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ON BACKWARD ALUTHGE ITERATES
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(Communicated by P. Tradacete Perez)

Abstract. For a nonnegative integer k , an operator T ∈ L (H ) is called a backward Aluthge
iterate of a complex symmetric operator of order k if the k th Aluthge iterate T̃ (k) of T is a
complex symmetric operator, denoted by T ∈ BAIC(k) . In this paper, we study several prop-
erties of the backward Aluthge iterate of a complex symmetric operator. We show that every
nilpotent operator of order k+2 belongs to BAIC(k) . Moreover, we prove that if T belongs to
BAIC(k) , then T has the property (β) if and only if T is decomposable. Finally, we show that,
under some conditions, operators in BAIC(k) have nontrivial hyperinvariant subspaces and we
consider Weyl type theorems for such operators.

1. Introduction and preliminaries

Let H be a separable complex Hilbert space and let L (H ) denote the algebra
of all bounded linear operators on H . An operator T ∈ L (H ) is said to be a p-
hyponormal operator if (T ∗T )p � (TT ∗)p , where 0 < p < ∞ . If p = 1, T is called
hyponormal and if p = 1

2 , T is called semi-hyponormal. ([3]) It is well known that

hyponormal⇒ p-hyponormal (0 < p < 1).

An operator T ∈ L (H ) has the unique polar decomposition T = U |T | , where |T | =
(T ∗T )

1
2 and U is the appropriate partial isometry satisfying ker(U) = ker(|T |) =

ker(T ) and ker(U∗) = ker(T ∗). We call the Aluthge transform of T ∈ L (H ) given

by |T | 1
2U |T | 1

2 ([15]). For an arbitrary T ∈L (H ) , the sequence {T̃ (n)} of the Aluthge

iterates of T is defined by T̃ (0) = T and T̃ (n) = ˜̃T (n−1) for n ∈ N where N denotes
the set of positive integers. A. Aluthge [3] showed that if T is p -hyponormal with
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0 < p < 1
2 , then T̃ (2) is hyponormal. In [17], I.B. Jung, E. Ko, and C. Pearcy proved

that if T is a quasiaffinity, then Lat(T ) is nontrivial if and only if Lat(T̃ ) is nontrivial,
and the same it true of the hyperinvariant subspace lattices HLat(T ) and HLat( T̃ ).

A conjugation C on H is an antilinear operator C : H → H which satisfies
〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H and C2 = I. An operator T ∈ L (H ) is said to be
complex symmetric if there exists a conjugation C on H such that T = CT ∗C . In this
case, we say that T is a complex symmetric operator with a conjugation C . Complex
symmetric operators can be considered as a generalization of complex symmetric ma-
trices; in fact, if T ∈ L (H ) and if C is a given conjugation on H , then the operator
CT ∗C comes to be the transpose of the matrix for T with respect to an orthonormal
basis which is fixed by C (see [13]). In 2006, S.R. Garcia and M. Putinar provide a lot
of useful properties of complex symmetric operators [13]–[14]. There are many authors
studying complex symmetric operators (see [10]–[14], [27], and [28], etc.).

In 2000, I. B. Jung, E. Ko and C. Pearcy [15] firstly considered the backward
Aluthge iterate of a hyponormal operator. In 2007, Ko [24] proved that the backward
Aluthge iterates of a hyponormal operator have scalar extensions. In 2015, Ko and Lee
[25] examined various properties of the backward Aluthge iterates of a hyponormal
operator. In view of these results, we also study the backward Aluthge iterate of a
complex symmetric operator.

DEFINITION 1. For a nonnegative integer k , an operator T ∈ L (H ) is called
a backward Aluthge iterate of a complex symmetric operator of order k if T̃ (k) is a
complex symmetric operator.

We denote by BAIC(k) the class of all backward Aluthge iterate of a complex
symmetric operator of order k . In particular, BAIC(0) is the set of complex symmetric
operators which contains 2×2 matrices, normal operators, nilpotent operator of order
2, algebraic operators of order 2, Aluthge transform of complex symmetric operators,
Hankel operators, truncated Toeplitz operators, and Volterra integration operators (see
[10], [12] and [22]). In general, even if T ∈ BAIC(1) , then T may not be complex
symmetric (see Example 1). In addition, it is clear that BAIC(1) contains complex
symmetric operators.

We next state some elementary properties for BAIC(k) without proof.

PROPOSITION 1. Let T ∈ BAIC(k) for some k ∈ N . Then the following state-
ments hold.

(i) λT ∈ BAIC(k) for any λ ∈ C .
(ii) U∗TU ∈ BAIC(k) where U is unitary.
(iii) If T is invertible, then T−1 ∈ BAIC(k) .

An operator T ∈ L (H ) is said to have the single-valued extension property,
abbreviated SVEP, if for every open subset G of C and any analytic function f : G →
H such that (T − z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on G . For an operator T ∈
L (H ) and x ∈ H , the resolvent set ρT (x) of T at x is defined to consist of z0
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in C such that there exists an analytic function f (z) on a neighborhood of z0 , with
values in H , which verifies (T − z) f (z) ≡ x . The local spectrum of T at x is given
by σT (x) = C\ρT (x) . Using this local spectra, we define the local spectral subspace
of T by HT (F) = {x ∈ H : σT (x) ⊂ F} , where F is a subset of C . An operator
T ∈L (H ) is said to have Dunford’s property (C) if HT (F) is closed for each closed
subset F of C . An operator T ∈ L (H ) is said to have Bishop’s property (β ) if for
every open subset G of C and every sequence fn : G → H of H -valued analytic
functions such that (T − z) fn(z) converges uniformly to 0 in norm on compact subsets
of G , then fn(z) converges uniformly to 0 in norm on compact subsets of G . It is well
known from [26] that

Bishop’s property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

An operator T ∈ L (H ) is said to be decomposable if for every open cover {U,V} of
C there are T -invariant subspaces M and N such that H = M +N , σ(T |M )⊂U ,
and σ(T |N )⊂V . In [26], it is shown that both T and T ∗ have the property (β ) if and
only if T is decomposable. For an operator T ∈L (H ) , we define a spectral maximal
space of T to be a closed T -invariant subspace M of H with the property that M
contains any closed T -invariant subspace N of H such that σ(T |N ) ⊂ σ(T |M ) ,
where T |M denotes the restriction of T to M .

In this paper, we focus on several properties of the backward Aluthge iterate of
a complex symmetric operator. We prove that every nilpotent operator of order k + 2
belongs to BAIC(k) . Moreover, we prove that if T belongs to BAIC(k) , then T
has the property (β ) if and only if T is decomposable. Finally, we show that, under
some conditions, operators in BAIC(k) have nontrivial hyperinvariant subspaces and
we consider Weyl type theorems for such operators.

2. Main results

In this section, we study several properties of the backward Aluthge iterates of a
complex symmetric operator of order k . It is known from [10] that if T is a complex
symmetric operator, then T̃ is also a complex symmetric operator. However, its con-
verse does not hold. The following example shows that T is not complex symmetric,
but T̃ is complex symmetric.

EXAMPLE 1. Let T ∈ L (C3) be defined as

T =

⎛⎝0 3 0
0 0 5
0 0 0

⎞⎠ .

Then T̃ = |T | 1
2U |T | 1

2 =

⎛⎝0 0 0
0 0

√
15

0 0 0

⎞⎠ and hence T̃ is complex symmetric since T̃ is

nilpotent of order 2. But, T is not complex symmetric from [12, Example 1, p 6068].
Hence T ∈ BAIC(1).
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In general, if T is nilpotent operator of order 2, then it is complex symmetric
from [10]. But, if T is nilpotent operator of order k > 2, then T is not complex
symmetric. Note that some Volterra integral operator is complex symmetric and it
belongs to BAIC(0) , but it is not nilpotent. So, the second statement of Theorem 1 is a
bit trivial for n = 0. In the following theorem, we prove that every nilpotent operator
of order n+2 belongs to BAIC(n) .

THEOREM 1. Let n be a nonnegative integer. Every bounded linear nilpotent op-
erator of order n+2 belongs to BAIC(n) . Moreover, the class of all nilpotent operators
of order n+2 forms a proper subclass of BAIC(n) .

Proof. If T ∈ L (H ) is a nilpotent operator of order n + 2, then T̃ is a nilpo-
tent operator of order n+ 1 and then T̃ (2) is a nilpotent operator of order n by [16,
Proposition 4.6]. By repeated applications of [16], T̃ (n) is a nilpotent operator of or-
der 2. Therefore T̃ (n) is complex symmetric by [12, Corollary 5]. Thus T belongs to
BAIC(n) (cf. [6]).

On the other hand, let

T =

⎛⎝1 0 0
0 0 2
0 1 0

⎞⎠⊕ In

where In is the identity matrix. Then T is not a nilpotent operator. Since

U =

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠⊕ In and |T | =
⎛⎝1 0 0

0 1 0
0 0 2

⎞⎠⊕ In,

it follows that

T̃ = |T | 1
2U |T | 1

2 =

⎛⎝1 0 0
0 0

√
2

0
√

2 0

⎞⎠⊕ In.

Then T̃ is complex symmetric since it is normal. Thus T ∈ BAIC(1) and hence T ∈
BAIC(n) . Hence there exists a nonnilpotent operator T in BAIC(n) . �

COROLLARY 1. If N is a nilpotent operator of order n+ 2 and S is a complex
symmetric operator, then N⊕S ∈ BAIC(n) .

Proof. Since N ∈ BAIC(n) by Theorem 1 and S is a complex symmetric operator,

we have Ñ⊕S
(n)

= Ñ(n) ⊕ S̃(n) . Moreover, since Ñ(n) and S̃(n) are complex sym-

metric operators, Ñ⊕S
(n)

is a complex symmetric operator. Hence we have N ⊕ S ∈
BAIC(n) . �
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EXAMPLE 2. Let

T =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

Then T is nilpotent of order 4. By Theorem 1, we know that T ∈ BAIC(2) which is
not complex symmetric.

EXAMPLE 3. Let

T =

⎛⎜⎜⎝
0 a b c
0 0 d e
0 0 0 f
0 0 0 0

⎞⎟⎟⎠
where |a|= | f | and |b|= |e| . Then T is nilpotent of order 4. By Theorem 1, we know
that T ∈ BAIC(2) . Moreover, since T is unitarily equivalent to a complex symmetric
operator by [11, Theorem 2], it follows that T is a complex symmetric operator by
Proposition 1.

LEMMA 1. Let T = U |T | be the polar decomposition of T ∈ L (H ) . If U is
unitary, then (T̃ )∗ and T̃ ∗ are unitarily equivalent.

Proof. Since TT ∗ = U |T |2U∗, it follows that |T ∗| = U |T |U∗. If T ∗ = V |T ∗| is
the polar decomposition of T ∗ , then V = U∗ and |T ∗| = U |T |U∗. Hence we have

T̃ ∗ = |T ∗| 1
2V |T ∗| 1

2

= U |T | 1
2U∗U∗U |T | 1

2U∗

= U |T | 1
2U∗|T | 1

2U∗

= U(T̃ )∗U∗.

Thus (T̃ )∗ and T̃ ∗ are unitarily equivalent. �
Recall that an operator T ∈ L (H ) is a quasiaffinity if it has trivial kernel and

dense range. We now investigate the decomposability of an operator T which belongs
to BAIC(k) .

THEOREM 2. Let T ∈ BAIC(k) . If T is a quasiaffinity, then the following state-
ments are equivalent.

(i) T has the property (β ) .
(ii) T is decomposable.
(iii) T ∗ is decomposable.

Proof. Since (ii)⇔(iii) and (ii)⇒(i) are well-known from [26], it suffices to show
that (i)⇒(ii). Assume that T has the property (β ) . Then T̃ (k) has the property (β )
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by [23, Theorem 1.14]. Since T̃ (k) is complex symmetric, it follows from [22, The-
orem 2.1] that T̃ (k) is decomposable. Hence (T̃ (k))∗ has the property (β ) . Since T
is a quasiaffinity, T̃ is a quasiaffinity. By induction, T̃ (k−1) is a quasiaffinity. Let
T̃ (k−1) =V |T̃ (k−1)| be the polar decomposition of T̃ (k−1). Since T̃ (k−1) is a quasiaffin-
ity, it follows that V is unitary. By Lemma 1, we have

(T̃ (k))∗ =
(

˜̃T (k−1)
)∗

= V ˜(T̃ (k−1))∗V ∗.

Hence ˜(T̃ (k−1))∗ has the property (β ). Thus (T̃ (k−1))∗ has the property (β ) by [23].
So, T̃ (k−1) is decomposable since T̃ (k−1) has the property (β ). By repeated applica-
tions, we know that T ∗ has the property (β ) . Hence T is decomposable. �

COROLLARY 2. Let T ∈ BAIC(k) where T is a quasiaffinity. Then the following
statements hold.

(i) If T has the single-valued extension property, then T ∗ has.
(ii) If T has the Dunford’s property (C) , then T ∗ has.
(iii) If T has the property (β ) , then for all closed F ⊂ σ(T ) , HT (F) is a spectral

maximal space of T and σ(T |HT (F)) ⊂ F .

Proof. (i) Let T have the single-valued extension property. Since T̃ (k) is complex
symmetric and T̃ (k) has the single-valued extension property by [23, Theorem 1.1],
it follows from [19, Lemma 3.5] that (T̃ (k))∗ has the single-valued extension property.
By the similar method as in the proof of Theorem 2, T ∗ has the single-valued extension
property.

(ii) Let T have the Dunford’s property (C) . Since T̃ (k) is complex symmetric
and T̃ (k) has the Dunford’s property (C) by [23, Theorem 1.12], it follows from [22,
Theorem 3.2] that (T̃ (k))∗ has the Dunford’s property (C) . By the similar method as in
the proof of Theorem 2, T ∗ has the Dunford’s property (C) .

(iii) Since T is decomposable by Theorem 2, the proof follows from [8, Proposi-
tion 3.8]. �

PROPOSITION 2. Assume that T ∈L (H ) has the single-valued extension prop-
erty. Let T ∈ BAIC(k) with a conjugation C and let T̃ ( j) = Uj|T̃ ( j)| be the polar
decomposition of T̃ ( j) for j = 0,1,2, · · · ,k where T̃ (0) = T . Then the following state-
ments hold.

(i) σT ((∏k−1
i=0 Ui|Ti| 1

2 )Cx) ⊂ σT̃ (k)∗ (x) .

(ii) (Πk−1
i=0Ui|Ti| 1

2C)HT̃ (k)∗ (F) ⊂ HT (F) for any subset F ⊂ C.

Proof. (i) Let T̃ ( j) =Uj|T̃ ( j)| be the polar decomposition of T̃ ( j) for j = 0,1, · · · ,
k− 1. Assume that T ∈ BAIC(k) . Since T̃ (k) is complex symmetric, it follows from
[22, Lemma 3.1] that

σT̃ (k) (Cx)∗ ⊂ σT̃ (k)∗ (x). (1)
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Since T ∈ BAIC(k) , by [23, Corollary 1.2]

σT ((
k−1

∏
i=0

Ui|Ti| 1
2 )Cx)∗ ⊂ σT̃ ((

k−1

∏
i=1

Ui|Ti| 1
2 )Cx)∗ ⊂ · · · ⊂ σT̃ (k) (Cx)∗. (2)

Hence by (1) and (2), we have

σT ((
k−1

∏
i=0

Ui|Ti| 1
2 )Cx) ⊂ σT̃ (k)∗ (x). (3)

(ii) If x ∈ HT̃ (k)∗ (F) for any subset F ⊂ C, then σT̃ (k)∗ (x) ⊂ F and so

σT (Πk−1
i=0Ui|Ti| 1

2Cx) ⊂ F

from the inclusion (3). This means that Πk−1
i=0Ui|Ti| 1

2Cx ∈ HT (F) holds. Hence

(Πk−1
i=0Ui|Ti| 1

2C)HT̃ (k)∗ (F) ⊂ HT (F)

for any subset F ⊂ C. �
For T ∈ L (H ) , the algebraic core Alg(T ) is defined as the greatest (not nec-

essarily closed) subspace M of H satisfying TM = M . The analytical core of T
is the set Anal(T ) of all x ∈ H such that there exists a sequence {un} ⊂ H and a
constant δ > 0 such that x = u0 , Tun+1 = un , and ‖un‖ � δ n‖x‖ for every n ∈ N .

PROPOSITION 3. Let T ∈BAIC(k) be with a conjugation C. Suppose that T̃ ( j) =
Uj|T̃ ( j)| is the polar decomposition of T̃ ( j) for j = 0,1, · · · ,k . Then the following
statements hold.

(i)

{
Alg(T̃ (k)∗) = C(∏0

j=k−1 |T̃ ( j)| 1
2 )Alg(T ) and

Alg(T ) = (∏0
j=k−1Uj|T̃ ( j)| 1

2 )CAlg(T̃ (k)∗).

(ii)

{
Anal(T̃ (k)∗) = C(∏0

j=k−1 |T̃ ( j)| 1
2 )Anal(T ) and

Anal(T ) = (∏0
j=k−1Uj|T̃ ( j)| 1

2 )CAnal(T̃ (k)∗) if T is invertible.

Proof. Assume T̃ (k) is a complex symmetric operator with a conjugation C .
(i) Since T̃ (k)Alg(T̃ (k)) = Alg(T̃ (k)) , we get that

CT̃ (k)∗CAlg(T̃ (k)) = Alg(T̃ (k)).

Hence T̃ (k)∗CAlg(T̃ (k)) = CAlg(T̃ (k)) . Thus CAlg(T̃ (k)) ⊆ Alg(T̃ (k)∗) .
On the other hand, since T̃ (k)∗Alg(T̃ (k)∗) = Alg(T̃ (k)∗) ,

CT̃ (k)CAlg(T̃ (k)∗) = Alg(T̃ (k)∗).

Hence T̃ (k)CAlg(T̃ (k)∗) = CAlg(T̃ (k)∗) . Therefore CAlg(T̃ (k)∗) ⊆ Alg(T̃ (k)) and thus

Alg(T̃ (k)∗) ⊆CAlg(T̃ (k)).
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So we have CAlg(T̃ (k)) = Alg(T̃ (k)∗) . Since Alg(T̃ (k)) = (∏0
j=k−1 |T̃ ( j)| 1

2 )Alg(T ) by
[25, Proposition 2], we get that

Alg(T̃ (k)∗) = C(
0

∏
j=k−1

|T̃ ( j)| 1
2 )Alg(T ).

Since CAlg(T̃ (k))⊆Alg(T̃ (k)∗) and Alg(T )= (∏k−1
j=0Uj|T̃ ( j)| 1

2 )Alg(T̃ (k)) by [25, Propo-
sition 2], it follows that

Alg(T ) = (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )CAlg(T̃ (k)∗).

(ii) Let x ∈ Anal(T̃ (k)) . Then there exists a sequence {un} ⊂ H and a constant
δ > 0 such that x = u0 , T̃ (k)un+1 = un , and ‖un‖ � δ n‖x‖ for every n ∈ N . Since
T̃ (k)∗Cx = T̃ (k)∗Cu0 , T̃ (k)∗Cun+1 = CT̃ (k)un+1 = Cun and

‖Cun‖ � ‖C‖‖un‖ � δ n‖x‖ = δ n‖Cx‖

for all n ∈ N , it holds that CAnal(T̃ (k)) ⊆ Anal(T̃ (k)∗) .
On the other hand, let y ∈ Anal(T̃ (k)∗) . Then there exists a sequence {vn} ⊂ H

and a constant δ > 0 such that y = v0 , T̃ (k)∗vn+1 = vn , and ‖vn‖ � δ n‖y‖ for every
n ∈ N . Since T̃ (k)Cy = T̃ (k)Cv0 , T̃ (k)Cvn+1 = CT̃ (k)∗vn+1 = Cvn and

‖Cvn‖ � ‖C‖‖vn‖ � δ n‖y‖ = δ n‖Cy‖

for every n ∈ N , it holds that CAnal(T̃ (k)∗) ⊆ Anal(T̃ (k)) . Thus CAnal(T̃ (k)) =
Anal(T̃ (k)∗) . Since Anal(T̃ (k)) = (∏0

j=k−1 |T̃ ( j)| 1
2 )Anal(T ) by [25, Proposition 2],

Anal(T̃ (k)∗) = C(
0

∏
j=k−1

|T̃ ( j)| 1
2 )Anal(T ).

Since CAlg(T̃ (k)) ⊆ Alg(T̃ (k)∗) and Anal(T ) = (∏k−1
j=0Uj|T̃ ( j)| 1

2 )Anal(T̃ (k)) by [25,
Proposition 2], we obtain that

Anal(T ) = (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )CAnal(T̃ (k)∗).

So we complete the proof. �

COROLLARY 3. If T ∈ L (H ) is invertible, then

Alg(T ∗) = (
0

∏
j=k−1

|T̃ ( j)|− 1
2Uj+1)C(

k−1

∏
j=0

|T̃ ( j)| 1
2 )Alg(T )
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and

Anal(T ∗) = (
0

∏
j=k−1

|T̃ ( j)|− 1
2Uj+1)C(

k−1

∏
j=0

|T̃ ( j)| 1
2 )Anal(T )

where T̃ ( j) = Uj|T̃ ( j)| is the polar decomposition of T̃ ( j) for j = 0,1, · · · ,k .

Proof. By Lemma 1, we can put ˜̃T (k−1)∗ = UkT̃ (k)∗Uk
∗ for some k � 1. Then

Uk
∗Alg(T̃ (k−1)∗) = Alg(T̃ (k)∗). Thus we get that

Alg(T̃ (k)∗) = Uk
∗Alg( ˜̃T (k−1)∗)

= Uk
∗|T̃ (k−1)∗| 1

2 Alg(T̃ (k−1)∗)
= Uk

∗|T̃ (k−1)∗| 1
2Uk−1

∗|T̃ (k−2)∗| 1
2 Alg(T̃ (k−2)∗)

...

=
0

∏
j=k−1

Uj+1
∗|T̃ ( j)| 1

2 Alg(T ∗).

Since T is invertible, it follows from Proposition 3 that

Alg(T ∗) = (
0

∏
j=k−1

|T̃ ( j)|− 1
2Uj+1)C(

k−1

∏
j=0

|T̃ ( j)| 1
2 )Alg(T )

where T̃ ( j) = Uj|T̃ ( j)| is the polar decomposition of T̃ ( j) for j = 0,1, · · · ,k .

For the proof of the second equation, let ˜̃T (k−1)∗ = UkT̃ (k)∗Uk
∗ for some k �

1. If x ∈ Anal( ˜̃T (k−1)∗), then x = u0 , ˜̃T (k−1)∗un+1 = un, and ‖un‖ � δ n‖x‖ . Since

T̃ (k)∗Uk
∗x = T̃ (k)∗Uk

∗u0 , T̃ (k)∗Uk
∗un+1 = Uk

∗ ˜̃T (k−1)∗un+1 = Uk
∗un , and

‖Uk
∗un‖ � ‖Uk

∗‖‖un‖ � δ n‖x‖

for all n ∈ N , it holds that Uk
∗Anal( ˜̃T (k−1)∗) ⊆ Anal(T̃ (k)∗) . Similarly, we obtain the

reverse inclusion. Hence Uk
∗Anal( ˜̃T (k−1)∗) = Anal(T̃ (k)∗). From this, we get that

Anal(T̃ (k)∗) = Uk
∗Anal( ˜̃T (k−1)∗)

= Uk
∗|T̃ (k−1)∗| 1

2 Anal(T̃ (k−1)∗)
= Uk

∗|T̃ (k−1)∗| 1
2Uk−1

∗|T̃ (k−2)∗| 1
2 Anal(T̃ (k−2)∗)

...

=
0

∏
j=k−1

Uj+1
∗|T̃ ( j)| 1

2 Anal(T ∗).

By Proposition 3, we get that

Anal(T ∗) = (
0

∏
j=k−1

|T̃ ( j)|− 1
2Uj+1)C(

k−1

∏
j=0

|T̃ ( j)| 1
2 )Anal(T )
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where T̃ ( j) = Uj|T̃ ( j)| is the polar decomposition of T̃ ( j) for j = 0,1, · · · ,k . �
Recall that an operator T in L (H ) will be said to have the property (PS) if

there exist sequences {Sn} ⊂ {T}′
and {Kn} ⊂ K (H ) such that ‖Sn−Kn‖ → 0 and

{Kn} is a nontrivial sequence of compact operators. For T ∈ L (H ) , we write T
′
for

the commutant of T , that is, for the algebra of all S ∈ L (H ) such that TS = ST . A
subspace M ⊂ H is invariant for T ∈ L (H ) if TM ⊂ M , and a subspace M is
hyperinvariant for T if it is an invariant subspace for all S ∈ {T}′

. We next examine a
nontrivial hyperinvariant subspace of T ∈ BAIC(k) .

THEOREM 3. Let T ∈ BAIC(k) for some k ∈N and let T �= 0 , λ I for any λ ∈C .
Suppose T̃ (k) has the property (PS) . Then T has a nontrivial hyperinvariant subspace.

Proof. Let T = U |T | be the polar decomposition of T ∈ L (H ) . If T is not a
quasiaffinity, then 0∈ σp(T )∪σp(T ∗) where σp(T ) denotes the point spectrum of T .
Hence T has a nontrivial hyperinvariant subspace. Assume that T is a quasiaffinity.
Then |T | is a quasiaffinity and U is unitary. Thus T̃ is a quasiaffinity. Hence T̃ ( j) is
a quasiaffinity for j = 0,1,2, · · · ,k− 1 by the induction. Since T̃ (k) has the property
(PS) , there exists a sequence {Qn} ⊂ {T̃ (k)}′

and {Hn} such that ‖Qn−Hn‖→ 0 and
{Hn} is a nontrivial sequence of compact operators. Let T̃ ( j) = Uj|T̃ ( j)| be the polar
decomposition of T̃ ( j) for j = 0,1,2, · · · ,k−1. Put

Sn := AQnB and Kn := AHnB

where A = Πk−1
j=0Uj|T̃ ( j)| 1

2 and B = Π0
j=k−1|T̃ ( j)| 1

2 . Since T̃ ( j) is a quasiaffinity, {Kn}
is a nontrivial sequence of compact operators. Then

SnT = AQnBT = AQnT̃
(k)B = AT̃ (k)QnB = TAQnB = TSn.

Since
‖Sn−Kn‖ � ‖A‖‖Qn−Hn‖‖B‖→ 0 ,as n → 0,

we obtain that T has the property (PS). Hence T has a nontrivial hyperinvariant sub-
space from [2]. �

COROLLARY 4. Let T ∈ BAIC(k) for some k ∈ N and let T �= 0,λ I for any
λ ∈ C . Suppose that T̃ (k) has the property (PS) and T is a quasiaffinity. Then both T
and T ∗ have the property (PS) and hence both T and T ∗ have the property (PS) .

Proof. Since T̃ (k) has the property (PS) and complex symmetric, it follows from
[21] that (T̃ (k))∗ has the property (PS) . By similar methods, we know that T ∗ has
a nontrivial hyperinvariant subspace. In this case, both T and T ∗ have the property
(PS) . �

PROPOSITION 4. Let T ∈ L (H ) be p-hyponormal for 0 < p < 1
2 . If T ∈

BAIC(2) , then T is normal and hence Lat (T ) is nontrivial.
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Proof. If T is p -hyponormal and T ∈ BAIC(2) , then T̃ (2) is hyponormal and
complex symmetric. Hence T̃ (2) is normal. By [9, Corollary 2], T̃ is normal and hence
T is normal. Thus Lat (T ) is nontrivial. �

If T ∈ L (H ) and x ∈ H , then {Tnx}∞
n=0 is called the orbit of x under T ,

and is denoted by O(x,T ) . If O(x,T ) is dense in H , then x is called a hypercyclic
vector for T . An operator T ∈ L (H ) is called hypercyclic if there is a nonzero
hypercyclic vector x ∈ H for T , and T is said to be hypertransitive if every nonzero
vector in H is hypercyclic for T . Denote the set of all nonhypertransitive operators in
x ∈ H by (NHT ) . The hypertransitive operator problem is the open question whether
(NHT ) = L (H ) .

PROPOSITION 5. Let T ∈ BAIC(k) and be invertible. Then the following proper-
ties hold.

(i) T is hypercyclic if and only if T ∗ is hypercyclic.
(ii) Tn ∈ (NHT ) if and only if (T ∗)n ∈ (NHT ) .

Proof. Let T = U |T | be the polar decomposition of T ∈ L (H ) .
(i) Suppose that T is hypercyclic. Since |T | 1

2 T = T̃ |T | 1
2 , there is a hypercyclic

vector x ∈ H such that

O(|T | 1
2 x, T̃ ) = |T | 1

2 H .

Since T is invertible, it follows that

|T |− 1
2 O(|T | 1

2 x, T̃ ) = H .

Thus T̃ is hypercyclic. By the induction, T̃ (k) is hypercyclic. Since T ∈ BAIC(k) , T̃ (k)

is complex symmetric. From [[22], Lemma 3.8], (T̃ (k))∗ is hypercyclic. By the similar
method as the above, T ∗ is hypercyclic.

(ii) Suppose that T ∈ (NHT ) . By (i), T is hypercyclic if and only if T ∗ is hy-

percyclic. Since |T | 1
2 H = H for invertible T , we have T ∗ ∈ (NHT ) . It is known

from [17, Theorem 1.7] that T ∈ (NHT ) if and only if Tm ∈ (NHT ) for m∈N . Hence
Tn ∈ (NHT ) if and only if (T ∗)n ∈ (NHT ) . �

Finally, we concern Weyl type theorems for operators belong to BAIC(k) . We
state the definitions of some spectra;

σea(T ) := ∩{σa(T +K) : K ∈ K (H )}

is the essential approximate point spectrum, and

σab(T ) := ∩{σa(T +K) : TK = KT and K ∈ K (H )}

is the Browder essential approximate point spectrum. We put

π00(T ) := {λ ∈ iso σ(T ) : 0 < dimker(T −λ ) < ∞}
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and

πa
00(T ) := {λ ∈ iso σa(T ) : 0 < dimker(T −λ ) < ∞}.

Let T ∈ L (H ) . We say that
(i) a-Browder’s theorem holds for T if σea(T ) = σab(T );
(ii) a-Weyl’s theorem holds for T if σa(T )\σea(T ) = πa

00(T );
(iii) T has the property (w) if σa(T )\σea(T ) = π00(T ).
It is known that

Property (w) =⇒ a -Browder’s theorem

⇓ ⇑
Weyl’s theorem ⇐= a -Weyl’s theorem.

We refer the reader to [1] for more details.
Let Tn = T |ran(Tn) for each nonnegative integer n ; in particular, T0 = T . If Tn is

upper semi-Fredholm for some nonnegative integer n , then T is called a upper semi-
B-Fredholm operator. In this case, by [5], Tm is a upper semi-Fredholm operator and
ind(Tm) = ind(Tn) for each m � n . Therefore, one can consider the index of T , denoted
by indB(T ) , as the index of the semi-Fredholm operator Tn. Similarly, we define lower
semi-B-Fredholm operators. We say that T ∈ L (H ) is B-Fredholm if it is both upper
and lower semi-B-Fredholm. In [5], Berkani proved that T ∈ L (H ) is B-Fredholm if
and only if T = T1 ⊕T2 where T1 is Fredholm and T2 is nilpotent. Let SBF−

+ (H ) be
the class of all upper semi-B-Fredholm operators such that indB(T ) � 0, and let

σSBF−
+

(T ) := {λ ∈ C : T −λ �∈ SBF−
+ (H )}.

An operator T ∈L (H ) is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl
spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C : T −λ is not a B-Weyl operator }.
We say that λ ∈ σa(T ) is a left pole of T if it has finite ascent, i.e., a(T ) < ∞ and
ran(Ta(T)+1) is closed where a(T ) = dimker(T ) . The notation p0(T ) (respectively,
pa

0(T )) denotes the set of all poles (respectively, left poles) of T , while π0(T ) (respec-
tively, πa

0 (T )) is the set of all eigenvalues of T which is an isolated point in σ(T )
(respectively, σa(T )).

Let T ∈ L (H ) . We say that
(i) T satisfies generalized Browder’s theorem if σBW (T ) = σ(T )\ p0(T );
(ii) T satisfies generalized a-Browder’s theorem if σSBF−

+
(T ) = σa(T )\ pa

0(T ) ;
(iii) T satisfies generalized Weyl’s theorem if σBW (T ) = σ(T )\π0(T );
(iv) T satisfies generalized a-Weyl’s theorem if σSBF−

+
(T ) = σa(T )\πa

0(T ) .
It is known that

generalized a -Weyl’s theorem =⇒ generalized Weyl’s theorem

⇓ ⇓
generalized a -Browder’s theorem =⇒ generalized Browder’s theorem.
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THEOREM 4. Let T ∈ BAIC(k) . If T is a quasiaffinity, then the following prop-
erties hold.

(i) If T satisfies Weyl’s theorem, then T ∗ satisfies Weyl’s theorem.
(ii) If T satisfies Browder’s theorem, then T ∗ satisfies Browder’s theorem.

Proof. (i) Suppose that T satisfies Weyl’s theorem. Then T̃ (k) satisfies Weyl’s
theorem by [18, Theorem 1.21]. In this case, since T̃ (k) is complex symmetric, (T̃ (k))∗
satisfies Weyl’s theorem from [22, Theorem 4.4]. Since T is a quasiaffinity, T̃ is
a quasiaffinity. By induction, T̃ (k−1) is a quasiaffinity. Let T̃ (k−1) = V |T̃ (k−1)| be the
polar decomposition of T̃ (k−1). Since T̃ (k−1) is a quasiaffinity, V is unitary. By Lemma
1,

(T̃ (k))∗ =
(

˜̃T (k−1)
)∗

= V ˜(T̃ (k−1))∗V ∗.

Then ˜(T̃ (k−1))∗ satisfies Weyl’s theorem. Hence (T̃ (k−1))∗ satisfies Weyl’s theorem by
[18, Theorem 1.21]. By repeated applications, T ∗ satisfies Weyl’s theorem.

(ii) Suppose that T satisfies Browder’s theorem. Then T̃ (n) satisfies Browder’s
theorem by [18]. Moreover, since T̃ (n) is complex symmetric, (T̃ (n)))∗ satisfies Brow-
der’s theorem from [22, Theorem 4.4]. Hence T ∗ satisfies Browder’s theorem by the
similar proof with (i). �

COROLLARY 5. Let T ∈ BAIC(k) . If T and T ∗ are quasiaffinities, then the fol-
lowing properties hold.

(i) If T satisfies Weyl’s theorem if and only if T ∗ satisfies Weyl’s theorem.
(ii) If T satisfies Browder’s theorem if and only if T ∗ satisfies Browder’s theorem.

Proof. The proof follows from Theorem 4. �

As usual, we write σ(T ) , σa(T ) , σp(T ) and σs(T ) for the spectrum, the approxi-
mate point spectrum, the point spectrum, and the surjective spectrum of T , respectively.

LEMMA 2. Let T ∈ BAIC(k) . Then the following properties hold.
(i) σ(T ) = σa(T ) .
(ii) σ(T ) = σa(T ) = σs(T ) if T has the single-valued extension property.
(iii) σp(T ∗)\ (0) = σp(T )∗ \ (0) .
(iv) σa(T ∗)\ (0) = σa(T )∗ \ (0) .
(v) σle(T ) = σe(T ) and σle(T )\ (0) = σre(T )\ (0) = σe(T )\ (0) .
(vi) σe(T ) = σea(T ) = σw(T ).

Proof. (i) Since T̃ (k) is complex symmetric, it follows from Lemma 3.22 in [20]
that σ(T̃ (k)) = σa(T̃ (k)) . Moreover, by Theorem 1.3 in [15], we have

σ(T̃ (k)) = σ(T ) and σa(T̃ (k)) = σa(T ).

Hence we obtain that σ(T ) = σa(T ) .
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(ii) Since T̃ (k) is complex symmetric, it follows from Lemma 3.22 in [20] that

σ(T̃ (k)) = σa(T̃ (k)) = σs(T̃ (k)).

It is well known from [1] that if T has the single-valued extension property, then we
have σ(T ) = σs(T ) . Since σa(T ) = σs(T ∗)∗ for T ∈ L (H ) , we have

σs(T ) = σ(T ) = σ(T̃ (k)) = σa(T̃ (k)) = σa(T ).

(iii) Since T̃ (k) is complex symmetric, it follows that σp([T̃ (k)]∗) = [σp(T̃ (k))]∗ . By
[15], we have σp(T ∗)\ (0) = σp(T )∗ \ (0) .

(iv) The proof follows from the proof of (ii).
(v) Since T̃ (k) is a complex symmetric operator, it follows from [20, Lemma 3.22]

that
σle(T̃ (k)) = σre(T̃ (k)) = σe(T̃ (k)).

Moreover, since note that for any T ∈ L (H ) ,

σe(T ) = σe(T̃ ),σle(T ) = σle(T̃ ), and σre(T )\ (0) = σre(T̃ )\ (0)

hold, it follows from [15, Theorem 1.5] that σe(T ) = σe(T̃ (k)),σle(T ) = σle(T̃ (k)), and
σre(T )\ (0) = σre(T̃ (k))\ (0). Hence we obtain that

σle(T ) = σe(T ) and σle(T )\ (0) = σre(T )\ (0) = σe(T )\ (0).

(vi) Since T̃ (k) is a complex symmetric operator, it follows from [20, Lemma 3.22]
that

σe(T̃ (k)) = σea(T̃ (k)) = σw(T̃ (k)).

Moreover, since for any T ∈L (H ) , σw(T ) = σw(T̃ ) holds from [18, Theorem 1.21],
we know that σw(T ) = σw(T̃ (k)). On the other hand, it is known that λ �∈ σea(T ) if and
only if T −λ is semi-Fredholm with ind(T −λ ) � 0. From this fact and [18, Theorem
1.10], we know that σea(T ) = σea(T̃ ) and so σea(T ) = σea(T̃ (k)) . Hence we obtain
that σe(T ) = σea(T ) = σw(T ) . �

THEOREM 5. Let T ∈ BAIC(k) . Then the following statements are equivalent:
(i) a-Weyl’s theorem holds for T .
(ii) Weyl’s theorem holds for T .
(iii) T has the property (w) .

Proof. By the definition, it is trivial that (i) ⇒ (ii). Assume that T satisfies Weyl’s
theorem. Since T is complex symmetric, it follows from Lemma 2 that σa(T ) = σ(T )
and σw(T ) = σea(T ) , which gives that

πa
00(T ) = π00(T ) = σ(T )\σw(T ) = σa(T )\σea(T ).

Hence a -Weyl’s theorem holds for T . Thus we have (ii) ⇒ (i). Similarly, since
πa

00(T ) = π00(T ) , we show that (i) ⇔ (iii). �
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COROLLARY 6. Let T ∈ BAIC(k) be a quasiaffinity and let T ∗ ∈ BAIC(k) . Then
the following statements holds.

(i) If T satisfies a-Weyl’s theorem, then T ∗ does.
(ii) If T has the property (w) , then T ∗ does.

Proof. (i) If T satisfies a -Weyl’s theorem, then Weyl’s theorem holds for T .
Since T is a quasiaffinity, it follows that Weyl’s theorem holds for T ∗ by Theorem
4. Since T ∗ ∈ BAIC(k) , it satisfies a -Weyl’s theorem by Theorem 5.

(ii) Let T have the property (w). Since T ∈ BAIC(k) and T is a quasiaffinity, it
follows from Theorem 5 that T ∗ has the property (w) . �

THEOREM 6. Let T ∈ BAIC(k) have the single-valued extension property. If T
is a quasiaffinity, then the following statements are equivalent.

(i) T satisfies generalized a-Weyl’s theorem.
(ii) T satisfies generalized Weyl’s theorem.

Proof. Since (i) ⇒ (ii) follows from [7, Theorem 3.7], it suffices to show that (ii)
⇒ (i). Suppose that T satisfies generalized Weyl’s theorem. Then we have σBW (T ) =
σ(T )\π0(T ) . Since T ∈ BAIC(k) , it follows from Lemma 2 that σa(T ) = σ(T ) and
so

σBW (T ) = σ(T )\π0(T ) = σa(T )\πa
0(T ).

Hence it suffices to show that σSBF−
+

(T ) = σBW (T ) . If λ �∈ σSBF−
+

(T ), then T − λ
is semi-B-Fredholm and indB(T −λ ) � 0. Since T ∈ BAIC(k) and T has the single-
valued extension property, it follows from Corollary 2 that T ∗ has the single-valued
extension property. Therefore, we obtain from [1] that indB(T − λ ) � 0 for every
λ �∈ σSBF−

+
(T ). Thus we have indB(T −λ ) = 0 for every λ �∈ σSBF−

+
(T ) , which means

that σSBF−
+

(T ) ⊃ σBW (T ) . Since σSBF−
+

(T ) ⊂ σBW (T ) always holds, we obtain that

σSBF−
+

(T ) = σBW (T ) = σa(T )\πa
00(T ),

that is, generalized a -Weyl’s theorem holds for T . �

COROLLARY 7. Let T ∈ BAIC(k) . If T is a quasiaffinity, then the following ar-
guments are equivalent.

(i) T satisfies Browder’s theorem.
(ii) T satisfies a-Browder’s theorem.
(iii) T satisfies the generalized Browder’s theorem.
(iv) T satisfies the generalized a-Browder’s theorem.

Proof. It is well known that (i) ⇔ (iii) and (ii) ⇔ (iv) from [4, Theorems 2.1 and
2.2]. Since σ(T ) = σa(T ) from Lemma 2, we know that p0(T ) = pa

0(T ) . In addition,
σSBF−

+
(T ) = σBW (T ) as in the proof of Theorem 6. Using these facts, we obtain that

(iii) ⇔ (iv). Hence we complete the proof. �
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