
Mathematical
Inequalities

& Applications

Volume 25, Number 2 (2022), 397–405 doi:10.7153/mia-2022-25-24

DIFFERENTIAL HARNACK ESTIMATE OF SOLUTIONS TO

A CLASS OF SEMILINEAR PARABOLIC EQUATION

HUI WU ∗ AND CUIXIAN KONG

(Communicated by I. Perić)

Abstract. In this paper, we obtain a differential Harnack estimate for a semilinear parabolic
equation using parabolic maxinum principle. As applications of this estimate, we derive blow-up
of solutions for this equation and a classical Harnack inequality by integrating along space-time
paths.

1. Introduction

In this paper, we study the following Cauchy problem :{ ∂
∂ t w = �w+ eγtwq, in R

n× (0,∞),

w(x,0) = w0(x), in R
n,

(1)

where q > 1, γ � 0 and w0(x) � 0.
In [2], H.Fujita studied the solutions of problem (1) when γ = 0. He proved

that there exists a critical value q∗ := 1+ 2
n , which has the following properties: for

1 < q < q∗ , every non-negative solution blow up in finite time and for q > q∗ global
solutions exist, if w0(x) is small enough. For q = q∗ , the solution of problem (1) blows
up in finite time (see [7]). When γ > 0, Meier [6] found that there are properties similar
to those in [2], and that the critical value changes into q∗ = 1+ γ

λ where λ denotes the
first eigenvalue of the operator -� with homogeneous Dirichlet boundary conditions.
The same phenomenon has been observed for many other differential problems (see
[4, 8, 10]).

Harnack estimates for elliptic and parabolic partial differential equations have a
long history. The study of differential Harnack inequalities was first initiated by P. Li
and S.-T. Yau in [5]. This method was later brought into the study of geometric flows by
Hamilton (see [3]) and played an important role in the field, especially for the study of
the Ricci flow. Differential Harnack inequalities are important in the study of parabolic
problems. Some applications include deriving Hölder continuity, obtaining estimates
on the heat kernel, classifying ancient and eternal solutions, and so on. For γ = 0, X.D.
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Cao [1] gave differential Harnack estimates of solution for (1). On hyperbolic space,
[9] described a differential Harnack estimate for (1). Our purpose is to obtain results in
Euclidean space, which is different from the case in [9].

Now we address our main result:

THEOREM 1. (Main) Let w(x,t) be a positive classical solution to (1), and l(x,t)
:= logw. There exists ρ , σ , a , c d and γ satisfing

ρ > σ � 0, γ � 0, d > 0,
ρ(q−1)+2σ

q
� c � (q−1)nρ2

4(ρ −σ)
, (2)

and

a � ndρ2

2(ρ −σ)
> 0. (3)

We have
H0 ≡ ρ�l + σ |∇l|2 + ceγt+l(q−1) +

a
1− e−dt � 0, (4)

for all t .

REMARK 1. The case of n = 1 and q = 2 was studied by Hamilton in [3]. In
particular, we apply Theorem 1.1 with n = 1 and q = 2 and by picking ρ = 1, σ = 0,
γ = 0, a = d

2 and c = 1
4 , to conclude

lxx +
1
4
el +

d
2(1− e−dt)

� 0,

yielding

wt +
d

2(1− e−dt)
w � w2

x

w
+

3
4
w2.

If d is small enough, the estimate in [3] will be improved.

The organization of this paper is as follows. In Section 2 we derive a differential
Harnack estimate. There are applications of our differential Harnack inequality in Sec-
tion 3. One of our applications is a reproof of the classical result in [6], which states that
any positive solution of problem (1) blows up in the finite time provided 1 < q < 1+ γ

λ .

2. Differential Harnack estimate

In this section, we shall first derive our differential Harnack estimate, relying on
the parabolic maximum principle.

LEMMA 1. Assume that w(x,t) is a positive solution to (1) and l = logw. Sup-
pose that H is defined as follows:

H := ρ�l + σ |∇l|2 + ceγt+l(q−1) + ψ(x,t), (5)
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Where ρ ,σ ,c ∈ R,γ � 0 and ψ is a test function to be chosen later. Then we have

Ht =�H +2∇H ·∇l +(q−1)eγt+l(q−1)H +2(ρ −σ)|∇∇l|2
+(ρ(q−1)+ σ − cq)(q−1)eγt+l(q−1)|∇l|2 + cγeγt+l(q−1)

− (q−1)eγt+l(q−1)ψ + ψt −�ψ −2∇ψ ·∇l.

(6)

Proof. Substituting w = el into (1), we have

lt = �l + |∇l|2 + eγt+l(q−1).

Recall the formula:

Δ|∇l|2 = 2|∇∇l|2 +2∇l ·∇Δl.

Then we can compute the following evolution equations:

Ht = ρ(�l)t + σ(|∇l|2)t + c(eγt+l(q−1))t + ψt,

∂t(�l) = �(�l)+�|∇l|2 +(q−1)2eγt+l(q−1)|∇l|2 +(q−1)eγt+l(q−1)�l,

∂t(|∇l|2) = �|∇l|2 −2|∇∇l|2 +2∇l ·∇|∇l|2 +2(q−1)eγt+l(q−1)|∇l|2,
and

∂t(eγt+l(q−1)) = γeγt+l(q−1) + (q−1)eγt+l(q−1)(�l)

+ (q−1)eγt+l(q−1)|∇l|2 +(q−1)e2(γt+l(q−1)).

Hence we get

Ht =ρ
[
�(�l)+�|∇l|2 +(q−1)eγt+l(q−1)�l +(q−1)2eγt+l(q−1)|∇l|2

]
+ σ

[
�|∇l|2−2|∇∇l|2 +2∇l ·∇|∇l|2 +2(q−1)eγt+l(q−1)|∇l|2

]
+ c(q−1)eγt+l(q−1)

[ γ
q−1

+�l + |∇l|2 + eγt+l(q−1)
]
+ ψt.

(7)

A direct calculation gives

�H = ρ�(�l)+ σ�(|∇l|2)+ c(q−1)eγt+l(q−1)
(
(q−1)|∇l|2 +�l

)
+�ψ ,

and

∇H = ρ∇(�l)+ σ∇(|∇l|2)+ c(q−1)eγt+l(q−1)∇l + ∇ψ .

Hence reordering (7), we get (6). �

Proof of Theorem 1. Difine the n -rectangle D :=
n
∏
i=1

[pi,qi] ⊂ R
n . Set

ψD(x,t) =
a

1− e−dt
+

n

∑
k=1

(
b

(xk − pk)2 +
b

(qk − xk)2

)
(8)
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for t > 0, d > 0, b > 0 and x = (x1, · · · ,xn) ∈ D , while ψD → +∞ as xi → pi,qi or
t → 0.

The corresponding (5) is

HD := ρ�l + σ |∇l|2 + ceγt+l(q−1) + ψD(x,t).

Note that HD → H0 as D → R
n , and HD > 0 for small t .

To get a contradiction, assume that there exists a first time t0 and point x0 ∈ D
such that HD(x0, t0) = 0. At (x0,t0) , we have

(HD)t � 0, ∇HD = 0, �HD � 0,

and

�l = − 1
ρ

(σ |∇l|2 + ceγt+l(q−1) + ψD). (9)

Using (6) and Cauchy-Schwarz inequality |∇∇l|2 � 1
n (�l)2 , we can get

0 � (HD)t =�HD +2∇HD ·∇l +(q−1)eγt+l(q−1)HD +2(ρ −σ)|∇∇l|2
+[ρ(q−1)+ σ − cq](q−1)eγt+l(q−1)|∇l|2 + cγeγt+l(q−1)

− (q−1)eγt+l(q−1)ψD +(ψD)t −�ψD−2∇ψD ·∇l

� 2(ρ −σ)
n

(�l)2 +[ρ(q−1)+ σ − cq](q−1)eγt+l(q−1)|∇l|2

+ cγeγt+l(q−1)− (q−1)eγt+l(q−1)ψD +(ψD)t −�ψD−2∇ψD ·∇l.

(10)

Set X = eγt+l(q−1) and Y = |∇l|2 . Applying (9) to (10) and combining terms gives

0 � 2(ρ −σ)
nρ2 (σ |∇l|2 + ceγt+l(q−1) + (ψD)2 +[ρ(q−1)+ σ − cq](q−1)eγt+l(q−1)|∇l|2

+ cγeγt+l(q−1)− (q−1)eγt+l(q−1)ψD +(ψD)t −�ψD−2∇ψD ·∇l

=
2(ρ −σ)

nα2 [σY + cX + ψD]2 +[ρ(q−1)+ σ − cq](q−1)XY

+ cγX − (q−1)XψD +(ψD)t −�ψD−2∇ψD ·∇l

=
2(ρ −σ)

nρ2 (c2X2 + σ2Y 2)+
[
ρ(q−1)− cq+ σ +

4(ρ −σ)σc
nρ2(q−1)

]
(q−1)XY + cγX

+
[4(ρ −σ)c

nρ2 − (q−1)
]
ψDX +

4(ρ −σ)σ
nρ2 ψDY

+(ψD)t −�ψD−2∇ψD ·∇l +
2(ρ −σ)

nρ2 (ψD)2.

(11)

According to (2), we get

ρ(q−1)− cq+ σ +
4(ρ −σ)σc
nρ2(q−1)

� 0,
4(ρ −σ)c

nρ2 − (q−1) � 0. (12)
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Completing the square, we have

4(ρ −σ)σ
nρ2 ψDY −2∇ψD ·∇l � −nρ2|∇ψD|2

4(ρ −σ)σψD
. (13)

Applying (12) and (13) to (11) gives

0 � (ψD)t −�ψD− nρ2|∇ψD|2
4(ρ −σ)σψD

+
2(ρ −σ)

nρ2 (ψD)2. (14)

To arrived at a contradiction, it suffices to have

(ψD)t −�ψD− nρ2|∇ψD|2
4(ρ −σ)σψD

+
2(ρ −σ)

nρ2 (ψD)2 > 0. (15)

We can compute

�ψD =
n

∑
k=1

( 6b
(xk − pk)4 +

6b
(qk − xk)4

)
, (16)

|∇ψD|2 =
n

∑
k=1

(
− 2b

(xk − pk)3 +
2b

(qk − xk)3

)2
,

and

|∇ψD|2
ψD

=
n

∑
k=1

(
− 2b

(xk − pk)3√ψD
+

2b
(qk − xk)3√ψD

)2

�
n

∑
k=1

( 4b
(xk − pk)4 +

4b
(qk − xk)4

)
.

(17)

For the sake of simplicity, we set

A :=
2(ρ −σ)

nρ2 > 0, B :=
nρ2

4(ρ −σ)σ
> 0.

Next, plugging (8), (16) and (17) into (15), we get

A

[
a

(1− e−dt)
+

n

∑
k=1

( b
(xk − pk)2 +

b
(qk − xk)2

)]2

−
[ n

∑
k=1

( 6b
(xk − pk)4 +

6b
(qk − xk)4

)]

−B

[ n

∑
k=1

(
− 2b

(xk − pk)3√ψD
+

2b
(qk − xk)3√ψD

)2
]
− da

(1− e−dt)2edt

� Aa2edt −da
(1− e−dt)2edt +(Ab2−6b−4bB)

[ n

∑
k=1

( 1
(xk − pk)4 +

1
(qk − xk)4

)]
.

According (3), Aa2edt −da � 0.
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If we prove (15), it needs

Ab2−b(6+4B)> 0.

In summary, a and b satisfy

a � ndρ2

2(ρ −σ)
, b >

nρ2

2(ρ −σ)

[
6+

nρ2

(ρ −σ)σ

]
.

According to the range of ρ , σ , a, c in Theorem1, the right hand side of (11) is
positive, which is a contradiction. This is because b is independent of xk , k = 1, · · ·,n ,
so when the solution exists in R

n we can let D→R
n and these terms drop out. Theorem

1 is thus proved. �

3. Applications

In this section, we shall give a few applications of Theorem 1. Firstly, we use it
to obtain blow-up of solutions of (1) in finite time, then we integrate along space-time
paths to derive a classical Harnack inequality.

3.1. Finite time blow-Up

PROPOSITION 1. Assume that w is a positive solution to (1), c is a constant sat-
isfies that 0 < λ (q−1) � c < γ . Then w blows up in finite time provided that

w(x0,t0) �
(

dγn
(γ − c)(1− e−d)eγ

) 1
(q−1)

. (18)

at some point (x0, t0) .

Proof. Picking ρ = γ , σ = γ
2 , a = dγn and max{ (q−1)nρ2

4(ρ−σ) ,λ (q−1)} � c < γ in
(4) yields

γ�w− γ
2w

|∇w|2 + ceγtwq +
dγn

(1− e−dt)
w � 0.

Since wt = �w+ eγtwq , we have

γwt +
dγnw

(1− e−dt)
� (γ − c)eγtwq. (19)

Hence

γ
∂
∂ t

( 1
w

)
� 1

w

( dγn
(1− e−dt)

− (γ − c)eγtwq−1
)

=
1

w2−q

( dγn
(1− e−dt)wq−1 − (γ − c)eγt

)
.

(20)
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Without loss of generality, we may assume that w �
(

dγn
(γ−c)(1−e−d)eγ

) 1
(q−1) at the

origin x0 = 0 for t0 = 1. This assumption together with (20) gives

γ
∂
∂ t

( 1
w

)
(0,t) � γ − c

w2−q(0,t)

(
eγ − eγt

)
< 0,

so that w(0, t) is strictly increasing for t � 1 provided that w(0, t) is finite.

Using (20) and monotonicity of w(0,t) , if q > 2, then wq−2(0,t) � wq−2(0,1) for
t � 1 and

γ
∂
∂ t

( 1
w

)
(0,t) � dγn

(1− e−dt)w(0,1)
− (γ − c)eγtwq−2(0,1),

and if 1 � q � 2, then

γ
q−1

∂
∂ t

[( 1
w

)q−1]
(0,t) = γw2−q ∂

∂ t

( 1
w

)
(0,t) � dγn

(1− e−dt)wq−1(0,t)
− (γ − c)eγt .

In both cases, when t is large enough, the right hand sides are less than zero, so
that 1

w → 0 in finite time. This completes the proof. �

3.2. Classical Harnack inequality

In this subsection, we integrate our differential Harnack inequality of (4) along
space-time curve to derive a classical Harnack inequality.

COROLLARY 1. Let w(x,t) be a positive classical solution to (1) and l(x, t) :=
logw. Suppose that x1 , x2 ∈ R

n and t2 > t1 > 0 . Assume further that ρ � 2σ , ρ � c

and a = ndρ2

2(ρ−σ) � ndρ . Then we have

w(x1,t1) � w(x2,t2)
(

edt2 −1
edt1 −1

)n

exp

[ |x2− x1|2
2(t2− t1)

]
. (21)

Proof. Let μ(t) = (x(t),t) , t ∈ [t1,t2] be a space-time curve joining two given
points (x1, t1), (x2, t2) ∈ R

n × [0,+∞) with 0 < t1 < t2 .

Applying (4), we have

�l � 1
ρ

(
−σ |∇l|2− ceγt+l(q−1)− a

(1− e−dt)

)
.
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It yields that

d
dt

[l(x(t), t)] = ∇l · ẋ+ lt

= ∇l · ẋ+�l + |∇l|2 + ceγt+l(q−1)

� |∇l|2
(
1− σ

ρ

)
+ ∇l · ẋ− a

ρ(1− e−dt)
+ eγt+l(q−1)

(
1− c

ρ

)

� |∇l|2
(1

2
− σ

ρ

)
− 1

2
|ẋ|2 − a

ρ(1− e−dt)
+ eγt+l(q−1)

(
1− c

ρ

)

� −1
2
|ẋ|2− a

ρ(1− e−dt)
,

where ρ � 2σ and ρ � c . Hence, we get

d
dt

[−l(x(t),t)] � 1
2
|ẋ|2 +

nd
(1− e−dt)

.

Integrating the above inequality along μ , we have

l(x1, t1)− l(x2,t2) � inf
μ(t)=(x(t),t)

∫ t2

t1

[1
2
|ẋ|2 +

nd
(1− e−dt)

]
dt.

Recalling that l = logw , we arrive at (21). �
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