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Abstract. Let μ and ν be two Borel probability measures on two separable metric spaces X and
Y respectively. For h,g be two Hausdorff functions and q∈ R , we introduce and investigate the
generalized pseudo-packing measure Rq,h

μ and the weighted generalized packing measure Qq,h
μ

to give some product inequalities :

H q,hg
μ×ν (E ×F) � H q,h

μ (E) Rq,g
ν (F) � Rq,hg

μ×ν (E×F)

and
Pq,hg

μ×ν (E×F) � Qq,h
μ (E) Pq,g

ν (F)

for all E ⊆ X and F ⊆ Y , where H q,h
μ and Pq,h

μ is the generalized Hausdorff and packing
measures respectively. As an application, we prove that under appropriate geometric conditions,
there exists a constant c such that

H q,hg
μ×ν (E×F) � cH q,h

μ (E) Pq,g
ν (F)

H q,h
μ (E) Pq,g

ν (F) � cPq,hg
μ (E×F)

Pq,hg
μ×ν (E ×F) � cPq,h

μ (E) Pq,g
ν (F).

These appropriate inequalities are more refined than well know results since we do no assump-
tions on μ ,ν ,h and g .

1. Introduction

Let X and Y two separable metric spaces with metrics ρ and ρ ′ respectively and
that the Cartesian product space X×Y = {(x, y); x ∈ X, y ∈ Y} is given the metric
ρ ×ρ ′ , defined by

ρ ×ρ ′
(
(x, x′), (y, y′)

)
= max

{
ρ(x, x′),ρ ′(y, y′)

}
.

For μ ∈ P(X) , the family of Borel probability measures on X , and a > 1, we write

Pa(μ) = limsup
r↘0

(
sup

x∈suppμ

μ
(
B(x,ar)

)
μ
(
B(x,r)

) ) .

Mathematics subject classification (2020): 28A78, 28A80.
Keywords and phrases: Generalized Hausdorff and packing measures, weighted measure, product sets.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-25-20

335

http://dx.doi.org/10.7153/mia-2022-25-20


336 R. GUEDRI AND N. ATTIA

We will now say that the measure μ satisfies the doubling condition if there exists
a > 1 such that Pa(μ) < ∞ . It is easily seen that the exact value of the parameter a
is unimportant : Pa(μ) < ∞ , for some a > 1 if and only if Pa(μ) < ∞ , for all a > 1.
Also, we will write PD(X) for the family of Borel probability measures on X which
satisfy the doubling condition.

Let F denote the family of all Hausdorff functions, that is, the set of all contin-
uous, increasing functions h , defined for r � 0, with h(0) = 0 and h(r) > 0, for all
r > 0. We will say that a Hausdorff function h is of finite order if and only if h satisfies

limsup
r↘0

h(2r)
h(r)

� γ,

for some constant γ . We denote by F0 the family of all Hausdorff function with finite
order.

Let q ∈ R , h,g ∈ F , μ ∈ P(X) and ν ∈ P(Y) . Let H q,h
μ and Pq,g

ν denote
the generalized Hausdorff and packing measures respectively. When h(r) = rt , for
some t � 0, then H q,h

μ (resp. Pq,h
ν ) will simply denoted by H q,t

μ (resp. Pq,t
ν ) .

These measures were first introduced in [27] and then investigated by several authors.
In particular, in [28] the author proves that there exists a number c > 0 such that, for
any E ⊆ R

n and F ⊆ R
m , n,m � 1,

H q,s+t
μ×ν (E ×F) � c H q,s

μ (E) Pq,t
ν (F) (1.1)

H q,s
μ (E) Pq,t

ν (F) � c Pq,s+t
μ×ν (E ×F) (1.2)

Pq,s+t
μ×ν (E ×F) � c Pq,s

μ (E) Pq,t
ν (F), (1.3)

provided that μ and ν satisfy the doubling condition. When q = 0, the measures H q,t
μ

and Pq,t
μ do not depend on μ and they will be denoted by H t and Pt respectively.

The corresponding dimension inequalities for products of these measures are estab-
lished in [23, 31, 16], the reader can be referred also to [20, 33]. In this case (q = 0) ,
these three inequalities are stated explicitly in [16, 14, 15, 18]. A special example, when
we take s = t = log2/ log3 and E = F be the middle third Cantor set, then [8, 19]

H s(E) Pt(F) = 1×4t < Ps+t(E ×F) = 4s+t = Ps(E) Pt(F).

To prove these inequalities the authors in [28, 18] managed to construct a net mea-
sure equivalent to the packing measure and more easy to investigate. This construction
is similar to that of packing measure but it uses the class of all half-open Semi-dyadic
cubes in the definition rather than the class of all closed balls. Therefore, we must have
doubling condition to compare these measures and get the desire results.

In addition, we strong believe that the inequalities (1.1), (1.2) and (1.3) are true by
considering a general Hauddorff function h,g ∈ F0 , that is,

H q,hg
μ×ν (E ×F) � cH q,h

μ (E) Pq,g
ν (F) (1.4)

H q,h
μ (E) Pq,g

ν (F) � cPq,hg
μ×ν(E ×F) (1.5)
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Pq,hg
μ×ν(E ×F) � cPq,h

μ (E) Pq,g
ν (F), (1.6)

provided that μ and ν satisfy the doubling condition. Similar results were be proved
for the Hewitt-Stromberg measures [1, 10, 35] (see [11, 12, 9] for more details on these
measures).

In this paper we take the conventions 0q = ∞ for q � 0 and 0×∞ = 0. We
will introduce and investigate the generalized pseudo-packing measure Rq,h

μ to give
some product inequalities similar to the above inequalities but without any restriction
on h,g,μ and ν . More precisely, our purpose, in section 3 is to prove the following
theorem.

THEOREM A. For any E ⊆ X , F ⊆ Y , μ ∈ P(X) , ν ∈ P(Y) and h,g ∈ F ,
we have,

H q,hg
μ×ν (E ×F) � H q,h

μ (E) Rq,g
ν (F) � Rq,hg

μ×ν(E ×F), (1.7)

provided that the product on the medium side is not of the form 0×∞ or ∞×0 .

In general, we have Pq,h
μ � Rq,h

μ . Then the first inequality of (1.7) is more re-
fined than (1.4) since we do no assumptions on μ ,ν,h and g . Therefore it is worth to
compute sufficient condition to get the equivalence between Pq,h

μ and Rq,h
μ , that is,

Rq,h
μ � αPq,h

μ , (α > 0)

In this case, the inequality (1.5) can be deduced from (1.7). It is well known that
Pq,h

μ and Rq,h
μ are not equivalent in general [32]. As mentioned above, we have in

general Pq,h
μ � Rq,h

μ . We will construct, in section 2, a compact, separable and totally

disconnected metric space X to prove that Pq,h
μ (X ) < Rq,h

μ (X ) (Theorem 2). This
construction is due to Davies [3] to prove that there exists a compact metric space, and
two distinct probability Borel measures ν and μ with μ(B) = ν(B) for every closed
ball B . This ultrametric product space X was also considered later by others authors,
for example in [6] to prove that strong vitali property fails in general metric space (see
section 4 for the definition of the strong vitali property).

In section 4, we will modify slightly the construction of the pseudo-packing h -
measure Rq,h

μ to obtain new fractal measure rq,h
μ equal to Pq,h

μ , in a general metric
space which satisfy some appropriate geometric conditions and without any restriction
on h and μ . This new measure is obtained by using the class of all pseudo-packing such
that the intersection of any two balls of them contains no point of E . More precisely, our
aim is to prove the following theorem (see Definition 2 for the definition of amenable
to packing).

THEOREM B. Assume that X is amenable to packing and suppose that every
finite Borel measure on X satisfies the strong-Vitali property. Then, for any E ⊆ X ,
μ ∈ P(X) and h ∈ F , we have,

Pq,h
μ (E) = rq,h

μ (E).
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Similarly, we may prove more refined result than (1.6) by considering the pseudo-
packing measure. More precisely, we have,

Pq,hg
μ×ν(E ×F) � Rq,h

μ (E) Pq,g
ν (F),

for any E ⊆ X , F ⊆ Y , μ ∈ P(X) , ν ∈ P(Y) and h,g ∈ F . In section 2, we
introduce the weighted generalized packing measure Qq,h

μ � Rq,h
μ and we will prove,

in section 4 the following result.

THEOREM C. For any E ⊆ X , F ⊆ Y , μ ∈ P(X) , ν ∈ P(Y) and h,g ∈ F ,
we have,

Pq,hg
μ×ν(E ×F) � Qq,h

μ (E) Pq,g
ν (F),

provided that the product on the right-hand side is not of the form 0×∞ or ∞×0 .

Now, we are able to give an interesting application of our study which is a conse-
quence from Theorems A and C. More precisely, we will prove that under appropriate
geometric conditions, the inequalities (1.4), (1.5) and (1.6) remain true without any
restriction on h,g,μ and ν . In other words, we have the following corollary.

COROLLARY 1. Let E ⊆ X , F ⊆ Y , μ ∈ P(X) , ν ∈ P(Y) and h,g ∈ F . As-
sume that X and Y are amenable to packing, then there exist a constant c > 0 such
that

H q,hg
μ×ν (E ×F) � cH q,h

μ (E) Pq,g
ν (F)

H q,h
μ (E) Pq,g

ν (F) � cPq,hg
μ (E ×F)

Pq,hg
μ×ν(E ×F) � cPq,h

μ (E) Pq,g
ν (F),

provided that the product on the right-hand side of the first and the last inequalities is
not of the form 0×∞ or ∞×0 .

2. Generalized fractal measures

2.1. Generalized packing h -measures

Let μ ∈P(X) , q∈R , h∈F and E ⊆X . We start by introducing the generalized
packing measure Pq,h

μ then we define a variant of this measure Rq,h
μ . Let δ > 0,

a sequence (xi,ri)i , xi ∈ E and ri > 0, is a δ -packing of E if, and only if, for all
i, j = 1,2, . . . we have

i �= j =⇒ ρ(xi,x j) > ri + r j

and ri � δ . We denote by ϒδ (E) the set of all δ -packing of E . Now, write, if E �= /0 ,

Pq,h
μ,δ (E) = sup

{
∑
i

μ
(
B(xi,ri)

)q
h(2ri); (xi,ri)i ∈ ϒδ (E)

}
Pq,h

μ,0(E) = inf
δ>0

Pq,h
μ,δ (E) = lim

δ→0
Pq,h

μ,δ (E).
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The function Pq,h
μ,0 is increasing but not σ -additive. By applying now the standard

construction [30, 34, 26], we obtain the generalized packing h -measure defined by

Pq,h
μ (E) = inf

{ ∞

∑
i=1

Pq,h
μ,0(Ei); E ⊆

∞⋃
i=1

Ei

}
.

If E = /0 then Pq,h
μ ( /0) = 0. The function Pq,h

μ is of course a generalization of the
packing measure Pt [29, 21]. Now, a sequence (xi,ri)i , xi ∈ E and ri > 0, is a δ -
pseudo-packing of E if and only if, for all i, j = 1,2, . . . we have

i �= j =⇒ ρ(xi,x j) > max(ri,r j)

and ri � δ . We denote by ϒ̃δ (E) the set of all δ -pseudo-packing of E . Similarly, the
pseudo-packing h -measure Rq,h

μ is defined by

Rq,h
μ,δ (E) = sup

{
∑
i

μ
(
B(xi,ri)

)q
h(2ri); (xi,ri)i ∈ ϒ̃δ (E)

}
Rq,h

μ,0(E) = inf
δ>0

Rq,h
μ,δ (E) = lim

δ→0
Rq,h

μ,δ (E)

Rq,h
μ (E) = inf

{ ∞

∑
i=1

Rq,h
μ,0(Ei); E ⊆

∞⋃
i=1

Ei

}
,

if E �= /0 and Rq,h
μ ( /0) = 0. The function Rq,h

μ is of course a generalization of the
pseudo-packing measure Rh [16, 6].

REMARK 1. A sequence π = (xi,ri)i , xi ∈ E and ri > 0 is a δ -relative-packing
of E if, and only if, for all i, j = 1,2, . . . , i �= j ⇒ B(xi,ri)

⋂
B(x j,r j) = /0 and ri � δ .

Note that a δ -packing π of a set E may be interpreted in Euclidean space as δ -relative-
packing. But this is not the case in general metric space, then we may consider a new
generalized measure P̃q,h

μ by using relative-packing of E . The function P̃q,h
μ is a

generalization of the (b)-packing measure introduced in [5]. In addition, we have

Pq,h
μ � P̃q,h

μ . (2.1)

Now, we will prove that the generalized packing and pseudo-packing h -measures
can be expressed as Henstock-Thomas “variation” measures (Theorem 1).

DEFINITION 1. Let E ⊆ X , a sequence π = (xi,ri)i , xi ∈ E and ri > 0 and Δ
is a gauge function for E , that is a function Δ : E → (0,∞). π is said to be Δ-fine if
r < Δ(x) for all (x,r) ∈ π .

Let h be a Hausdorff function and Δ is a gauge function for a set E ⊆ X . We
write,

Rq,h
Δ,μ(E) = sup ∑

(x,r)∈π
μ(B(x,r))q h(2r),
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where the supremum is over all Δ-fine pseudo-packings π of E . As Δ decreases
pointwise, the value Rq,h

Δ,μ(E) decreases. For the limit, write

Rq,h
∗,μ(E) = inf

Δ
Rq,h

Δ,μ(E),

where the infimum is over all gauges Δ for E . Similarly, we define

Pq,h
∗,μ(E) = inf

Δ
Pq,h

Δ,μ(E),

where we use in the definition of Pq,h
Δ,μ the Δ-fine packings.

PROPOSITION 1. Let μ ∈ P(X) , q ∈ R and h ∈ F . Then Pq,h
∗,μ and Rq,h

∗,μ are
metric outer measures on X and then they are measures on the Borel algebra.

Proof. The proof is straightforward and mimics that in Proposition 3.11 in [6]. �
Identifying the generalized packing (or pseudo-packing) h -measure with the full

variation does not require any assumptions (such as finite order, doubling condition or
Vitali property).

THEOREM 1. Let μ ∈ P(X), h ∈ F , q ∈ R and E ⊆ X . Then

Pq,h
∗,μ(E) = Pq,h

μ (E) and Rq,h
∗,μ(E) = Rq,h

μ (E).

Proof. We will only prove the first equality and the others are similar. Let E ⊆ X

and δ > 0. Then, the constant function Δ(x) = δ is a gauge for E . Therefore,

Pq,h
μ,0(E) = inf

δ>0
Pq,h

μ,δ (E) � Pq,h
∗,μ(E).

If E =
⋃

n En then, since Pq,h
∗,μ is an outer measure, we have

Pq,h
∗,μ(E) �

∞

∑
n=1

Pq,h
∗,μ(En) �

∞

∑
n=1

Pq,h
μ,0(En).

Since, this is true for all countable covers of E , we get

Pq,h
μ (E) � Pq,h

∗,μ(E).

Now we will prove that Pq,h
∗,μ(E) � Pq,h

μ (E) . Let Δ be a gauge on a set E and
consider, for each positive integer n , the set

En =
{

x ∈ E; Δ(x) � 1
n

}
.

For each n,

Pq,h
Δ,μ(E) � Pq,h

Δ,μ(En) � Pq,h
μ,1/n(En) � Pq,h

μ,0(En) � Pq,h
μ (En).

Since En ↗ E then Pq,h
Δ,μ(E) � Pq,h

μ (E). This is true for all gauges Δ, so Pq,h
∗,μ(E) �

Pq,h
μ (E). �
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PROPOSITION 2. Let μ ∈ PD(X) , q ∈ R and h ∈ F0 . Then there exists γ such
that

Pq,h
μ � Rq,h

μ � γPq,h
μ . (2.2)

Proof. Let E ⊆ X . Since any δ -packing of E is also a δ -pseudo-packing of E ,
the left side of the inequality (2.2) follows. Now, if (xi,ri) is a δ -pseudo-packing of
E then (xi,ri/2) is a δ -packing of E and we get the right side of the inequality (2.2)
since h ∈ F0 and μ ∈ PD(X) . �

In fact, we can prove the inequality (2.2) without any restriction on μ and h but
with adding a suitable geometric assumption on the metric space X .

DEFINITION 2. A metric space X is said to be amenable to packing if there exists
an integer K � 1 such that if π = (xi,ri)i is a pseudo- packing of a set E ⊆ X , n ∈ N

and y ∈ X satisfying
ρ(y,xi) � ri,

for all 1 � i � n then n � K .

In particular R
d equipped with the Euclidean distance satisfies this condition. In-

deed, assume for any x1, . . . ,xn ∈ R
d and positive numbers r1, . . . ,rn that⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi /∈ B(x j,r j) for j �= i

n⋂
i=1

B(xi,ri) �= /0
(2.3)

we will prove that n � K . We may assume, without loss of generality, that xi �= 0,
i = 1, . . . ,n , and 0 ∈ ⋂n

i=1 B(xi,ri) . Therefore, ‖xi‖ � ri � ‖xi − x j‖ for i �= j , where
‖ · ‖ denotes the Euclidean norm. Hence, using elementary geometric arguments, we
deduce that the angle between xi and x j for i �= j is at least 60◦ , that is,∥∥∥ xi

‖xi‖ − x j

‖x j‖
∥∥∥� 1

for i �= j [24, Lemma 2.5]. Then the conclusion follows by compactness of the unit
Euclidean sphere. Moreover [29, Lemma 10.2], one can prove that

K � 3d . (2.4)

PROPOSITION 3. Let μ ∈P(X) , q∈R and h∈F . Assume that X is amenable
to packing. Then, there exists a constant K such that

Rq,h
μ � KPq,h

μ . (2.5)
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Proof. Let δ > 0 and π be a δ -pseudo packing of a set E ⊆ X . Since X is
amenable to packing, we can distribute the constituents of π into K sequences πi =
{(xik,rik) k ∈ N} ⊆ π ,1 � i � K such that each i we have πi is a δ -packing of E and
so

∑
(x,r)∈π

μ(B(x,r))qh(2r) �
K

∑
i=1

∑
(x,r)∈πi

μ(B(x,r))qh(2r) � KPq,h
μ,δ (E).

Therefore Rq,h
μ,δ (E) � KPq,h

μ,δ (E) , from which it follows (2.5). �

2.2. Example

In this section, we will construct a separable and compact metric space X such
that

Pq,h
μ (X ) = 0 < 1 � Rq,h

μ (X ).

Fix an integer N > 1 and let G(N) be a finite graph where the vertices are labelled as
pairs of integers (i, j) with 1 � i � N and 0 � j � N . Vertices (i, j), j �= 0 are called
peripheral vertices and vertices (i,0) are called central vertices. A peripheral vertex
(i, j) is joined only to (i,0) called its central neighbour. The central vertices are joined
to each other. Let u,v be two vertices u,v . we write u ∼ v if u = v or u is joined to v
by an edge. We will write u � v if not u ∼ v .

For a given sequence N1,N2, . . . and q∈ [0,1) such that ∑n
1

N1−q
n

< ∞ , we consider

the space X = ∏∞
n=1 G(Nn) . Let u = (u1,u2, . . .) �= v = (v1,v2, . . .) ∈ X with ui,vi ∈

G(Ni) . We denote by n be the least integer such that un �= vn . We define the metric ρ
as follows : ⎧⎪⎨⎪⎩

ρ(u,u) = 0 for every u ∈ X

ρ(u,v) = (1/2)n if un ∼ vn

ρ(u,v) = (1/2)n−1 if un � vn.

This metric makes X into a compact, separable and totally disconnected metric space.
Given a finite sequence w1 ∈ G(N1) , w2 ∈ G(N2), . . . ,wn ∈ G(Nn) define a cylinder

[w1, . . . ,wn] =
{
u ∈ X : u1 = w1,u2 = w2, . . . ,un = wn

}
.

The diameter of [w1, . . . ,wn] is 1/2n . A cylinder will be called peripheral or central
according as the last coordinate is peripheral or central. For u ∈ X and r ∈]0,1[ , we
define the closed ball B(u,r) as follows

B(u,r) =
{

v : u1 = v1,u2 = v2, . . . ,un−1 = vn−1,un ∼ vn

}
,

where n be the integer such that (1/2)n � r < (1/2)n−1 . Therefore, if un is central
then B(u,r) is the union of Nn central and Nn peripheral cylinders. Moreover, if un is
peripheral then B(u,r) is the union of one central and one peripheral cylinder.

Let u = (u1,u2, . . .) ∈ X . u is said to be peripheral if all of the components ui

are peripheral. Let γ0 = 1, γn = γn−1/(Nn(Nn + 1)) . We define a set function on the
collection of all cylinders as follows:

μ([w1,w2, . . . ,wn]) = γn,
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with μ(X ) = γ0 = 1. This set function may be extended to a Borel measure μ on X
in the usual manner. Let u∈X and r∈ (0,1) , we choose n such that 2−n � r < 2−n+1 .
If un is a central vertex then B(u,r) is the union of 2Nn cylinders, half central and half
peripheral. Then μ(B(u,r)) = 2Nnγn . Moreover, if un is peripheral vertex then B(u,r)
is the union of two cylinders, one central and one peripheral. Then μ(B(u,r)) = 2γn .

Let h be a Hausdorff function such that

∑
n�1

h(2−n+2)

(Nn +1)γ1−q
n

(2Nn)q (2.6)

converge. Under this hypothesis we have the following result.

THEOREM 2. Let h be a Hausdorff function satisfying (2.6). Then Pq,h
μ (X ) = 0 .

In addition, if we choose h such that h(2−n+2) = γ1−q
n then Rq,h

μ (X ) � 1.

Proof. Using (2.1) we will prove that P̃q,h
μ (X ) = 0. Let δ = 2−m+1 , where

m ∈ N and let π be a δ - relative packing of X . π contain, inside a given cylinder
[w1, . . . ,wn−1] among the ball B(u,r) , at most one central ball B(u,r) or at most Nn

peripheral balls B(u,r) with 2−n � r < 2−n+1 [4, Proposition 3.4]. Therefore,

∑
(x,r)∈π

μ(B(u,r))qh(2r) �
∞

∑
n=m

( n−1

∏
k=1

Nk(Nk +1)
)
Nnμ(B(u,r))qh(2r)

�
∞

∑
n=m

h(2r)
(Nn +1)γn

(2Nnγn)q

�
∞

∑
n=m

h(2−n+2)

(Nn +1)γ1−q
n

(2Nn)q.

It follows that P̃q,h
μ,δ (X ) � ∑∞

n=m
h(2−n+2)

(Nn+1)γ1−q
n

(2Nn)q (a tail of a convergence series).

Thus, as m → 0, we get P̃q,h
μ (X ) = 0.

Now, we will prove that Rq,h
μ (X ) � 1. Let μ̃ the outer measure generated by μ .

Let ε > 0 and Δ be a gauge on X . Since Δ(u) > 0, for all u , we can choose m ∈ N

so that

μ̃
{

u ∈ X : Δ(u) > 2−m+1
}

> 1− ε/2.

We consider the set

B =
{

u : un is peripheral and Δ(u) > 2−n+1
}
.

Then μ̃(B) > 1− ε . Let An =
{
(w1, . . . , wn) : [w1, . . . , wn]∩B �= /0

}
and let Mn be

the number of elements of An . There exists Δ-fine pseudo packing πn of X such that
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#πn = Mn and Mnγn � μ̃(B) � 1− ε [4, Lemma 3.2]. Therefore, for r = 2−n+1 we
have,

Rq,h
μ,Δ(X ) � ∑

(x,r)∈πn

μ(B(x,r))qh(2r) � Mnγq
n γ1−q

n

= Mnγn � 1− ε.

Since this is true for all ε > 0, so Rq,h
∗,μ(X ) � 1. �

2.3. Weighted generalized packing h -measure

The generalized packing measure is “dual” to generalized Hausdorff measure.
Now, we will introduce the weighted generalized packing h -measure which may be
“dual” to weigted generalized Hausodorff h -measure. The reader can be referred to
[7, 22, 17, 16] for more details of weighted Hausdorff mrasure. For E ⊆ X , we say that
(ci,xi,ri) with ci > 0,xi ∈ E and ri > 0 is a weighted δ -packing of E if, and only if,
for all x ∈ E we have,

∑
{

ci, ρ(xi,x) � ri

}
� 1

and ri � δ for i = 1,2 . . . . We denote by ˜̃ϒδ (E) the set of all weighted δ -packing of
E . The weighted generalized packing h -measure may be defined as follows

Qq,h
μ,δ (E) = sup

{
∑
i

ciμ
(
B(xi,ri)

)q
h(2ri); (ci,xi,ri)i ∈ ˜̃ϒδ (E)

}
Qq,h

μ,0(E) = inf
δ>0

Qq,h
μ,δ (E) = lim

δ→0
Qq,h

μ,δ (E)

Qq,h
μ (E) = inf

{ ∞

∑
i=1

Qq,h
μ,0(Ei); E ⊆

∞⋃
i=1

Ei

}
,

if E �= /0 and Qq,h
μ ( /0) = 0.

THEOREM 3. Let μ ∈ P(X) , q ∈ R and h ∈ F . Then

Pq,h
μ � Qq,h

μ � Rq,h
μ . (2.7)

Proof. Let δ > 0 and E ⊆X . Since any δ -packing is a weighted δ -packing then
we obtain the first inequality. Now, we will prove the second inequality, for this, we
may assume that Rq,h

μ (E) < ∞ . Suppose that we have shown

Qq,h
μ,δ (E) � Rq,h

μ,δ (E). (2.8)

Then, for ε > 0, choose a sequence of sets Ei such that

E ⊆
⋃
i

Ei and ∑
i

Rq,h
μ,0(Ei) � Rq,h

μ (E)+ ε.



HAUSDORFF AND PACKING MEASURES OF PRODUCT SETS IN METRIC SPACE 345

It follows, using (2.8), that

Qq,h
μ (E) � ∑

i
Qq,h

μ,0(Ei) � ∑
i

Rq,h
μ,0(Ei) � Rq,h

μ (E)+ ε

and we get the desire result by letting ε to 0. Let us prove (2.8). Let l < Qq,h
μ,δ (E).

Choose {ci,xi,ri}i a weighted δ -packing of E . By choosing N large enough we may
approximate ci by rational αi/N such that αi/N � ci and ∑∞

i=1 αi/Nμ(B(xi,ri))qh(2ri)
> l . In addition, by relabelling and choosing n sufficiently large we may assume that

n

∑
i=1

αi/Nμ(B(xi,ri))qh(2ri) > l. (2.9)

Now, we define the function m0 : {1, . . . ,n} → N0 by m0(i) = αi , where N0 is the set
of the natural numbers including 0. We consider the set of indices

J1 =
{
i ∈ {1, . . . ,n}, m0(i) � 1

}
.

It follows, using Lemma 4, that we can choose I1 ⊆ J1 so that {(xi,ri), i ∈ I1} is maxi-
mal pseudo-packing from the family of pairs {(xi,ri),m0(i) � 1} that covers {xi,m0(i)
� 1} . Inductively, for j � 1, we choose I j ⊆ Jj and define

mj(i) =

{
mj−1(i)−1 if i ∈ I j

m j−1(i) otherwise

where
Jj =

{
i ∈ {1, . . . ,n}, mj−1(i) � 1

}
.

Now, we define the function, for j � 0, ζ j : X → N0 by

ζ j(x) = ∑{mj(i); ρ(xi,x) � r j}.
It is clear, since I j covers {xi,mj−1(i) � 1} , that, for i ∈ Jj , there exists k ∈ I j such
that ρ(xi,xk) � rk . It follows that, for each i ∈ {1, . . . ,n} , we have

ζ j(xi) � ζ j−1(xi)−1,

provides that mj−1(i) � 1. Suppose that JN �= /0 and let k ∈ JN ⊆ JN−1 . . . ⊆ J1. Thus

ζ0(xk) � N + ζN(xk) � N +mN(k) � N +1. (2.10)

By definition of the weighted packing, we have

ζ0(xk) = ∑
{

αi, ρ(xi,xk) � ri

}
� N∑

{
αi, ρ(xi,x) � ri

}
� N

contradicting (2.10). Then JN = /0 and

N

∑
j=1

(mj−1(i)−mj(i)) = αi.
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As a consequence, since for each j � 1, ∑i∈Ij μ(B(xi,ri))qh(2ri) � Rq,h
μ,δ (E) , we have

l <
n

∑
i=1

αi/Nμ(B(xi,ri))qh(2ri) =
N

∑
j=1

n

∑
i=1

mj−1(i)−mj(i)
N

μ(B(xi,ri))qh(2ri)

�
N

∑
j=1

1
N

Rq,h
μ,δ (E) = Rq,h

μ,δ (E),

as desired to get (2.8). �

2.4. Generalized Hausdorff h -measures

Let μ ∈P(X) , h∈F , q∈R and E ⊆X . In the following we define the general-
ized centered Hausdorff h -measure H q,h

μ . Let δ > 0, a sequence of (xi,ri)i is called a
centered δ−cover of a set E if, for all i � 1, xi ∈E , 0 < ri � δ and E ⊆⋃∞

i=1 B(xi,ri) .
We write

H q,h
μ,δ (E) = inf

{
∑
i

μ
(
B(xi,ri)

)q
h
(
2ri
)
; (xi,ri)i is a centered

δ -cover of E
}
,

if E �= /0 and H q,h
μ,δ ( /0) = 0. Now we define,

H q,h
μ,0 (E) = lim

δ→0
H q,h

μ,δ (E) = sup
δ>0

H q,h
μ,δ (E)

and
H q,h

μ (E) = sup
F⊆E

H q,h
μ,0 (F).

The function H q,h
μ is metric outer measure and thus measure on the Borel family of

subsets of X . The measure H q,h
μ is of course a multifractal generalization of the

centered Hausdorff measure C t and generalized Hausdorff measure H q,t
μ [29, 27]. In

addition, if h ∈ F0 then H q,h
μ � Pq,h

μ [27, 29]. As a consequence, by Proposition 2,

we get H q,h
μ � Rq,h

μ . Bellow, in Proposition 4, we will prove that this inequality is true
even h /∈ F0 .

PROPOSITION 4. Let μ ∈ P(X) , q ∈ R and h ∈ F . Then

H q,h
μ � Rq,h

μ .

Proof. Let E ⊆ X , we may assume that Rq,h
μ (E) < ∞ . Therefore, for ε > 0,

consider
{
Ei
}

i such that

E ⊆
∞⋃

i=1

Ei and
∞

∑
i=1

Rq,h
μ,0(Ei) � Rq,h

μ (E)+ ε. (2.11)
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For each i = 1,2, . . . , and δ > 0 let Ẽi ⊆ Ei and choose, by Lemma 3, a maxi-
mal pseudo-packing (xk,δ )k�1 (see definition in section 5) from the family of pairs{
(x,δ ); x ∈ Ẽi

}
that cover Ẽi . It follows that

H q,h
μ,δ (Ẽi) �

∞

∑
k=1

μ(B(x,δ ))qh(2δ ) � Rq,h
μ,δ (Ẽi).

Thereby, by letting δ → 0, we obtain H q,h
μ,0 (Ẽi) � Rq,h

μ,0(Ẽi) � Rq,h
μ,0(Ei) and by arbi-

trariness of Ẽi we get

H q,h
μ (Ei) � Rq,h

μ,0(Ei).

Hence, summing over i and using (2.11), we have

H q,h
μ (E) � Rq,h

μ (E)+ ε

and the result follows by letting ε → 0. �

3. Proof of Theorem A

We start by proving the first inequality of Theorem A,

H q,hg
μ×ν (E ×F) � H q,h

μ (E) Rq,g
ν (F). (3.1)

We may assume that H q,h
μ (E) < ∞ and Rq,g

ν (F) < ∞ . Let ε > 0 and we consider a
sequence {Fj} j�1 such that

F ⊆
⋃
j

Fj and
∞

∑
j=1

Rq,g
ν,0(Fj) � Rq,g

ν (F)+ ε.

Now, fix j � 1. For δ > 0, we consider (xi,ri)i�1 a δ -cover of Ẽ ⊆ E and we set
Bi := B(xi,ri) , i � 1. Let F̃j ⊆ Fj . By Lemma 3 we can find a maximal pseudo-packing
(yk,ri)k from {(y,ri); y ∈ F̃j} that covers F̃j . Therefore,

H q,hg
μ×ν,δ (Bi × F̃j) �

∞

∑
k=1

μ(Bi)qh(2ri)ν(B(yk,ri))qg(2ri)

� μ(Bi)qh(2ri)R
q,g
ν,δ (F̃j)

and then

H q,hg
μ×ν,δ (Ẽ × F̃j) � Rq,g

ν,δ (F̃j)
∞

∑
i=1

μ(Bi)qh(2ri).

Now, by taking the infimum over all δ -covering of Ẽ and letting δ → 0, we get

H q,hg
μ×ν,0(Ẽ × F̃j) � H q,h

μ,0 (Ẽ)Rq,g
ν,0(F̃j) � H q,h

μ (E)Rq,g
ν,0(Fj).
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Since Ẽ and F̃j are arbitrarily we obtain

H q,hg
μ×ν (E ×Fj) � H q,h

μ (E)Rq,g
ν,0(Fj)

and the result follows since E ×F ⊆⋃∞
j=1 E ×Fj .

Now, we will show the second inequality of Theorem A,

Rq,h
μ (E)H q,g

ν (F) � Rq,hg
μ×ν(E ×F). (3.2)

First, we will prove the following lemma which will be useful to prove (3.2).

LEMMA 1. Let E ⊆X , F ⊆Y, h,g∈F and (Γi)i a sequence such that E×F ⊆⋃∞
i=1 Γi. For α < H q,g

ν (F) and δ > 0 such that H q,g
ν,δ (F) > α, we consider

En =
{

x ∈ E,
n

∑
i=1

H q,g
ν,δ (ΓF

i (x)) � α
}

where ΓF
i (x) =

{
y ∈ F, (x,y) ∈ Γi

}
. Then,

n

∑
i=1

Rq,hg
μ×ν,0(Γi) � αRq,h

μ,0(En).

Proof. Let n be a positive integer and 0 < γ � δ . We consider (x j,r j) j�1 a γ -
pseudo-packing of En and we define, for each i = 1,2 . . . , the set

L(i) =
{

j � 1, ΓF
i (x j) �= /0

}
so that (x j,r j) j∈L(i) is a γ -pseudo-packing of the projection of Γi onto X . Now, fix
i = 1,2, . . . , then for each x j such that j ∈ L(i) we can find, by Lemma 3, a maximal
pseudo-packing H(i, j) from

{
(y,r j), y ∈ ΓF

i (x j)
}

that covers ΓF
i (x j) . Doing this for

each j ∈ L(i) provides a pseudo-packing of Γi . Therefore,

∑
(y,r)∈H(i, j)

ν(B(y,r))qg(2r) � H q,g
ν,γ (ΓF

i (x j)) � H q,g
ν,δ (ΓF

i (x j))

since r j ∈ (0,γ] and r j = r if (y,r) ∈ H(i, j) . Now define

I( j,n) = {i � 1, x j ∈ Γi and i � n}.
Then,

n

∑
i=1

∑
j∈L(i)

∑
y∈H(i, j)

μ(B(x j,r j))qν(B(y,r j))qh(2r j)g(2r j)

=
∞

∑
j=1

∑
i∈I( j,n)

∑
y∈H(i, j)

μ(B(x j,r j))qν(B(y,r j))qh(2r j)g(2r j)

�
∞

∑
j=1

∑
i∈I( j,n)

μ(B(x j,r j))qH q,g
ν,δ (ΓF

i (x j))

� α
∞

∑
j=1

μ(B(x j,r j))qh(2r j).
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Thereby,
n

∑
i=1

Rq,hg
μ×ν,γ(Γi) � α

∞

∑
j=1

μ(B(x j,r j))qh(2r j)

and by taking the supremum over all γ -pseudo-packing of En ,

n

∑
i=1

Rq,hg
μ×ν,γ(Γi) � αRq,h

μ,δ (En) � αRq,h
μ,0(En).

Finally we get the result, by taking the limit as γ → 0. �

Now, we may assume that Rq,hg
μ×ν(E ×F) < ∞ and H q,g

ν (F) > 0. Let ε > 0 and
consider {Γi}i of subsets of X×Y such that

E ×F ⊆
∞⋃

i=1

Γi and
∞

∑
i=1

Rq,hg
μ×ν,0(Γi) � Rq,hg

μ×ν(E ×F)+ ε. (3.3)

Fix α < H q,g
ν (F) and choose δ > 0 such that H q,g

ν,δ (F) > α. we consider the set

En =
{

x ∈ E,
n

∑
i=1

H q,g
ν,δ (ΓF

i (x)) � α
}

,

where ΓF
i (x) =

{
y ∈ F, (x,y) ∈ Γi

}
. Therefore, we have

∞

∑
i=1

H q,g
ν,δ (ΓF

i (x)) � H q,g
ν,δ (F) > l,

for all x ∈ E . Then, En ↗ E and, by Lemma 1, we have

n

∑
i=1

Rq,hg
μ×ν,0(Γi) � αRq,h

μ,0(En).

Taking the limit as n → ∞ , we obtain, using (3.3), that

Rq,hg
μ×ν(E ×F)+ ε � αRq,h

μ (E).

Since this is true for arbitrarily α < H q,g
ν (F) and ε > 0 we deduce the desired result.

4. Proofs of Theorems B and C

Let E ⊆X and β is a collection of constituents such that x∈E for each (x,r)∈ β .
The collection β is said to be fine cover of E if, for every x∈ E and every δ > 0, there
exists r > 0 such that r < δ and (x,r) ∈ β .

LEMMA 2. [6, Theorem 3.1] Let X be a metric space, E ⊆ X and β be a fine
cover of E . Then there exists either
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1. an infinite packing {(xi,ri)} ⊆ β of E such that infri > 0 ,

2. a countable centered closed ball packing {(xi,ri)} ⊆ β such that for all n ∈ N ,

E ⊆
n⋃

i=1

B(xi,ri)∪
∞⋃

i=n+1

B(xi,3ri).

Let ν ∈ P(X) , we say that ν has the strong-Vitali property if, for any Borel set
E ⊆ X with ν(E) < ∞ and any fine cover β of E, there exists a countable packing
π ⊂ β of E such that

ν(E\
⋃

(x,r)∈π
B(x,r)) = 0.

We say that the metric space X has the stong-Vitali property if and only if every finite
Borel measure on X has the stong-Vitali property. If X is the Euclidean space R

n

then every finite Borel measure has the strong-Vitali property [2, 5]. Unfortenatuly,
the strong Vitali property fails for some measures in some metric spaces. For this, we
will assume this property when required which is not a restrictive assumption. The
interested reader is referred to [25, 13] for more discussion.

Recall that Rq,h
μ � KPq,h

μ if X is amenable to packing by Proposition 3 or if
μ ∈ PD(X) and h ∈ F0 by Proposition 2. In the following, we will modify slightly
the construction of the pseudo-packing h -measure Rq,h

μ to obtain new fractal measure

rq,h
μ equal to Pq,h

μ . This new measure is obtained by using the class of all pseudo-
packing such that the intersection of any two balls of them contains no point of E .
More precisely, (xi,ri)i , xi ∈ E and ri > 0, is a δ -weak-pseudo-packing of E if and
only if, for all i, j = 1,2, . . . , we have ri � δ and for all i �= j ,

ρ(xi,x j) > max(ri,r j) and B(xi,ri)∩B(x j,r j)∩E = /0.

We denote by ϒ̃′
δ (E) the set of all δ -weak-pseudo-packing of E . Then, the weak-

pseudo-packing h -measure rq,h
μ is defined by

rq,h
μ,δ (E) = sup

{
∑
i

μ
(
B(xi,ri)

)q
h(2ri); (xi,ri)i ∈ ϒ̃′

δ (E)
}

rq,h
μ,0(E) = inf

δ>0
rq,h

μ,δ (E) = lim
δ→0

rq,h
μ,δ (E)

rq,h
μ (E) = inf

{ ∞

∑
i=1

rq,h
μ,0(Ei); E ⊆

∞⋃
i=1

Ei

}
,

if E �= /0 and rq,h
μ ( /0) = 0. The weak-pseudo-packing measure was first adopted in [29].

4.1. Densities

In the following we establish a new version of density theorem with respect to the
generalized packing measure which will be useful to prove or main result in this section
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(Theorem B). Let ν, μ ∈P(X) , x∈ supp(μ) , q∈ R and h∈F , we define the lower
(q,h)-density at x with respect to μ by

D q,h
μ (x, ν) = liminf

r↘0

ν (B(x, r))
μ (B(x, r))q h(2r)

.

THEOREM 4. Let (X,ρ) be a metric space, q ∈ R , h ∈ F , μ ,ν ∈ P(X) and E
be a Borel subset of suppμ .

1. We have
Pq,h

μ (E) inf
x∈E

Dq,h
μ (x,ν) � ν(E), (4.1)

where we take the lefthand side to be 0 if one of the factors is zero.

2. If ν has the strong-Vitali property, then

ν(E) � Pq,h
μ (E) sup

x∈E
Dq,h

μ (x,ν), (4.2)

where we take the righthand side to be ∞ if one of the factors is ∞ .

3. Assume that μ ∈P0(X) and h∈F0 , then even ν fails the strong Vitali-property,

ν(E) � CPq,h
μ (E) sup

x∈E
Dq,h

μ (x,ν), (4.3)

for some constant C > 0 , where we take the righthand side to be ∞ if one of the
factors is ∞ .

Proof.

1. We begin with the proof of (4.1). Assume that infx∈E Dq,t
μ (x,ν) > 0. Choose γ

such that 0 < γ < Dq,h
μ (x,ν) for all x ∈ E and let ε > 0. Then, there is an open

set V such that E ⊆ V and ν(V ) < ν(E)+ ε. For x ∈ E, let Δ(x) > 0 be so
small such that

ν(B(x,r))
μ(B(x,r))q h(2r)

> γ

for all r < Δ(x) and Δ(x) < ρ(x,X\V). Then Δ is a gauge for E. Now, consider
π to be a Δ-fine packing of E. Then

⋃
(x,r)∈π

B(x,r) is contained in V and

∑
(x,r)∈π

μ(B(x,r))q h(2r) <
1
γ ∑

π
ν(B(x,r)) � 1

γ
ν(V ).

This shows that

Pq,h
μ (E) � Pq,h

Δ,μ(E) � 1
γ

ν(V ) � 1
γ
(ν(E)+ ε).

Let ε → 0 to obtain γ Pq,h
μ (E)� ν(E) . Since γ is arbitrarily small then Dq,h

μ (x,ν)
we get the desired result.
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2. Suppose that ν has the strong-Vitali property and we will prove (4.2). For this,
we may assume that supx∈E Dq,h

μ (x,ν) < ∞. Let Δ be a gauge on E and γ < ∞
such that Dq,h

μ (x,ν) < γ for all x ∈ E. Then

β =
{

(x,r);x ∈ E, r < Δ(x) and
ν(B(x,r))

μ(B(x,r))q h(2r)
� γ

}
,

is a fine cover of E. By the strong-Vitali property, there is a packing π ⊆ β of E

such that ν
(
E\

⋃
(x,r)∈π

B(x,r)
)

= 0. Therefore,

ν(E) = ν
(
E
⋂ ⋃

(x,r)∈π
B(x,r)

)
� ∑

π
ν(B(x,r))

� γ ∑
π

μ(B(x,r))q h(2r).

Thus ν(E) � γPq,h
Δ,μ(E) and, by arbitrariness of Δ , we obtain ν(E) � γPq,h

μ (E).

Since γ is arbitrarily large then Dq,h
μ (x,ν) we get the desired result.

3. Since μ ∈ PD(X) and h ∈ F0 , then, for small r , there exists two positive con-
stants C1 and C2 such that

μ(B(x,3r)) � C1μ(B(x,r)) and h(6r) � C2h(2r).

Assume that supx∈E Dq,h
μ (x,ν) < ∞. Let Δ be a gauge on E and γ < ∞ such that

Dq,h
μ (x,ν) < γ for all x ∈ E. We must show that, there exists a constant C such

that ν(E) � γCPq,h
μ (E) , for this, we must show that ν(E) � γCPq,h

Δ,μ(E) . We

assume that Pq,t
Δ,μ(E) < ∞ and we consider the set

β =
{

(x,r);x ∈ E,r < Δ(x) and
ν(B(x,3r))

μ(B(x,3r))q h(6r)
� γ

}
.

Since β is a fine cover of E and Pq,h
Δ,μ(E) < ∞ , it follows, using Lemma 2, that

there exists a packing { (xi,ri)}i ⊆ β such that

E ⊆
∞⋃

i=1

B(xi,3ri).

Hence, if h ∈ F0 then,

ν(E) � ∑
i

ν(B(xi,3ri)) � γ ∑
i

μ(B(xi,3ri))q h(6ri)

� γ

⎧⎪⎨⎪⎩
C1C2 ∑i μ(B(xi,ri))q h(2ri); q > 0 and μ ∈ PD(X)

C2 ∑i μ(B(xi,ri))q h(2ri); q � 0.
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Take C = max(C2,C1C2) to get

ν(E) � γ C∑
i

μ(B(xi,ri))q h(2ri).

Thus ν(E) � γ CPq,h
Δ,μ(E) . Since γ is arbitrarily large then Dq,h

μ (x,ν) we get
the desired result. �

For a Borel set E ⊆ X we denote by Pq,h
μ �E the measure Pq,h

μ restricted to E .
We can deduce also the following result.

COROLLARY 2. Let (X,ρ) be a metric space, q ∈ R, h ∈ F , μ ∈ P(X) and E
be a Borel subset of suppμ such that Pq,h

μ (E) < ∞ . Let ν = Pq,h
μ �E .

1. For Pq,h
μ -a.a. x ∈ E , we have Dq,h

μ (x,ν) � 1 .

2. If ν has the strong-Vitali property, then

Dq,h
μ (x,ν) = 1, Pq,h

μ -a.a. on E.

3. Assume that μ ∈ PD(X) and h ∈ F0 , then

1/C � Dq,h
μ (x,ν) � 1, Pq,h

μ −a.a. on E,

where C is the constant defined in (4.3).

Proof.

1. Put the set F =
{

x ∈ E; Dq,h
μ (x,ν) > 1

}
, and for m ∈ N

∗

Fm =
{

x ∈ E; Dq,h
μ (x,ν) > 1+

1
m

}
.

Therefore inf
x∈Fm

Dq,h
μ (x,ν) � 1+

1
m

. we deduce from (4.1) that

(
1+

1
m

)
Pq,h

μ (Fm) � ν(Fm) = Pq,h
μ (Fm).

This implies that Pq,h
μ (Fm) = 0. Since F =

⋃
m Fm , we obtain Pq,h

μ (F) = 0, i.e.

Dq,h
μ (x,ν) � 1 for Pq,h

μ -a.a. x ∈ E. (4.4)

2. Now consider the set F̃ =
{

x ∈ E; Dq,h
μ (x,ν) < 1

}
, and for m ∈ N

∗

F̃m =
{

x ∈ E; Dq,h
μ (x,ν) < 1− 1

m

}
.
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Using (4.2), we clearly have

ν(F̃m) = Pq,h
μ (F̃m) �

(
1− 1

m

)
Pq,h

μ (F̃m).

This implies that Pq,h
μ (F̃m) = 0. Since F =

⋃
m F̃m , we obtain Pq,h

μ (F) = 0, i.e.

Dq,h
μ (x,ν)) � 1 for Pq,h

μ -a.a. x ∈ E. (4.5)

The statement in (2) now follows from (4.4) and (4.5).

3. The proof of this statement is very similar to the statement (2) when we use the

set F̃ =
{

x∈ E; Dq,h
μ (x,ν) < 1/C

}
and the inequality (4.3) instead of (4.2). �

4.2. Proof of Theorem B

Since any packing π is a weak-pseudo-packing, we have the first inequality

Pq,h
μ (E) � rq,h

μ (E).

Now, we will prove the converse inequality. Since X is amenable to packing we have,
using (2.5),

rq,h
μ (E) � KPq,h

μ (E),

for some positive constant K . It follows that Pq,h
μ (E) � rq,h

μ (E) � KPq,h
μ (E) and then

Pq,h
μ (E) = 0 ⇐⇒ rq,h

μ (E) = 0 and Pq,h
μ (E) = ∞ ⇐⇒ rq,h

μ (E) = ∞.

Therefore, we may assume that Pq,h
μ (E) < ∞ and then, by Corollary 2, we have

D q,h
μ (x, ν) = 1 for Pq,h

μ almost every x ∈ E.

For β < 1, we set

Gk =
{

x ∈ E, r � 1/k ⇒ Pq,h
μ (E ∩B(x, r)) � β μ(B(x, r))qh(2r)

}
and let G′

k = E\Gk . Therefore,

lim
k

Pq,h
μ (Gk) = Pq,h

μ (E), lim
k

rq,h
μ (Gk) = rq,h

μ (E)

and
lim

k
Pq,h

μ (G′
k) = 0 = lim

k
rq,h

μ (G′
k).

For any 1/k -weak-pseudo-packing π of Gk , we have

∑
(x,r)∈π

β μ(B(x, r)qh(2r)

� ∑
(x,r)∈π

Pq,h
μ (E ∩ B(x,r))

� ∑
(x,r)∈π

Pq,h
μ (Gk ∩ B(x,r))+ ∑

(x,r)∈π
Pq,h

μ (G′
k ∩ B(x,r)).
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As π is a weak-pseudo-packing of Gk , the (Gk ∩B(x,r))’s are disjoint, therefore

∑
(x,r)∈π

Pq,h
μ (Gk ∩ B(x,r)) � Pq,h

μ (Gk).

But, the (G′
k ∩ B)’s may overlap. Therefore, since X is amenable to packing, we have

∑
(x,r)∈π

Pq,h
μ (G′

k ∩ B(x,r)) � KPq,h
μ (G′

k)

and so
β rq,h

μ (Gk) � Pq,h
μ (Gk)+KPq,h

μ (G′
k).

Letting k → ∞ we get

β rq,h
μ (E) � Pq,h

μ (E).

Since β < 1 was arbitrary, the proof is complete.

4.3. Proof of Theorem C

We may assume that Qq,h
μ (E) < ∞ and Pq,g

ν (F) < ∞ . For ε > 0, we choose
sequences of sets {Ei}i�1 and {Fj} j�1 such that

E ⊆
∞⋃

i=1

Ei and
∞

∑
i=1

Qq,h
μ,0(Ei) � Qq,h

μ (E)+ ε

F ⊆
∞⋃

j=1

Fj and
∞

∑
j=1

Pq,h
μ,0(Fi) � Pq,h

μ (F)+ ε.

Now, we will prove that

Pq,hg
μ×ν,δ (E ×F) � Qq,h

μ,δ (E) Pq,g
ν,δ (F). (4.6)

Let δ > 0 and l < Pq,hg
μ×ν,δ (E ×F) . Choose {(xi, yi),ri}i a δ -packing of E ×F such

that
∞

∑
i=1

μ(B(xi,ri))qν(B(yi,ri))qh(2ri)g(2ri) > l. (4.7)

Let N,η ∈ R and, for each i = 1,2, . . . ,

ai = Nμ(B(xi,ri))qh(2ri)−η and bi = Nν(B(yi,ri))qg(2ri)−η .

We can choose N big enough and η small enough, so that

∞

∑
i=1

aibi

N2 > l.
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In addition, by relabelling and choosing n sufficiently large we may assume that ∑n
i=1

aibi
N2

> l , with ai > 0 and bi > 0. Let x ∈ E , then{
(yi,ri), ρ(xi,x) � ri

}
is a δ -packing of F . It follows that

∑
i
{bi, ρ(xi,x) � ri} � ∑

i
Nν(B(yi,ri))qg(2ri)

� NPq,g
ν,δ (F).

Thus, (bi/N, xi, ri) is a weighted δ -packing of E . Hence (4.6) follows. Therefore,
for all i, j = 1,2, · · ·

Pq,hg
μ×ν,0(Ei ×Fj) � Qq,h

μ,0(Ei) Pq,g
ν,0(Fj). (4.8)

Thus summing over i and j , we have

∑
i, j

Pq,hg
μ×ν,0(E ×F) � ∑

i, j
Qq,h

μ,0(Ei)P
q,g
ν,0(Ei)

�
(
Qq,h

μ (E)+ ε
)(

Pq,h
μ (E)+ ε

)
.

The result follows on letting ε → 0.

5. Appendix

DEFINITION 3. A set G is said to be a maximal pseudo-packing from A ={
(x,r), x ∈ X, r > 0

}
if, and only if,

• G ⊆ A ,

• for all (x,r) �= (y,s) ∈ G we have ρ(x,y) > max{r,s} ,

• for all (x,r) ∈ A , there exists (y,s) ∈ G such that ρ(x,y) � max{r,s} .

That is, the set G is a maximal subset of A such that G is a pseudo-packing of{
x,(x,r) ∈ A

}
.

LEMMA 3. (lemma 4, [16]) Let δ > 0 , E ⊆ X and A be the family of pairs{
(x,δ ); x ∈ E

}
. Then, there exists G a maximal pseudo-packing from A that covers

E .

LEMMA 4. (lemma 5, [16]) Let E ⊂ X and let F be a family containing finitely
many pairs (x,r) with x ∈ X and r > 0 such that E ⊆ {x;(x,r) ∈ F for some r > 0

}
.

Then, there exists G a maximal pseudo-packing from F that covers E .
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THEOREM 5. (Besicovitch covering Theorem) [24]. There exists an integer ξ ∈
N such that, for any subset A of R

n and any sequence (rx)x∈A satisfying

1. rx > 0 , ∀ x ∈ A,

2. sup
x∈A

rx < ∞ .

Then, there exists γ countable finite families B1, . . . ,Bγ of
{
Bx(rx), x ∈ A

}
, such

that

1. A ⊂⋃i
⋃

B∈Bi
B.

2. Bi is a family of disjoint sets.
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