
Mathematical
Inequalities

& Applications

Volume 25, Number 2 (2022), 319–333 doi:10.7153/mia-2022-25-19

HARDY AND SOBOLEV INEQUALITIES FOR

DOUBLE PHASE FUNCTIONALS ON THE UNIT BALL

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA ∗

(Communicated by S. Varošanec)

Abstract. We prove Hardy and Sobolev inequalities for double phase functionals Φ(x,t) = t p +
(b(x)t)q on the unit ball B , as a continuation of our paper [26], where 1 � p < q , b(·) is non-
negative and (radially) Hölder continuous of order θ ∈ (0,1] . The Sobolev conjugate for Φ is
given by Φ∗(x,t) = t p∗ +(b(x)t)q∗ , where p∗ and q∗ denote the Sobolev exponent of p and q ,
respectively, that is, 1/p∗ = 1/p−1/n and 1/q∗ = 1/q−1/n .

1. Introduction

The Hardy-Sobolev inequality says that for f � 0

(∫ 1

0

(∫ x

0
f (y)dy

)q

(1− x)αdx

)1/q

� C

(∫ 1

0
f (y)p(1− y)βdy

)1/p

, (1)

where 1 � p � q , β > p−1 and α = βq/p−q/p′−1 (1/p+1/p′ = 1) and

(∫ 1

0

(∫ 1

x
f (y)dy

)q

(1− x)αdx

)1/q

� C

(∫ 1

0
f (y)p(1− y)βdy

)1/p

, (2)

where 1 � p � q , β < p−1 and α = βq/p−q/p′−1 (see e.g. [10, 15, 16, 21, 22, 28]).
The double phase functional introduced by Zhikov ([31]) in the 1980s has been

studied intensively by many researchers. Regarding regularity theory of differential
equations, Baroni, Colombo and Mingione [1, 2, 5, 6] studied a double phase functional

Φ̃(x,t) = t p +a(x)tq, x ∈ R
n, t � 0,

where 1 � p < q , a(·) is non-negative, bounded and Hölder continuous of order θ ∈
(0,1] . We refer to [17, 24, 25] for Sobolev inequality for double phase functionals and
to [19, 20] for variational problems with nonstandard growth. For other recent works,
see e.g. [3, 4, 7, 8, 9, 11, 12, 13, 14, 23, 27, 29].
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Let B be the unit ball B(0,1) of R
n . In the present paper, relaxing the continuity

of a(·) , we consider the case Φ(x,t) is a double phase functional given by

Φ(x,t) = t p +(b(x)t)q,

where 1 � p < q , b(·) is non-negative and (radially) Hölder continuous of order θ ∈
(0,1] , that is,

|b(x)−b(y)|� C||x|− |y||θ for all x,y ∈ B .

Note that if we write
Φ(x,t) = t p +a(x)tq

with
a(x) = b(x)q,

then a is not always Hölder continuous of order θq .
In the previous paper [26], Hardy-Sobolev inequalities were established when

∫
B

Φ(y,(1−|y|)β/q| f (y)|)dy � 1 (3)

with β > q−1 and 1/q = 1/p−θ > 0 and

∫
B

Φ(y,(1−|y|)β/p| f (y)|)dy � 1 (4)

with β < p−1.
The Sobolev conjugate Φ∗ for Φ will be given in Section 3 by

Φ∗(x,t) = t p∗ +(b(x)t)q∗ ,

where p∗ and q∗ denote the Sobolev exponent of p and q , respectively, that is, 1/p∗ =
1/p− 1/n and 1/q∗ = 1/q− 1/n . Our aim in this paper is to give a continuation of
our paper [26] by the use of Φ∗(x,t) , which was not used in [26], when (3) holds with
β > q− 1 and 1/q = 1/p− θ > 0 in Theorem 3.1 and (4) holds with β < p− 1 in
Theorem 3.3. Our strategy is to apply Theorems 2.1 and 2.4, which are extensions
of the classical Hardy-Sobolev inequalities (1) and (2) to the unit ball. which are the
Hardy-Sobolev inequality in B . Both Theorems 3.1 and 3.3 are strongly affected by
double phase as will be seen in Remark 4.1 below.

As an application of Theorems 2.1, 2.4, 3.1 and 3.3, we discuss behaviors near the
sphere for functions in C1(Rn) (see Propositions given after the theorems).

Our final aim is to treat the borderline case in Theorems 3.1 and 3.3. For this
purpose, we prepare Theorems 5.1 and 5.4, which are the critical case of Theorems 2.1
and 2.4.

Throughout this paper, let C denote various positive constants independent of the
variables in question. The symbol g ∼ h means that C−1h � g �Ch for some constant
C > 0.
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2. Hardy-Sobolev inequality in B

Let B(x,r) denote the open ball centered at x ∈ B with radius r .
In B , Hardy-Sobolev inequality can be stated in the following (cf. [28]):

THEOREM 2.1. ([26, Theorem 2.1]) Let 1 � p � q, β > p−1 and α = βq/p−
q/p′ −1 , where 1/p+1/p′ = 1 . Then there exists a constant C > 0 such that

(∫
B

(∫
B(0,|x|)

| f (y)|dy

)q

(1−|x|)αdx

)1/q

� C

(∫
B
| f (y)|p(1−|y|)βdy

)1/p

.

By Theorem 2.1 we discuss a behavior near the sphere.

PROPOSITION 2.2. (cf. [18, Theorem 6.5], [22, Theorem 4.3.1], [30]) Let 1 � p
� q and 0 < ε < 1/q. Let u be a function in C1(Rn) such that

∫
B
(|∇u(y)|(1−|y|)ε)p (1−|y|)p−1dy < ∞.

Then

lim
r→1

(1− r)ε 1
|B\B(0,r)|

∫
B\B(0,r)

|u(x)|dx = 0

and

lim
r→1

(1− r)ε
(

1
|S(0,r)|

∫
S(0,r)

|u(rξ )|dS(ξ )
)

= 0,

where |S(0,r)| denotes the surface area of the spherical surface S(0,r) .

Proof. First note

U0(rξ ) := |u(rξ )−u(0)|
=
∣∣∣∣
∫ r

0

d
dt

u(tξ )dt

∣∣∣∣
�
∫ r

0
|∇u(tξ )|dt

for 0 < r < 1 and |ξ | = 1. Then

1
|S(0,1)|

∫
S(0,1)

U0(rξ )dS(ξ ) � 1
|S(0,1)|

∫
B(0,r)

|∇u(y)| |y|1−ndy. (5)
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Thus for r > 0 Theorem 2.1 gives

(1− r)ε 1
1− r

∫ 1

r

(
1

|S(0,1)|
∫

S(0,1)
U0(tξ )dS(ξ )

)
dt

� (1− r)ε
(

1
1− r

∫ 1

r

(
1

|S(0,1)|
∫

B(0,t)
|∇u(y)| |y|1−ndy

)q

dt

)1/q

� C

(∫
B\B(0,r)

(∫
B(0,t)

|∇u(y)| |y|1−ndy

)q

(1−|x|)α |x|1−ndx

)1/q

� Cr(1−n)/q
(∫

B\B(0,r)

(|∇u(y)| |y|1−n)p
(1−|y|)βdy

)1/p

� C
∫

B\B(0,r)
(|∇u(y)|(1−|y|)ε)p (1−|y|)p−1dy

since (1−n)/q+1−n< 0, where β = (p−1)+ ε p > p−1 and α = βq/p−q/p′−
1 = εq−1 < 0. Here note

(1− r)ε 1
1− r

∫ 1

r

(
1

|S(0,1)|
∫

S(0,1)
U0(tξ )dS(ξ )

)
dt

∼ (1− r)ε 1
|B\B(0,r)|

∫
B\B(0,r)

U0(x)dx for 0 < r < 1,

which yields

lim
r→1

(1− r)ε 1
|B\B(0,r)|

∫
B\B(0,r)

U0(x)dx = 0.

Moreover, it is seen from (5) that

lim
r→1

(1− r)ε
(

1
|S(0,r)|

∫
S(0,r)

U0(rξ )dS(ξ )
)

= 0.

Noting that |u(x)| � |U0(x)|+ |u(0)| , we establish the required result. �

REMARK 2.3. Consider the function

u(x) = (1−|x|)−a−1

for a > 0. Then

(1) |∇u(x)| = a(1−|x|)−a−1 and

∫
B
(|∇u(x)|(1−|x|)ε)p(1−|x|)p−1dx < ∞

if and only if (−a−1+ ε)p+ p> 0;
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(2)

lim
r→1

(1− r)ε
(

1
|S(0,r)|

∫
S(0,r)

u(rξ )dS(ξ )
)

= 0

if and only if −a+ ε > 0.

This implies the best possibility as to the power ε in Proposition 2.2.

THEOREM 2.4. ([26, Theorem 2.2]) Let 1 � p � q, β < p−1 and α = βq/p−
q/p′ −1 . Then there exists a constant C > 0 such that

(∫
B

(∫
B\B(0,|x|)

| f (y)|dy

)q

(1−|x|)αdx

)1/q

� C

(∫
B
| f (y)|p(1−|y|)βdy

)1/p

.

By Theorem 2.4 we discuss a behavior near the sphere, as in Proposition 2.2.

PROPOSITION 2.5. Let p � 1 and ε > 0 . Let u be a function in C1(Rn) such
that ∫

B

(|∇u(y)|(1−|y|)−ε)p (1−|y|)p−1dy < ∞.

Set

U1(x) = U1(rξ ) = limsup
t→1

|u(rξ )−u(tξ )|.

Then

lim
r→1

(1− r)−ε 1
|B\B(0,r)|

∫
B\B(0,r)

U1(x)dx = 0

and

lim
r→1

(1− r)−ε
(

1
|S(0,r)|

∫
S(0,r)

U1(rξ )dS(ξ )
)

= 0.

Proof. To show this, note

|u(rξ )−u(tξ )| =
∣∣∣∣
∫ t

r

d
dt

u(tξ )dt

∣∣∣∣
�
∫ t

r
|∇u(tξ )|dt

for 0 < r < t < 1 and |ξ | = 1. Then

1
|S(0,1)|

∫
S(0,1)

U1(rξ )dS(ξ ) � 1
|S(0,1)|

∫
B\B(0,r)

|∇u(y)| |y|1−ndy. (6)
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Thus for r > 0 Theorem 2.4 gives

(1− r)−ε 1
1− r

∫ 1

r

(
1

|S(0,1)|
∫

S(0,1)
U1(tξ )dS(ξ )

)
dt

� (1− r)−ε
(

1
1− r

∫ 1

r

(
1

|S(0,1)|
∫

B\B(0,t)
|∇u(y)| |y|1−ndy

)q

dt

)1/q

� C

(∫
B\B(0,r)

(∫
B\B(0,t)

|∇u(y)| |y|1−ndy

)q

(1−|x|)α |x|1−ndx

)1/q

� Cr(1−n)/q
(∫

B\B(0,r)

(|∇u(y)| |y|1−n)p
(1−|y|)βdy

)1/p

� C
∫

B\B(0,r)

(|∇u(y)|(1−|y|)−ε)p (1−|y|)p−1dy,

where 1 � p � q , β = (p− 1)− ε p < p− 1 and α = βq/p− q/p′ − 1 = −εq− 1.
Here note

(1− r)−ε 1
1− r

∫ 1

r

(
1

|S(0,1)|
∫

S(0,1)
U1(tξ )dS(ξ )

)
dt

∼ (1− r)−ε 1
|B\B(0,r)|

∫
B\B(0,r)

U1(x)dx for 0 < r < 1,

which yields

lim
r→1

(1− r)−ε 1
|B\B(0,r)|

∫
B\B(0,r)

U1(x)dx = 0.

Moreover, it is seen from (6) that

lim
r→1

(1− r)−ε
(

1
|S(0,r)|

∫
S(0,r)

U1(rξ )dS(ξ )
)

= 0. �

REMARK 2.6. Consider the function

u(x) = (1−|x|)a

for a > 0. Then

(1) |∇u(x)| = a(1−|x|)a−1 and∫
B
(|∇u(x)|(1−|x|)−ε)p(1−|x|)p−1dx < ∞

if and only if (a−1− ε)p+ p> 0;

(2)

lim
r→1

(1− r)−ε
(

1
|S(0,r)|

∫
S(0,r)

u(rξ )dS(ξ )
)

= 0

if and only if a− ε > 0.

This implies the best possibility as to the power ε in Proposition 2.5.
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3. Hardy-Sobolev inequality in B for double phase functionals

In this section, we give Hardy-Sobolev inequality in B when Φ is a double phase
functional.

Let p∗ and q∗ denote the Sobolev exponent of p and q , respectively, that is,
1/p∗ = 1/p−1/n and 1/q∗ = 1/q−1/n . The Sobolev conjugate for Φ is given by

Φ∗(x,t) = t p∗ +(b(x)t)q∗ .

THEOREM 3.1. Let 1 � p < q < n, β > q− 1 and 1/q = 1/p− θ > 0 . Set

F(x) =
∫

B(0,|x|)
| f (y)|dy. Then there exists a constant C > 0 such that

∫
B

Φ∗
(
x,(1−|x|)β/q−1/n′F(x)

)
dx � C

when
∫

B
Φ(y,(1−|y|)β/q| f (y)|)dy � 1 .

Proof. First note from Theorem 2.1(∫
B

(
(1−|x|)β/q−1/n′

∫
B(0,|x|)

| f (y)|dy

)p∗

dx

)1/p∗

� C

(∫
B
| f (y)|p(1−|y|)β p/qdy

)1/p

when (β/q−1/n′)p∗ = (β p/q)p∗/p− p∗/p′ −1 and β p/q > p−1 since β > q−1.
In this case,(∫

B
((1−|x|)β/q−1/n′F(x))p∗dx

)1/p∗

� C

(∫
B
((1−|y|)β/q| f (y)|)pdy

)1/p

.

Next note

b(x)F(x) =
∫

B(0,|x|)
| f (y)|{b(x)−b(y)}dy+

∫
B(0,|x|)

| f (y)|b(y)dy

� C
∫

B(0,|x|)
| f (y)|(1−|y|)θ dy+

∫
B(0,|x|)

| f (y)|b(y)dy.

Theorem 2.1 gives(∫
B

(
(1−|x|)β/q−1/n′

∫
B(0,|x|)

| f (y)|(1−|y|)θdy

)q∗

dx

)1/q∗

� C

(∫
B
| f (y)(1−|y|)θ |p(1−|y|)(β/q−θ)pdy

)1/p

� C

(∫
B
| f (y)|p(1−|y|)β p/qdy

)1/p
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when (β/q−1/n′)q∗ = (β p/q−θ p)q∗/p−q∗/p′ −1 and β p/q−θ p > p−1 since
β > q−1. Moreover,

(∫
B

(
(1−|x|)β/q−1/n′

∫
B(0,|x|)

| f (y)|b(y)dy

)q∗

dx

)1/q∗

� C

(∫
B
| f (y)b(y)|q(1−|y|)βdy

)1/q

since (β/q−1/n′)q∗ = βq∗/q−q∗/q′ −1 and β > q−1. Thus

∫
B

(
(1−|x|)β/q−1/n′b(x)F(x)

)q∗
dx � C

when
∫

B
Φ(y,(1−|y|)β/q| f (y)|)dy � 1 . This completes the proof. �

In the same way as Proposition 2.2, we have the following result.

PROPOSITION 3.2. Let 1 � p < q < n, β > q− 1 and 1/q = 1/p− θ > 0 . Let
u be a function in C1(Rn) such that

∫
B

Φ(y,(1−|y|)β/q|∇u(y)|)dy < ∞.

Then

lim
r→1

(
(1− r)β/q−1/p′ 1

|B\B(0,r)|
∫

B\B(0,r)
|u(x)|dx

+(1− r)β/q−1/q′ 1
|B\B(0,r)|

∫
B\B(0,r)

b(x)|u(x)|dx
)

= 0

and

lim
r→1

(
(1− r)β/q−1/p′ 1

|S(0,r)|
∫

S(0,r)
|u(rξ )|dS(ξ )

+ (1− r)β/q−1/q′ 1
|S(0,r)|

∫
S(0,r)

b(rξ )|u(rξ )|dS(ξ )
)

= 0.

For this, note that

(β/q−1/n′)p∗ = (β p/q)p∗/p− p∗/p′ −1 and β p/q = (β/q−1/p′)p+ p−1

and

(β/q−1/n′)q∗ = βq∗/q−q∗/q′ −1 and β = (β/q−1/q′)q+q−1.

Next we consider the dual Hardy operator.
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THEOREM 3.3. Let 1 � p < q < n, β < p− 1 and 1/q = 1/p− θ > 0 . Set

G(x) =
∫

B\B(0,|x|)
| f (y)|dy. Then there exists a constant C > 0 such that

∫
B

Φ∗
(
x,(1−|x|)β/p−1/n′G(x)

)
dx � C

when
∫

B
Φ(y,(1−|y|)β/p| f (y)|)dy � 1 .

Proof. First note from Theorem 2.4(∫
B

(
(1−|x|)β/p−1/n′

∫
B\B(0,|x|)

| f (y)|dy

)p∗

dx

)1/p∗

� C

(∫
B
| f (y)|p(1−|y|)βdy

)1/p

when (β/p−1/n′)p∗ = β p∗/p− p∗/p′ −1 and β < p−1. In this case,(∫
B
((1−|x|)β/p−1/n′G(x))p∗dx

)1/p∗

� C

(∫
B
((1−|y|)β/p| f (y)|)pdy

)1/p

.

Next note

b(x)G(x) =
∫

B\B(0,|x|)
{b(x)−b(y)}| f (y)|dy+

∫
B\B(0,|x|)

b(y)| f (y)|dy

� C(1−|x|)θ
∫

B\B(0,|x|)
| f (y)|dy+

∫
B\B(0,|x|)

| f (y)|b(y)dy.

Theorem 2.4 gives(∫
B

(
(1−|x|)β/p−1/n′+θ

∫
B\B(0,|x|)

| f (y)|dy

)q∗

dx

)1/q∗

� C

(∫
B
| f (y)|p(1−|y|)βdy

)1/p

when (β/p−1/n′+ θ )q∗ = βq∗/p−q∗/p′ −1 and β < p−1. Moreover,(∫
B

(
(1−|x|)β/p−1/n′

∫
B\B(0,|x|)

| f (y)|b(y)dy

)q∗

dx

)1/q∗

� C

(∫
B
| f (y)b(y)|q(1−|y|)βq/pdy

)1/q

when (β/p−1/n′)q∗ = (βq/p)q∗/q−q∗/q′ −1 and βq/p < q−1 since β < p−1.
Thus ∫

B

(
(1−|x|)β/p−1/n′b(x)G(x)

)q∗
dx � C
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when
∫

B
Φ(y,(1−|y|)β/p| f (y)|)dy � 1. The proof is now completed. �

In the same way as Proposition 2.5, we have the following result.

PROPOSITION 3.4. Let 1 � p < q < n, β < p−1 and 1/q = 1/p−θ > 0 . Let
u be a function in C1(Rn) such that∫

B
Φ(y,(1−|y|)β/p|∇u(y)|)dy < ∞.

Then

lim
r→1

(
(1− r)−(β/q−1/p′) 1

|B\B(0,r)|
∫

B\B(0,r)
U1(x)dx

+(1− r)−(β/q−1/q′) 1
|B\B(0,r)|

∫
B\B(0,r)

b(x)U1(x)dx
)

= 0

and

lim
r→1

(
(1− r)−(β/q−1/p′) 1

|S(0,r)|
∫

S(0,r)
U1(rξ )dS(ξ )

+ (1− r)−(β/q−1/q′) 1
|S(0,r)|

∫
S(0,r)

b(rξ )U1(rξ )dS(ξ )
)

= 0.

4. Sharpness

We discuss the sharpness of Theorem 3.1 in the double phase setting.

REMARK 4.1. In Theorem 3.1, the single condition that∫
B
(| f (y)|b(y))q(1−|y|)βdy � 1

may not imply ∫
B

(
b(x)(1−|x|)β/q−1/n′F(x)

)q∗
dx � C.

In fact, for 0 < r < 1 and a > 0 consider

b(x) =
{ |x|θ − rθ on B\B(0,r);

0 on B(0,r);

and

fa(y) =
{

0 on B\B(0,r);
a on B(0,r).

Then note

(1)
∫

B
(| fa(y)|b(y))q(1−|y|)βdy = 0 ;
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(2)
∫

B(0,|x|)
| fa(y)|dy � Crna for x ∈ B\B(0,r) ;

(3) lim
a→∞

∫
B

(
b(x)(1−|x|)β/q−1/n′

∫
B(0,|x|)

| fa(y)|dy

)q∗

dx = ∞ .

5. The borderline case

The borderline case β = p−1 in Theorem 2.1 is known.

THEOREM 5.1. ([26, Theorem 5.1]) Let 1 � p � q. Then there exists a constant
C > 0 such that(∫

B

(∫
B(0,|x|)

| f (y)|dy

)q

(1−|x|)−1(log(e/(1−|x|)))−a dx

)1/q

� C

(∫
B
| f (y)|p(1−|y|)p−1(log(e/(1−|y|)))p/p′+(1−a)p/qdy

)1/p

when a > 1 .

REMARK 5.2. Let p,q be as in Theorem 5.1. Suppose a1 > a > 1 and

1+(1−a1)/q < γ < 1+(1−a)/q.

Consider
f (y) = |y|−1(log(e/(1−|y|)))−γ on B .

Then

(1)
∫

B
| f (y)|p(1−|y|)p−1(log(e/(1−|y|)))p/p′+(1−a1)p/q dy < ∞ ;

(2)
∫

B

(∫
B(0,|x|)

| f (y)|dy

)q

(1−|x|)−1(log(e/(1−|x|)))−a dx = ∞ .

This implies that in Theorem 5.1, the exponent p/p′ + (1− a)p/q could not be
replaced by a smaller p/p′+(1−a1)p/q .

The borderline case β = q−1 in Theorem 3.1 is treated in the following.

THEOREM 5.3. Let 1 � p < q < n and 1/q = 1/p−θ > 0 . Set

F(x) =
∫

B(0,|x|)
| f (y)|dy

as before and

L(y) = 1+(log(e/(1−|y|)))q/q′+(1−a)q/q∗ +(log(e/(1−|y|)))p/p′+(1−a)p/q∗.

If a > 1 , then there exists a positive constant C > 0 such that∫
B

Φ∗
(
x,(1−|x|)−1/q+1/nF(x)

)
(log(e/(1−|x|)))−adx � C

when
∫

B
Φ(y,(1−|y|)(q−1)/q| f (y)|)L̃(y)dy � 1 .
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Proof. In view of Theorem 2.1 we have(∫
B

(
(1−|x|)−1/q+1/nF(x)

)p∗
dx

)1/p∗

=
(∫

B
F(x)p∗(1−|x|)(−1/q+1/n)p∗ dx

)1/p∗

� C

(∫
B
| f (y)|p(1−|y|)p(q−1)/qdy

)1/p

� C

(∫
B
| f (y)|p(1−|y|)p(q−1)/qL(y)dy

)1/p

when (−1/q+1/n)p∗ = (p(q−1)/q)p∗/p− p∗/p′ −1 and p(q−1)/q > p−1.
As in the proof of Theorem 3.1, note

b(x)F(x) � C
∫

B(0,|x|)
| f (y)|(1−|y|)θdy+

∫
B(0,|x|)

| f (y)|b(y)dy.

Theorem 5.1 gives(∫
B

(
(1−|x|)−1/q+1/n

∫
B(0,|x|)

| f (y)|(1−|y|)θdy

)q∗

(log(e/(1−|x|)))−a dx

)1/q∗

� C

(∫
B

(
| f (y)|(1−|y|)θ

)p
(1−|y|)p−1(log(e/(1−|y|)))p/p′+(1−a)p/q∗dy

)1/p

= C

(∫
B
| f (y)|p(1−|y|)p−1+θ p(log(e/(1−|y|)))p/p′+(1−a)p/q∗ dy

)1/p

� C

(∫
B
| f (y)|p(1−|y|)p(q−1)/qL(y)dy

)1/p

.

Moreover,(∫
B

(
(1−|x|)−1/q+1/n

∫
B(0,|x|)

| f (y)|b(y)dy

)q∗

(log(e/(1−|x|)))−a dx

)1/q∗

� C

(∫
B
(| f (y)|b(y))q(1−|y|)q−1(log(e/(1−|y|)))q/q′+(1−a)q/q∗ dy

)1/q

� C

(∫
B
(| f (y)|b(y))q(1−|y|)q−1L(y)dy

)1/q

since a > 1.
Hence we find∫

B
((1−|x|)−1/q+1/nb(x)F(x))q∗(log(e/(1−|x|)))−a dx � C

when a > 1 and
∫

B
Φ(y,(1−|y|)(q−1)/q| f (y)|)L(y)dy � 1.

Thus we obtain the required inequality. �
Finally we treat the dual Hardy operator. The borderline case β = p−1 in Theo-

rem 2.4 is known.
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THEOREM 5.4. ([26, Theorem 5.5]) Let 1 � p � q and a < 1 . Then there exists
a constant C > 0 such that(∫

B

(∫
B\B(0,|x|)

| f (y)|dy

)q

(1−|x|)−1(log(e/(1−|x|)))−a dx

)1/q

� C

(∫
B
| f (y)|p(1−|y|)p−1(log(e/(1−|y|)))p/p′+(1−a)p/qdy

)1/p

.

With the aid of Theorem 5.4, we obtain the following result as in Theorem 3.3.

THEOREM 5.5. Let 1 � p < q < n and 1/q = 1/p−θ > 0 . Set

G(x) =
∫

B\B(0,|x|)
| f (y)|dy

as before. If a < 1 , then∫
B

Φ∗
(
x,(1−|x|)−1/p+1/nG(x)

)
(log(e/(1−|x|)))−adx � C

when
∫

B
Φ(y,(1−|y|)(p−1)/p| f (y)|)(log(e/(1−|y|)))p/p′+(1−a)p/p∗ dy � 1 .

Proof. In view of Theorem 5.4 we have(∫
B

(
(1−|x|)−1/p+1/nG(x)

)p∗
(log(e/(1−|x|)))−a dx

)1/p∗

� C

(∫
B
| f (y)|p(1−|y|)p−1(log(e/(1−|y|)))p/p′+(1−a)p/p∗ dy

)1/p

.

As in the proof of Theorem 3.3 note

b(x)G(x) � C(1−|x|)θ
∫

B\B(0,|x|)
| f (y)|dy+

∫
B\B(0,|x|)

| f (y)|b(y)dy.

By Theorem 5.4 we obtain(∫
B

(
(1−|x|)−1/p+1/n(1−|x|)θ

∫
B\B(0,|x|)

| f (y)|dy

)q∗

(log(e/(1−|x|)))−a dx

)1/q∗

=

(∫
B

(
(1−|x|)−1/q+1/n

∫
B\B(0,|x|)

| f (y)|dy

)q∗

(log(e/(1−|x|)))−a dx

)1/q∗

� C

(∫
B
| f (y)|p(1−|y|)p−1(log(e/(1−|y|)))p/p′+(1−a)p/q∗ dy

)1/p

� C

(∫
B
| f (y)|p(1−|y|)p−1(log(e/(1−|y|)))p/p′+(1−a)p/p∗ dy

)1/p

when a < 1. Moreover, Theorem 2.4 gives(∫
B

(
(1−|x|)−1/p+1/n

∫
B\B(0,|x|)

| f (y)|b(y)dy

)q∗

dx

)1/q∗

� C

(∫
B
(| f (y)|b(y))q(1−|y|)q(p−1)/pdy

)1/q
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when (−1/p+1/n)q∗ = (q(p−1)/p)q∗/q−q∗/q′ −1 and q(p−1)/p < q−1.
Hence we find∫

B
((1−|x|)−1/p+1/nb(x)G(x))q∗(log(e/(1−|y|)))−a dx � C

when
∫

B
Φ(y,(1−|y|)(p−1)/p| f (y)|)(log(e/(1−|y|)))p/p′+(1−a)p/p∗ dy � 1.

Thus Theorem 5.5 is proved. �
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[11] P. HARJULEHTO AND P. HÄSTÖ, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in
Mathematics, 2236, Springer, Cham, 2019.
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