. Let γ = δ (1 + ε) , then by monotony, using that a ∈ T∞ and
inequality (11) we can follow our chain of inequalities with

�
∥∥b j
∥∥

La ∑
k∈Z

∑
j∈N

a(γQk
j)Γ̃(γ�(Qk

j)) |γQk
j|

∥∥∥χγQk
j
gw
∥∥∥

μ(·)∥∥∥χγQk
j

∥∥∥
μ(·)

m

∏
i=1

∥∥∥χγQk
j
fi
∥∥∥

ωi(·)∥∥∥χγQk
j

∥∥∥
ωi(·)

.

Recalling the definition of the exponents (see (45)), Hölder’s inequality (8), Corollary
1 and the hypothesis on the weights we obtain

∥∥b j
∥∥

La ∑
Q∈D

a(Q)Γ
(

�(Q)
2

)
|Q|m+1

‖χQwg‖μ(·)
‖χQ‖μ(·)

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

�
∥∥b j
∥∥

La ∑
k∈Z

∑
j∈N

a(γQk
j)Γ̃(γ�(Qk

j)) |γQk
j|

∥∥∥χγQk
j
g
∥∥∥

θ∥∥∥χγQk
j

∥∥∥
θ

∥∥∥χγQk
j
w
∥∥∥

l(·)∥∥∥χγQk
j

∥∥∥
l(·)

×
m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
ηi∥∥∥χγQk

j

∥∥∥
ηi

∥∥∥χγQk
j
v−1

i

∥∥∥
si(·)∥∥∥χγQk

j

∥∥∥
si(·)
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�
∥∥b j
∥∥

La ∑
k∈Z

∑
j∈N

|Qk
j|

∥∥∥χγQk
j

∥∥∥
p(·)∥∥∥χγQk

j

∥∥∥
r(·)

∥∥∥χγQk
j
g
∥∥∥

θ∥∥∥χγQk
j

∥∥∥
θ

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
ηi∥∥∥χγQk

j

∥∥∥
ηi

.

Let β (·) defined as in Corollary 1. Then, by this corollary, the last sum is equivalent to

∥∥b j
∥∥

La ∑
k∈Z

∑
j∈N

|Qk
j|
∥∥∥χγQk

j

∥∥∥
β (·)

∥∥∥χγQk
j
g
∥∥∥

θ∥∥∥χγQk
j

∥∥∥
θ

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
ηi∥∥∥χγQk

j

∥∥∥
ηi

.

Using that {Qk
j} j∈N,k∈Z is a sparse family and Hölder inequality (9) we obtain that

∥∥b j
∥∥

La ∑
Q∈D

a(Q)Γ
(

�(Q)
2

)
|Q|m+1

‖χQwg‖μ(·)
‖χQ‖μ(·)

m

∏
i=1

‖χQ fi‖ωi(·)
‖χQ‖ωi(·)

�
∥∥b j
∥∥

La ∑
k∈Z

∑
j∈N

|E(Qk
j)|
∥∥∥χγQk

j

∥∥∥
β (·)

∥∥∥χγQk
j
g
∥∥∥

θ∥∥∥χγQk
j

∥∥∥
θ

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
ηi∥∥∥χγQk

j

∥∥∥
ηi

�
∥∥b j
∥∥

La

∫
Rn

Mβ (·),θ (g)(y)
m

∏
i=1

Mηi( fivi)(y)dy

�
∥∥b j
∥∥

La

∥∥Mβ (·),θ (g)
∥∥

p′(·)
m

∏
i=1

∥∥Mηi( fivi)
∥∥

pi(·)

�
∥∥b j
∥∥

La

m

∏
i=1

‖ fi‖L
pi(·)
vi

,

where we have used that by Theorem 1,

Mηi : Lpi(·)(Rn) ↪→ Lpi(·)(Rn)

since p−i > ηi , and

Mβ (·),θ : Lr′(·)(Rn) ↪→ Lp′(·)(Rn)

since (r′)− > θ . This proves (43) and concludes the proof of Theorem 4. �

Proof of Proposition 2. To prove (1) we may assume Eλ �= /0 since otherwise there
is nothing to prove. Let Λλ be the family of dyadic cubes such that

Λλ =

{
Q ∈ D :

m

∏
i=1

‖χQ fi‖si(·)
‖χQ‖si(·)

> λ

}
;

this is non-empty since Eλ �= /0 . For each Q ∈ Λλ there exists a maximal cube Q′ ∈ Λλ
with Q ⊂ Q′ , since (30). Let {Qj} j∈N ⊂ Λλ denote the family of such maximal cubes;
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clearly they are pairwise disjoint. Also, let Q̂ j ∈ D such that Q j ⊂ Q̂ j and �(Q̂ j) =
2�(Qj) , then Q̂ j ⊂ 4Qj . By maximality and Lemma (10), we have that

λ <
m

∏
i=1

∥∥χQj fi
∥∥

si(·)∥∥χQj

∥∥
si(·)

�
m

∏
i=1

∥∥∥χQ̂ j

∥∥∥
si(·)∥∥χQj

∥∥
si(·)

∥∥∥χQ̂ j
fi
∥∥∥

si(·)∥∥∥χQ̂ j

∥∥∥
si(·)

� C2m
s

m

∏
i=1

∥∥∥χQ̂ j
fi
∥∥∥

si(·)∥∥∥χQ̂ j

∥∥∥
si(·)

� C2m
s λ .

If x ∈ Eλ , there exists a cube Q ∈ D such that Q � x and

m

∏
i=1

‖χQ fi‖si(·)
‖χQ‖si(·)

> λ .

Hence, Q⊆ Q j for some j ∈ N . Conversely, since x ∈ Q j for some j ∈ N , by property
(32),

m

∏
i=1

∥∥χQj fi
∥∥

si(·)∥∥χQj

∥∥
si(·)

> λ .

Then M D
�s(·) f1, . . . , fm(x) > λ , that imply x ∈ Eλ .

To prove (2), let α > 1 be a constant that will be chosen later. For each non
negative k ∈ Z , we consider the set

Ωk =
{

x ∈ R
n : M D

�s(·) f1, . . . , fm(x) > αk
}

=
⋃

j

Qk
j (49)

where {Qk
j} j∈N is the collection of maximal dyadic cubes from (1) that satisfies

αk <
m

∏
i=1

∥∥∥χQk
j
fi
∥∥∥

si(·)∥∥∥χQk
j

∥∥∥
si(·)

� C2m
s αk. (50)

Let Fk
j = Qk

j \Ωk+1 . Since Ωk+1 ⊂ Ωk it is immediate that the sets Fk
j are pairwise

disjoint. Note that

|Fk
j |

|Qk
j|

=
|Qk

j \ (Qk
j ∩Ωk+1)|

|Qk
j|

= 1− |Qk
j ∩Ωk+1|
|Qk

j|
. (51)

We estimate |Qk
j ∩Ωk+1| . If A denotes one of the constants involved in (5), using that

1 =
1

s′(·) +
1

s(·) =
1

s′(·) +
m

∑
i=1

1
si(·) ,
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we obtain ∣∣∣Qk
j ∩Ωk+1

∣∣∣= ∑
l:Qk+1

l ⊆Qk
j

∣∣∣Qk+1
l

∣∣∣
� A ∑

l:Qk+1
l ⊆Qk

j

∥∥∥χQk+1
l

∥∥∥
s′(·)

m

∏
i=1

∥∥∥χQk+1
l

∥∥∥
si(·)

. (52)

Notice that

αk+1 <
m

∏
i=1

∥∥∥χQk+1
l

fi
∥∥∥

si(·)∥∥∥χQk+1
l

∥∥∥
si(·)

y
m

∏
i=1

∥∥∥χQk
j
fi
∥∥∥

si(·)∥∥∥χQk
j

∥∥∥
si(·)

� C2m
s αk. (53)

Hence, by (53) and Lemma 11, we can estimate (52) as follow

∣∣∣Qk
j ∩Ωk+1

∣∣∣< Aα−k−1 ∑
l:Qk+1

l ⊆Qk
j

∥∥∥χQk+1
l

∥∥∥
s′(·)

m

∏
i=1

∥∥∥χQk+1
l

fi
∥∥∥

si(·)

� Aα−k−1C
∥∥∥χQk

j

∥∥∥
s′(·)

m

∏
i=1

∥∥∥χQk
j
fi
∥∥∥

si(·)

� ACα−1C2m
s

∥∥∥χQk
j

∥∥∥
s′(·)

m

∏
i=1

∥∥∥χQk
j

∥∥∥
si(·)

� ACα−1C2m
s B|Qk

j|
= σα−1|Qk

j|.

Consequently, if α > σ , by (51), we can conclude

|Fk
j |

|Qk
j|

> 1− σ
α

> 0.

Hence S = {Qk
j} j∈N,k∈Z is a sparse family. �

Proof of Theorem 5. As in the proof of Theorem 4 it is enough to prove that, for
every j = 1, . . . ,m ,

∫
Rn

|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx �
m

∏
i=1

‖ fi‖
L

pi(·)
vi

(54)

for all non-negative bounded functions with compact support f 1, . . . , fm and g with
‖g‖r′(·) � 1. Let f1, . . . , fm and g be functions with these properties. We use the same



WEIGHTED INEQUALITIES FOR MULTILINEAR OPERATORS 287

technique as in the proof of the Theorem 4 to obtain that∫
Rn

|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� ∑
Q∈D

Γ
(

�(Q)
2

)∫
Q
|b j(x)− (b j)Q|w(x)g(x)dx

m

∏
i=1

∫
3Q

fi(yi)dyi

+ ∑
Q∈D

Γ
(

�(Q)
2

)∫
Q

w(x)g(x)dx
m

∏
i=1, i�= j

∫
3Q

fi(yi)dyi

×
∫

3Q
|b j(y j)− (b j)Q| f j(y j)dy j, (55)

where D is the standard dyadic grid. Hence, by Lemma 8,∫
Rn

|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� ∑
Q∈D

Γ
(

�(Q)
2

)
‖χQ‖n/δ (·) |Q|m+1 1

|Q|
∫

Q
w(x)g(x)dx

m

∏
i=1

1
|3Q|

∫
3Q

fi(yi)dyi.

(56)

The next task is to replace the sum over D , by the sume over cubes from a sparse
family. Since f1, . . . , fm are bounded functions with compact support, we have that

lim
|Q|→∞

m

∏
i=1

1
|3Q|

∫
3Q

fi(yi)dyi �
m

∏
i=1

‖ fi‖∞ lim
|Q|→∞

|supp fi|
|Q| = 0.

Let α > max{2nm,6n‖M ‖} where ‖M ‖ is the constant from the L1 × . . .× L1 →
L1/m,∞ inequality for M . It was proved in [28] that there exists a sparse family
{Qk

j} j∈N,k∈Z ⊂ D , such that for every k ∈ Z ,

αk <
m

∏
i=1

1

|3Qk
j|
∫

3Qk
j

fi(yi)dyi � αk+1.

Hence, proceeding as in the proof of Theorem 4 we obtain that∫
Rn

|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� ∑
Q∈D

Γ
(

�(Q)
2

)
‖χQ‖n/δ (·) |Q|m+1 1

|Q|
∫

Q
w(x)g(x)dx

m

∏
i=1

1
|3Q|

∫
3Q

fi(yi)dyi

� α ∑
k∈Z

∑
j∈N

∥∥∥χQk
j

∥∥∥
n/δ (·)

m

∏
i=1

1

|3Qk
j|
∫

3Qk
j

fi(yi)dyi

× ∑
Q∈Ck:Q⊂Qk

j

Γ
(

�(Q)
2

)
|Q|m+1 1

|Q|
∫

Q
w(x)g(x)dx
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� α ∑
k∈Z

∑
j∈N

∥∥∥χQk
j

∥∥∥
n/δ (·)

Γ̃[δ (1+ ε)�(Qk
j)] |Qk

j|

× 1

|Qk
j|
∫

Qk
j

w(x)g(x)dx
m

∏
i=1

1

|3Qk
j|
∫

3Qk
j

fi(yi)dyi

where ε,δ are the constants provided by condition R , Γ̃(t) =
∫
|z|�t Γ(z)dz and we

have used Lemma 12. Let γ = δ (1 + ε) ; then we can follow our chain of inequalities
with

� α ∑
k∈Z

∑
j∈N

∥∥∥χγQk
j

∥∥∥
n/δ (·)

Γ̃(γ�(Qk
j)) |γQk

j|
1

|γQk
j|
∫

γQk
j

w(x)g(x)dx
m

∏
i=1

1

|γQk
j|
∫

γQk
j

fi(yi)dyi.

By condition AV and by the hypothesis on the weights (35) we obtain∫
Rn

|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� α ∑
k∈Z

∑
j∈N

∥∥∥χγQk
j

∥∥∥
n/δ (·)

Γ̃(γ�(Qk
j)) |γQk

j|

∥∥∥χγQk
j
g
∥∥∥

Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
Ψm+1(·,·)

∥∥∥χγQk
j
w
∥∥∥

ϒm+1(·,·)∥∥∥χγQk
j

∥∥∥
ϒm+1(·,·)

×
m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
Ψi(·,·)∥∥∥χγQk

j

∥∥∥
Ψi(·,·)

∥∥∥χγQk
j
v−1

i

∥∥∥
ϒi(·,·)∥∥∥χγQk

j

∥∥∥
ϒi(·,·)

� α ∑
k∈Z

∑
j∈N

|Qk
j|

∥∥∥χγQk
j

∥∥∥
p(·)∥∥∥χγQk

j

∥∥∥
r(·)

∥∥∥χγQk
j
g
∥∥∥

Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
Ψi(·,·)∥∥∥χγQk

j

∥∥∥
Ψi(·,·)

By Corollary 1 the last sum is equivalent to

α ∑
k∈Z

∑
j∈N

|Qk
j|
∥∥∥χγQk

j

∥∥∥
β (·)

∥∥∥χγQk
j
g
∥∥∥

Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
Ψi(·,·)∥∥∥χγQk

j

∥∥∥
Ψi(·,·)

.

Using that {Qk
j} j∈N,k∈Z is a sparse family and Hölder inequality (9) we obtain that∫

Rn
|PΓ,b j ( f1, . . . , fm)(x)|w(x)g(x)dx

� ∑
k∈Z

∑
j∈N

|E(Qk
j)|
∥∥∥χγQk

j

∥∥∥
β (·)

∥∥∥χγQk
j
g
∥∥∥

Ψm+1(·,·)∥∥∥χγQk
j

∥∥∥
Ψm+1(·,·)

m

∏
i=1

∥∥∥χγQk
j
fivi

∥∥∥
Ψi(·,·)∥∥∥χγQk

j

∥∥∥
Ψi(·,·)

�
∫

Rn
Mβ (·),Ψm+1(·,·)(g)(y)MΨ1(·,·),...,Ψm(·,·)( f1v1, . . . , fmvm)(y)dy
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�
∥∥Mβ (·),Ψm+1(·,·)(g)

∥∥
p′(·)
∥∥MΨ1(·,·),...,Ψm(·,·)( f1v1, . . . , fmvm)

∥∥
p(·)

�
m

∏
i=1

‖ fi‖
L

pi(·)
vi

,

where we have used conditions (33) and (34). This proves (54) and concludes the proof
of Theorem 5. �
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