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VOLTERRA TYPE INTEGRAL OPERATOR

ACTING BETWEEN FOCK SPACES

SEI-ICHIRO UEKI

(Communicated by J. Pečarić)

Abstract. The boundedness of the Volterra type integral operator acting from the space F∞
α (CN)

to the space F p
β (CN) is characterized. This characterization also indicates the compactness of

this operator.

1. Introduction

Let N be a fixed positive integer and H(CN) denote the space of all entire func-
tions on the N -dimensional complex Euclidean space. For each α > 0 and 0 < p � ∞ ,
the Fock spaces F p

α (CN) are defined by

F p
α (CN) =

{
f ∈ H(CN) : ‖ f‖p

p,α =
∫

CN
| f (z)|pe− pα

2 |z|2dV (z) < ∞
}

and

F∞
α (CN) =

{
f ∈ H(CN) : ‖ f‖∞,α = sup

z∈CN
| f (z)|e− α

2 |z|2 < ∞

}
.

Here dV denotes the ordinary Lebesgue measure on CN . Throughout this paper, the
notation A � B means that there exists a positive constant C such that A � CB . More-
over, if both A � B and B � A hold, then one says that A ≈ B .

For any f ∈ H(CN) the radial derivative R f of f is defined by

R f (z) =
N

∑
j=1

z j
∂ f
∂ z j

(z).

For given g ∈ H(CN) , the Volterra type integral operator Vg is defined as following:

Vg f (z) =
∫ 1

0
f (tz)Rg(tz)

dt
t

( f ∈ H(CN), z ∈ C
N).

This can be regarded as a multivariable version of the operator f �→ ∫ z
0 f (w)g′(w)dw

in the one variable case. This type operator has been studied by many researchers. As
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has been shown in a series of studies on integral operators (see, e.g., [8, 9, 10, 11]
and the related references therein), the radial derivative operator indicates the relation
R[Vg f ](z) = f (z)Rg(z) . Combining this relation with the equivalence condition for
the spaces F p

α (CN) via the radial derivative operator, we can investigate the properties
of the operator Vg . In fact, Z. Hu [4] has given completely characterizations for the
boundedness and the compactness of Vg : F p

α (CN) → F q
α(CN) for the both cases 0 <

p � q < ∞ and 0 < q < p < ∞ . O. Constantin [1] has considered the case N = 1.
The author [15, 16] has investigated the case p = q = ∞ , namely the boundedness
and the compactness of Vg : F∞

α (CN) → F∞
α (CN) . They do not consider the case

Vg : F∞
α (CN) → F p

α (CN) for 0 < p < ∞ . By means of their characterizations for the
spaces F p

α (CN) , however, we can find one of sufficient conditions for the boundedness
of Vg : F∞

α (CN) → F p
α (CN) . In fact, we can easily obtain the following result.

PROPOSITION 1. Let 0 < p < ∞ , α, β > 0 and g ∈ H(CN) . If the z-variable

function |Rg(z)|
(1+|z|)2 e

α−β
2 |z|2 is in Lp(CN ,dV ) , then Vg is bounded from F∞

α (CN) into

F p
β (CN) .

Proof. Since Vg f (0) = 0, Lemma 4 in Section 2 gives

‖Vg f‖p
p,β ≈

∫
CN

| f (z)|p|Rg(z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV (z)

=
∫

CN
| f (z)|p|e− pα

2 |z|2 |Rg(z)|p
(1+ |z|)2p e

p(α−β)
2 |z|2dV (z)

� ‖ f‖p
∞,α

∫
CN

|Rg(z)|p
(1+ |z|)2p e

p(α−β)
2 |z|2dV (z).

This implies that the condition |Rg(z)|
(1+|z|)2 e

α−β
2 |z|2 ∈ Lp(CN ,dV ) is sufficient for the bound-

edness of Vg : F∞
α (CN) → F p

β (CN) . �

Our purpose in this short paper is to prove that the condition |Rg(z)|
(1+|z|)2 e

α−β
2 |z|2 ∈

Lp(CN ,dV ) characterize not only the boundedness of Vg but also its compactness. The
following is the main result.

THEOREM 1. Let 0 < p < ∞ , α, β > 0 and g ∈ H(CN) . Then the following
conditions are equivalent:

(a) Vg : F∞
α (CN) → F p

β (CN) is bounded,

(b) Vg : F∞
α (CN) → F p

β (CN) is compact,

(c) |Rg(z)|
(1+|z|)2 e

α−β
2 |z|2 ∈ Lp(CN ,dV ) .
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The proof of the theorem is given in Section 3. Since the direction (b)⇒(a) is
trivial, it is enough to prove (a)⇒(c) and (c)⇒(b). In order to prove (a)⇒(c), we will
use the result about a positive Borel measure based on the concept of the lattice in CN .
In the proof of (c)⇒(b), we show that the essential norm of Vg is equal to 0. In both
proofs, Hu [4] and our [16] results about characterizations for the spaces F p

α (CN) play
a central role.

When N = 1, we see that Rg(z) = zg′(z) for g ∈ H(C) and z ∈ C . Thus we also
obtain the result for N = 1 as follows.

COROLLARY 1. Let 0 < p < ∞ , α, β > 0 and g ∈ H(C) . Then the following
conditions are equivalent:

(a) Vg : F∞
α (C) → F p

β (C) is bounded,

(b) Vg : F∞
α (C) → F p

β (C) is compact,

(c) |g′(z)|
1+|z| e

α−β
2 |z|2 ∈ Lp(C,dV ) .

If α = β in Corollary 1, then the boundedness and the compactness of Vg :

F∞
α (C) → F p

α (C) are equivalent to the condition |g′(z)|
1+|z| ∈ Lp(C,dV ) . On the other

hand, T. Mengestie [6, Theorem 2.3] shows that Vg : F∞
α (C) → F p

α (C) is bounded or
compact if and only if∫

C

dV (w)
∫

C

|g′(z)|p
(1+ |z|)p e−

pα
2 |z−w|2dV (z) < ∞.

Our result simplifies this condition.
Let X and Y be two Banach spaces and A : X → Y be a bounded linear operator.

The essential norm of the operator is defined as

‖A‖e = inf
K∈K (X ,Y )

‖A−K‖X→Y ,

where K (X ,Y ) is the family of all compact operators from X to Y. Essential norms
of some integral type operators on spaces of holomorphic functions have been studied,
for example, in [2, 7, 9, 13, 14].

2. Preliminaries

For a ∈ CN and r > 0, B(a,r) denotes the Euclidean open ball with center at a
and radius r . The following lemma is a modification of well-known results in theory
on Fock spaces. However we include a proof of it for completeness.

LEMMA 1. Let 0 < p, α < ∞ . For each f ∈ H(CN) , R > 0 and z ∈ CN , there
exists a positive constant C = C(N, p,α,R) depends on N, p,α and R such that

| f (z)|p
(1+ |z|)2p e−

pα
2 |z|2 � C

∫
B(z,R)

| f (w)|p
(1+ |w|)2p e−

pα
2 |w|2dV (w).
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Proof. Take an r ∈ (0,R) . The subharmonicity of | f |p gives

| f (0)|p �
∫

∂B(0,1)
| f (rζ )|pdσ(ζ ),

where ∂B(0,1) is the boundary of the unit ball B(0,1) and dσ is the normalized
Lebesgue measure on ∂B(0,1) . Multiplying both sides by 2Nr2N−1e−

pα
2 r2 and inte-

grating with respect to r from 0 to R , we obtain

| f (0)|pR2Ne−
pα
2 R2 � N!

πN

∫
B(0,R)

| f (w)|pe− pα
2 |w|2dV (w). (1)

Now we consider the function

F f
z (w) = f (w+ z)eα〈w,z〉− α

2 |z|2 (w ∈ C
N).

Then F f
z ∈ H(CN) and | f (z)|pe− pα

2 |z|2 = |F f
z (0)|p . Since 1

1+|z| < 1+R
1+|w+z| for w ∈

B(0,R) , it follows from (1) that

| f (z)|p
(1+ |z|)2p e−

pα
2 |z|2 =

|F f
z (0)|p

(1+ |z|)2p

� N!e
pα
2 R2

(πR2)N

∫
B(0,R)

|F f
z (w)|p

(1+ |z|)2p e−
pα
2 |w|2dV (w)

=
N!e

pα
2 R2

(1+R)2p

(πR2)N

∫
B(0,R)

| f (w+ z)|p
(1+ |w+ z|)2p e−

pα
2 |w+z|2dV (w). (2)

An application of a change of variables formula to (2) implies the desired estimation
for f ∈ H(CN) . �

We cite some result on a positive Borel measure in terms of a lattice. For given r >
0, a sequence {ak} in C

N is called an r -lattice if it satisfies the following conditions:

(i) C
N = ∪∞

k=1B(ak,r) ,

(ii) B(ak,r/2)∩B(a j,r/2) = /0 if k 
= j ,

(iii) For any R > 0 there is a positive integer M depending only on r and R , such
that every point in CN belongs to at most M of the balls B(ak,R) .

The following result is appeared in [3, Lemma 2.3].

LEMMA 2. Let r > 0 and {ak} be an r -lattice in CN . For a positive Borel mea-
sure μ the following two conditions are equivalent:

(a) μ(B(·,r)) ∈ L1(CN ,dV ) ,

(b) {μ(B(ak,r))} ∈ l1 .
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We shall need Khinchine’s inequality based on the Rademacher functions on [0,1] .
Recall that the Rademacher functions {r j(t)} j�0 on [0,1] are defined by

r0(t) =
{

1 (0 � t− [t] < 1
2 ),

−1 ( 1
2 � t− [t] < 1),

r j(t) = r0(2 jt) ( j � 1).

Here [t] denotes the largest integer not greater than t . The following result is well-
known as Khinchine’s inequality.

LEMMA 3. Let 0 < p < ∞ . There are constants 0 < Ap � Bp < ∞ such that for
any positive integer m and any complex numbers {c j}m

j=1 ,

Ap

(
m

∑
j=1

|c j|2
) p

2

�
∫ 1

0

∣∣∣∣∣
m

∑
j=1

c jr j(t)

∣∣∣∣∣
p

dt � Bp

(
m

∑
j=1

|c j|2
) p

2

.

For a multi-index γ = (γ1, . . . ,γN) where each γ j is a nonnegative integer, we write
|γ| = ∑N

j=1 γ j and

∂ |γ| f
∂ zγ =

∂ |γ| f

∂ zγ1
1 · · ·∂ zγN

N

for f ∈ H(CN) . Furthermore we write Rm f (z) = R[Rm−1 f ](z) inductively. The
Fock spaces F p

α (CN) (0 < p � ∞) have equivalent characterizations in terms of these
higher order derivatives. The following two lemmas are helpful in proving main parts
of Theorem 1.

LEMMA 4. Let 0 < p, α < ∞ and m be a positive integer. Then the following
three quantities are equivalent:

(a) ‖ f‖p,α ,

(b) ∑|γ|�m−1

∣∣∣ ∂ |γ| f
∂ zγ (0)

∣∣∣+{∑|γ|=m
∫
CN

∣∣∣∣ ∂ |γ| f
∂ zγ (z) e−

α
2 |z|2

(1+|z|)m
∣∣∣∣
p

dV (z)
} 1

p

,

(c) | f (0)|+
{∫

CN

∣∣∣ |Rm f (z)|
(1+|z|)2m e−

α
2 |z|2
∣∣∣p dV (z)

} 1
p
.

Proof. See Theorem 2.1 in [4]. �

LEMMA 5. Let α > 0 , m be a positive integer and f ∈ H(CN) . Then the follow-
ing conditions are equivalent for all f ∈ H(CN) :

(a) f ∈ F∞
α (CN) ,

(b) max
|γ|=m

sup
z∈CN

∣∣∣∣∣∂
|γ| f

∂ zγ (z)

∣∣∣∣∣ e−
α
2 |z|2

(1+ |z|)m < ∞ ,
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(c) sup
z∈CN

|Rm f (z)|
(1+ |z|)2m e−

α
2 |z|2 < ∞ .

Furthermore, we have

‖ f‖∞,α ≈ ∑
|γ|�m−1

∣∣∣∣∣∂
|γ| f

∂ zγ (0)

∣∣∣∣∣+ max
|γ|=m

sup
z∈CN

∣∣∣∣∣∂
|γ| f

∂ zγ (z)

∣∣∣∣∣ e−
α
2 |z|2

(1+ |z|)m

≈ | f (0)|+ sup
z∈CN

|Rm f (z)|
(1+ |z|)2m e−

α
2 |z|2 .

Proof. See Theorem 1 in [16]. �

Finally, we quote a result on a composition operator on F∞
α (CN) . We will need

the following result in the proof of the direction (c)⇒(b) of Theorem 1.

LEMMA 6. Let α > 0 . Suppose that ϕ : CN → CN is an entire mapping which
satisfies |ϕ(z)| < |z| for all z ∈ CN and e

α
2 (|ϕ(z)|2−|z|2) → 0 as |z| → ∞ . Then the

composition operator Cϕ : f �→ f ◦ϕ induced by ϕ is compact from F∞
α (CN) into

itself.

Proof. Combining the condition |ϕ(z)| < |z| with Theorem 1 in [12], we see that
Cϕ : F∞

α (CN)→F∞
α (CN) is bounded. Hence this lemma is a special case of Theorem

8 in [12]. We omit the detail of the proof. �

3. Proof of result

The proof of (a) ⇒ (c) . First we introduce the following contemporary notation:

dμg(z) :=
|Rg(z)|p
(1+ |z|)2p e

p(α−β)
2 |z|2dV(z) (z ∈ C

N).

Then for any r > 0 we obtain

∫
CN

μg(B(z,r))dV (z) =
∫

CN
dV (z)

∫
CN

χB(z,r)(w)
|Rg(w)|p
(1+ |w|)2p e

p(α−β)
2 |w|2dV (w)

=
∫

CN
dV (z)

∫
CN

χB(w,r)(z)
|Rg(w)|p
(1+ |w|)2p e

p(α−β)
2 |w|2dV (w)

=
(πr2)N

N!

∫
CN

|Rg(w)|p
(1+ |w|)2p e

p(α−β)
2 |w|2dV (w).

This relation indicates that the condition (c) is equivalent to μg(B(·,r)) is in L1(CN ,dV ) .
Hence, by Lemma 2, it is enough to prove that {μg(B(ak,r))} ∈ l1 for an r -lattice {ak}
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in CN . Take an r -lattice {ak} in CN and let {rk} be the Rademacher functions on
[0,1] . We consider the function Ft defined by

Ft(z) =
∞

∑
k=1

rk(t)eα〈z,ak〉− α
2 |ak|2 (z ∈ C

N , t ∈ [0,1]).

As proved in [5, Theorem 8.2] or [3, Lemma 2.4], we see that Ft ∈ F∞
α (CN) and

‖Ft‖∞,α � 1 uniformly in t . Thus the boundedness of Vg : F∞
α (CN) → F p

β (CN) and
Lemma 4 show∫

CN
|Ft(z)|pe−

pα
2 |z|2dμg(z) =

∫
CN

|Ft(z)|p|Rg(z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV (z)

� ‖VgFt‖p
p,β � 1. (3)

On the other hand, we put ck = eα〈z,ak〉− α
2 (|z|2+|ak|2) in Lemma 3. Then Lemma 3 and

Fubini’s theorem give

∫
CN

(
∞

∑
k=1

e−α |z−ak|2
) p

2

dμg(z) �
∫

CN
dμg(z)

∫ 1

0

∣∣∣∣∣
∞

∑
k=1

eα〈z,ak〉− α
2 (|z|2+|ak|2)rk(t)

∣∣∣∣∣
p

dt

=
∫ 1

0
dt
∫

CN
|Ft(z)|pe−

pα
2 |z|2dμg(z) (4)

By relations (3) and (4) we obtain

∫
CN

(
∞

∑
k=1

e−α |z−ak|2
) p

2

dμg(z) � 1. (5)

For any R > r the property (iii) of the r -lattice {ak} implies that there is a positive
integer M which depends only on r and R such that

∞

∑
j=1

∫
B(a j ,R)

(
∞

∑
k=1

e−α |z−ak|2
) p

2

dμg(z) � M
∫

CN

(
∞

∑
k=1

e−α |z−ak|2
) p

2

dμg(z).

Hence we obtain

∫
CN

(
∞

∑
k=1

e−α |z−ak|2
) p

2

dμg(z) � 1
M

∞

∑
j=1

∫
B(a j ,R)

(
∞

∑
k=1

e−α |z−ak|2
) p

2

dμg(z)

� 1
M

∞

∑
j=1

∫
B(a j ,r)

(
∞

∑
k=1

e−α |z−ak|2
) p

2

dμg(z)

� 1
M

∞

∑
j=1

∫
B(a j ,r)

(
e−α |z−a j |2

) p
2
dμg(z)

� e−
pαr2

2

M

∞

∑
j=1

μg(B(a j,r)).
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Combining this with (5) we see that the sequence {μg(B(ak,r))} is in l1 . Hence we
have the desired claim, which completes the proof of (a)⇒(c). �

The proof of (c)⇒ (b) . Suppose that the z-variable function |Rg(z)|
(1+|z|)2 e

α−β
2 |z|2 is in

Lp(CN ,dV ) . Then by Proposition 1 we see that Vg : F∞
α (CN)→F p

β (CN) is bounded.
In order to deduce the compactness of Vg , we will show that the essential norm ‖Vg‖e

is equal to 0.
For a positive integer k , we consider the following entire mapping:

ϕk(z) =
(

k
k+1

z1, . . . ,
k

k+1
zN

)
(z ∈ C

N).

Then ϕk satisfies that |ϕk(z)| < |z| and

e
α
2 (|ϕk(z)|2−|z|2) = e

− α(2k+1)|z|2
2(k+1)2 → 0

as |z|→∞ , uniformly in k . Lemma 6 implies that the composition operator Cϕk is com-
pact on F∞

α (CN) . Hence the product operator VgCϕk is also compact from F∞
α (CN)

into F p
β (CN) . By the definition of ‖Vg‖e we have

‖Vg‖p
e � sup

‖ f‖∞,α�1
‖Vg(I−Cϕk) f‖p

p,β , (6)

where I denotes the identity operator on F∞
α (CN) . It follows from Lemma 4 that the

right term in (6) is dominated by

sup
‖ f‖∞,α�1

∫
CN

|R[Vg(I−Cϕk) f ](z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV (z). (7)

Fix ε > 0 arbitrarily. The assumption (c) indicates that we can choose R > 0 such that

∫
|z|>R

|Rg(z)|p
(1+ |z|)2p e

p(α−β)
2 |z|2dV (z) < ε. (8)

Take a positive integer k and f ∈ F∞
α (CN) with ‖ f‖∞,α � 1. Note that it holds

R[Vg(I−Cϕk) f ](z) = R[Vg f ](z)−R[Vg( f ◦ϕk)](z)
= f (z)Rg(z)− f (ϕk(z))Rg(z).

Thus (8) gives

∫
|z|>R

| f (z)|p|Rg(z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV (z)

� ‖ f‖p
∞,α

∫
|z|>R

|Rg(z)|p
(1+ |z|)2p e

p(α−β)
2 |z|2dV (z) < ε. (9)
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Furthermore the relation |ϕk(z)| < |z| implies∫
|z|>R

| f (ϕk(z))|p|Rg(z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV (z)

�
∫
|z|>R

| f (ϕk(z))|pe−
pα
2 |ϕk(z)|2 |Rg(z)|p

(1+ |z|)2p e
p(α−β)

2 |z|2dV (z) < ε. (10)

On the other hand, we have∫
|z|�R

|R[Vg(I−Cϕk) f ](z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV(z)

�
(

sup
|z|�R

| f (z)− f (ϕk(z))|e− α
2 |z|2
)p ∫

|z|�R

|Rg(z)|p
(1+ |z|)2p e

p(α−β)
2 |z|2dV (z)

�
(

sup
|z|�R

| f (z)− f (ϕk(z))|
)p ∫

CN

|Rg(z)|p
(1+ |z|)2p e

p(α−β)
2 |z|2dV (z). (11)

By using the mean value theorem in | f (z)− f (ϕk(z))| , we see

sup
|z|�R

| f (z)− f (ϕk(z))| � sup
|z|�R

|z|
k+1

sup
|w|�R

|∇ f (w)|.

Since |∇ f (w)| � √
N max1� j�N | ∂ f

∂wj
(w)| , Lemma 5 gives

sup
|z|�R

| f (z)− f (ϕk(z))| � sup
|z|�R

|z|
k+1

sup
|w|�R

|∇ f (w)|

� R(R+1)e
α
2 R2

k+1
sup
|w|�R

|∇ f (w)|
(1+ |w|)e

− α
2 |w|2

�
√

N
R(R+1)e

α
2 R2

k+1
sup
|w|�R

max
1� j�N

| ∂ f
∂wj

(w)|
(1+ |w|)e−

α
2 |w|2

�
√

N
R(R+1)e

α
2 R2

k+1
‖ f‖∞,α → 0

as k → ∞ . Combining this with (11) and the assumption (c), we obtain

lim
k→∞

sup
‖ f‖∞,α�1

∫
|z|�R

|R[Vg(I−Cϕk) f ](z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV (z) = 0. (12)

Hence estimates (9), (10) and (12) show that

sup
‖ f‖∞,α�1

∫
CN

|R[Vg(I−Cϕk) f ](z)|p
(1+ |z|)2p e−

pβ
2 |z|2dV (z) � ε

if letting k → ∞ in (7), and so ‖Vg‖p
e � ε . Since ε > 0 was arbitrarily, this implies

‖Vg‖e = 0, namely Vg is compact from F∞
α (CN) into F p

β (CN) . We accomplish the
proof. �
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4. Examples

Now we describe examples of g which induces the bounded (and also compact)
operator Vg : F∞

α (C)→F p
β (C) . In order to explain the examples briefly, we deal with

the case N = 1 only.

The case α > β . First we observe

( |a j|r j

1+ r
e

α−β
2 r2

)p

�
∫

C

|F(w)|p
(1+ |w|)p e

p(α−β)
2 |w|2dV (w) (13)

for F ∈ H(C) with F(z) = ∑ j�0 a jz j and any r > 0. We consider the entire function

f (w) = F(w+ z)e(α−β )wz+ α−β
2 |z|2 .

As in the proof of Lemma 1, the subharmonic property of | f |p and the relation

| f (w)|pe p(α−β)
2 |w|2 = |F(w+ z)|pe p(α−β)

2 |w+z|2

give ( |F(z)|
1+ |z|e

α−β
2 |z|2

)p

�
∫

B(z,1)

|F(w)|p
(1+ |w|)p e

p(α−β)
2 |w|2dV (w).

Since this estimate is uniform in z , we also have(
sup|z|=r |F(z)|

1+ r
e

α−β
2 r2

)p

�
∫

C

|F(w)|p
(1+ |w|)p e

p(α−β)
2 |w|2dV (w).

Combining this with the fact |a j|r j � sup|z|=r |F(z)| , we obtain the desired estimate

(13). Hence if
∫
C

|F(w)|p
(1+|w|)p e

p(α−β)
2 |w|2dV(w) < ∞ , then (13) together with the assumption

α > β shows for any integer j � 0

|a j| � r1− je−
α−β

2 r2 → 0

as r → ∞ , that is F ≡ 0. By applying this argument to g′ , we see that g must be the
constant function. However Vg ≡ 0 for a constant function g .

The case α = β . Since the arguments used to derive inequality (13) are applicable
to this case as well, we obtain

|a j|r j

1+ r
�
(∫

C

|g′(w)|p
(1+ |w|)p dV (w)

) 1
p

for g′(z) = ∑ j�0 a jz j and a nonnegative integer j . This inequality and (c) in Corollary
1 imply that a j = 0 if j � 2, and so g(z) = az2 +bz+c . Since |g′(z)| ≈ 1+ |z| if a 
= 0,
we see that the above integral is not finite, so a polynomial g with deg(g) = 2 does not
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induce the bounded operator Vg from F∞
α (C) into F p

α (C) . Thus we put g(z) = bz+c .
If p > 2, then ∫

C

|g′(z)|p
(1+ |z|)p dV (z) ≈

∫ ∞

0

r
(1+ r)p dr < ∞,

and so g(z) = bz+ c induces the bounded Vg : F∞
α (C) → F p

α (C) .

The case α < β . We put g(z) =
∫ z
0 e−

α−β
2 ζ 2

dζ . Since

|g′(z)|p = e−
p(α−β)

2 Re(z2) � e−
p(α−β)

2 |z|2 ,

we also see ∫
C

|g′(z)|p
(1+ |z|)p e

p(α−β)
2 |z|2dV (z) �

∫ ∞

0

r
(1+ r)p dr < ∞

if p > 2. Hence this function g induces the bounded operator Vg : F∞
α (C) → F p

β (C)
when p > 2.
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