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Abstract. The article presents a quantitative refinement of the result of Baudier (Archiv Math., 89
(2007), no. 5, 419–429): the infinite binary tree admits a bilipschitz embedding into an arbitrary
non-superreflexive Banach space. According to the results of this paper, we can additionally
require that, for an arbitrary ε > 0 and an arbitrary non-superreflexive Banach space X , there is
an embedding of the infinite binary tree into X whose distortion does not exceed 4+ ε .

1. Introduction

One of the important directions in Banach space theory and metric geometry is
the theory of characterizations of different isomorphic invariants of Banach spaces in
purely metric terms. This direction was initiated in the papers [7] and [8]. Eventually, it
became a highly developed direction with many applications, see surveys in [1, 14, 15,
20, 21], and [22, Chapter 13]. This direction is also one of the essential parts of what
Bourgain [7] named the Ribe program.

To begin with, let us recollect the necessary definitions.

DEFINITION 1. (i) Let (A,dA) and (Y,dY ) be metric spaces. Given 0 � C < ∞ ,
a map f : (A,dA) → (Y,dY ) is said to be C -Lipschitz if, for all u,v ∈ A, the following
inequality holds:

dY ( f (u), f (v)) � CdA(u,v).

A map f is called Lipschitz if there is 0 � C < ∞ such that f is C -Lipschitz.
(ii) Let 1 �C < ∞ . A map f : A → Y is called a C-bilipschitz embedding if there

exists r > 0 such that for all u,v ∈ A, the following inequalities hold:

rdA(u,v) � dY ( f (u), f (v)) � rCdA(u,v). (1)

A map f is a bilipschitz embedding if it is C -bilipschitz for some 1 �C < ∞ . The least
constant C for which there exists r > 0 such that (1) is satisfied, is called the distortion
of f .

Mathematics subject classification (2020): 46B85, 46B20, 51F30.
Keywords and phrases: Distortion of a bilipschitz embedding, logarithmic spiral, superreflexive Ba-

nach space, test space.

c© � � , Zagreb
Paper MIA-25-26

421

http://dx.doi.org/10.7153/mia-2022-25-26


422 S. OSTROVSKA

DEFINITION 2. Let P be a class of Banach spaces. A collection of metric spaces
{Mλ}λ∈Λ is called a collection of test spaces for P provided that a Banach space X
satisfies X /∈ P if and only if {Mλ}λ∈Λ admit embeddings into X with uniformly
bounded distortions.

In the sequel, the following terminology and notation related to the graph the-
ory will be used. A binary tree of depth n is a finite graph in which each vertex is
represented by a finite (possibly empty) sequence of 0s and 1s of length at most n .
Conventionally, it is denoted by Tn . A vertex corresponding to a sequence of length n
in Tn is called a leaf.

An infinite binary tree is an infinite graph in which each vertex is represented by a
finite (possibly empty) sequence of 0s and 1s. Such a graph is denoted by T∞ .

For both finite and infinite binary trees, the graph structure is introduced in the
following way: Two vertices are adjacent if the sequence corresponding to one of them
is obtained from the sequence corresponding to the other by adding one term on the
right. For example, vertices corresponding to (1,0,1,0) and (1,0,1,0,0) are adjacent.
The vertex corresponding to the empty sequence is called a root.

Both finite and infinite binary trees are endowed with the shortest path distance
d(u,v) , which is the length of the shortest path joining u and v . In this connection,
recall that in a tree, there is only one path joining u and v , that is, d(u,v) is the length
of this path.

Throughout the paper, BX and SX denote the closed unit ball and the unit sphere
of a Banach space X , while X∗ denotes the dual space of X . We refer to [5, 6, 20] for
unexplained terminology.

Recall that a Banach space is called superreflexive if and only if it is isomorphic
to a uniformly convex space. The first metric characterization of superreflexivity was
obtained by Bourgain [7].

THEOREM 1. (Bourgain’s theorem) The set {Tn}n=1 of all finite binary trees is a
collection of test spaces for superreflexivity.

Baudier [2] proved the following result, which strengthens the part of Theorem 1
stating the embeddability of {Tn}∞

n=1 with uniformly bounded distortion into an arbi-
trary non-superreflexive Banach space.

THEOREM 2. (Baudier’s theorem) The infinite binary tree is a test space for su-
perreflexivity.

In his proof of the possibility to embed T∞ into any non-superreflexive Banach
space, Baudier did not attempt to find a sharp estimate for the distortion of such an
embedding. The estimate of distortion derived in [2] gives the bound � 216+ ε for
any ε > 0, see the bottom of page 424. The goal of the present work is to prove the
result below using the approach developed in [16].

THEOREM 3. If X is a non-superreflexive Banach space and ε > 0 , then T∞ ad-
mits an embedding into X with distortion not exceeding 4+ ε .
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REMARK 1. There exist non-superreflexive Banach spaces which do not admit
embeddings of the infinite binary tree of distortion 1 – that is, isometric embeddings.
This can be established by comparing the fact that a non-superreflexive space can be
strictly convex with the observation from [19, Observation 5.1]: An unweighted graph
can admit an isometric embedding into a strictly convex Banach space only if it is either
a complete graph or a path.

Note that a non-superreflexive space can be strictly convex since each separable
Banach space is isomorphic to a strictly convex Banach space, see [5, p. 175 and Exer-
cise 1 on p. 186].

REMARK 2. It should be pointed out that the problem of lowering the estimate of
Theorem 3 to � 1+ε can be very challenging. See a related problem [16, Problem 5.1].
It is also of interest to find low-distortion embeddings for the pasting results obtained
in [3], [17], and [18].

2. Proof of Theorem 3

Proof. As an initial step, notice that Bourgain’s proof [7] of Theorem 1 implies
that, for each non-superreflexive Banach space X , each ε > 0, and each n ∈ N , there
is an embedding of Tn into X with distortion < 1+ ε . This may not be obvious from
reading [7]; as such, we refer the reader to the presentation of Bourgain’s result pro-
vided in [21, pp. 316–317], which implies that, for each non-superreflexive Banach
space X , each ε > 0, and every n ∈ N , there is a bilipschitz embedding of Tn into X
with distortion < 1+ ε .

Since the text of [21] does not explain in detail why the map can be selected to have
distortion � 1 + ε, an easy-to-follow way toward deriving this estimate is presented
below. This approach employs the definition of J -convexity. The notion of J -convexity
arises from the important discovery of James [11], and it has been further developed by
a few significant results in [9, 12], and [23]. In our method, the fact that a Banach space
is superreflexive if and only if it is J -convex will be used.

• Since we consider a non-superreflexive space X , for every δ ∈ (0,1) , there is a

sequence {xi}2n+1−1
i=1 in BX which satisfies the following negation of J -convexity

(see a detailed explanation in [5, pp. 261–265]):∥∥∥∥∥
2n+1−1

∑
i=1

θixi

∥∥∥∥∥ > (2n+1−1)− δ ,

for every collection {θi}2n+1−1
i=1 of ±1 with only one change of sign in the se-

quence.

• The previous item implies that∥∥∥∥∥∑
i∈A

θixi

∥∥∥∥∥ > |A|− δ ,
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for every subset A in {1, . . . ,2n+1 − 1} and each collection {θi}2n+1−1
i=1 of ±1

with only one change of sign in the sequence.

• Following Bourgain’s construction as described in [21, pp. 316–317], one con-
cludes that the inequality above implies the existence of an embedding of Tn into
X with distortion < 1/(1− δ ) .

The proof of Theorem 3 follows the same general scheme as the proof of a quan-
titative version [16, Theorem 1.14] of the Baudier-Lancien theorem [4]. However, to
refine the estimate for the distortion, we start with constructing spaces {Zn} which
were not needed for [16, Theorem 1.14].

It is assumed that X is separable because each non-superreflexive Banach space
contains a separable non-superreflexive subspace. This can be seen, for example, from
[5, p. 265, Theorem 3] or [6, Theorem A.6]. In what follows, basic facts about ultra-
products from [20, Section 2.2] and standard notation are used.

Given two Banach spaces W and U , the space W is said to be finitely repre-
sentable in U if, for any ε > 0 and any finite-dimensional subspace F ⊂ W , there
exists a finite-dimensional subspace G ⊂U such that dBM(F,G) < 1+ ε , where dBM

is the Banach-Mazur distance.
Let X be a separable non-superreflexive Banach space and { fi}∞

i=1 be a weak∗
dense subset of the sphere SX∗ . Let Xk = ∩k

i=1 ker fi , U be a free ultrafilter on N , and
Y = (∏Xi)U .

LEMMA 1. The Banach space Y contains an isometric copy of T∞ .

Proof. It is easy to see from the definition of superreflexivity that if X is non-
superreflexive, then every subspace of X of a finite codimension is also non-super-
reflexive. Consequently, each Xk admits an embedding of Tk with distortion �

(
1+ 1

k

)
.

These embeddings can be chosen in such a way that the images of the roots of Tk for
all k ∈ N are zero vectors in the corresponding spaces.

Next, for each vertex v ∈ T∞ , there is m ∈ N such that v is a vertex of Tk for
k � m . Define the sequence {vk}∞

k=1 , where vk is a zero vector when k < m , and is
the image of v under the embedding of Tk into Xk when k � m . The definition of
the ultraproduct implies that the mapping v �→ {vk}∞

k=1 can be regarded as an isometric
embedding of T∞ into Y . �

LEMMA 2. If Y is the Banach space as in Lemma 1, then it is finitely repre-
sentable in any of Xk , k ∈ N .

Proof. Since Xi is a subspace of Xj for i � j , the statement follows directly from
the proof of [20, Proposition 2.31]. �

At this stage, fix an isometric copy of T∞ in Y , and assume that its root is at 0 .
Denote by Tn the corresponding subsets of T∞ and by Zn , n ∈ N , the linear span of
vertices of Tn in Y .
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LEMMA 3. For each ε > 0 and each subsequence {ni}∞
i=1 ⊂ N , there exists a

Banach space V satisfying the following two conditions:

1. It has a finite-dimensional decomposition ⊕∞
i=1Vi with summands isometric to

Zni and such that each sub-sum V j ⊕Vk is isometric to the �1 -sum Znj ⊕1 Znk .

2. It admits a linear embedding into the separable non-superreflexive Banach space
X with distortion < 4+ ε .

Proof. We start with constructing in X a subspace V having a finite-dimensional
decomposition V = ⊕∞

i=1Vi , which is a low-distortion image of ⊕∞
i=1Zni .

To construct the subspace V , the method which goes back to Mazur [13, p. 4]
comes in handy.

DEFINITION 3. Let λ ∈ (0,1] . A subspace N ⊂ X∗ is called λ -norming over a
subspace E ⊂ X if, for all y ∈ E , there holds:

sup{| f (y)| : f ∈ N, || f || � 1} � λ ||y||.

LEMMA 4. For any λ ∈ (0,1) and any finite-dimensional subspace E ⊂ X , there
exists a finite subset A ⊂ { fi}∞

i=1 such that the linear span of A is λ -norming over E .

Proof. The existence of such a subset can be established as follows. Let {xk}m
k=1

be a 1−λ
2 -net in the unit sphere of E . Since { fi}∞

i=1 is weak∗ dense in SX∗ , it follows

that, for each k ∈ {1, . . . ,m}, one can pick n(k) such that | fn(k)(xk)| � 1− 1−λ
2 . The

verification that the linear span of A = { fn(k)}m
k=1 is λ -norming is plain. �

Let ε ∈ (0,1) and {εi}∞
i=1 be positive numbers satisfying:

∞

∏
i=1

(1− εi) > 1− ε. (2)

Lemma 2 implies that the space X contains a subspace V1 such that there is a
linear map S1 : V1 → Zn1 satisfying

||y|| � ||S1y|| � (1+ ε)||y||, ∀y ∈V1.

Consider a finite subset A1 ⊂ { fi}∞
i=1 so that N1 = linA1 is (1−ε1)-norming over

V1 and set
W1 = (N1)
 := {x ∈ X : ∀x∗ ∈ N1 x∗(x) = 0}.

Observe that W1 contains Xk(1) , where k(1) = max{i : fi ∈ A1} . This allows us to
use Lemma 2 once again. As a result, we find a subspace V2 ⊂ W1 and a linear map
S2 : V2 → Zn2 satisfying

||y|| � ||S2y|| � (1+ ε)||y||, ∀y ∈V2.
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Consider a finite subset A2 ⊂ { fi}∞
i=1 so that A2 ⊃ A1 and also N2 = linA2 is

(1−ε2)-norming over the linear span of V1∪V2 and set W2 = (N2)
 . Observe that W2

contains Xk(2) , where k(2) = max{i : fi ∈ A2} .
We continue in an obvious way. In the j -th step, we find a subspace

Vj ⊂Wj−1 = (Nj−1)


and a linear map S j : Vj → Znj satisfying

||y|| � ||S jy|| � (1+ ε)||y||, ∀y ∈Vj.

Let finite-dimensional subspace Nj ⊂ X∗ be (1− ε j)-norming over the linear span of
V1∪ . . .∪Vj . It is clear that, for u∈V1∪ . . .∪Vj and v∈ (Nj)
 , the following inequality
holds:

||u+ v||� (1− ε j)||u||. (3)

It is easy to see that subspaces {Vi}∞
i=1 form a finite-dimensional decomposition of

the closed linear span V of
⋃∞

i=1Vi. When writing a sum of the form ∑∞
i=1 yi , it is

understood by tacit agreement that yi ∈Vi . Let us introduce the following norm on V :∥∥∥∥∥
∞

∑
i=1

yi

∥∥∥∥∥
a

= max

{∥∥∥∥∥
∞

∑
i=1

yi

∥∥∥∥∥
X

, max{||S jy j||+ ||Skyk|| : j,k ∈ N}
}

(4)

and verify that || · ||a is
4(1+ ε)
1− ε

-equivalent to || · ||X . In fact, it is clear that

∥∥∥∥∥
∞

∑
i=1

yi

∥∥∥∥∥
X

�
∥∥∥∥∥

∞

∑
i=1

yi

∥∥∥∥∥
a

.

On the other hand, inequality (3) yields:

(1− εk)

∥∥∥∥∥
k

∑
i=1

yi

∥∥∥∥∥
X

�
∥∥∥∥∥

∞

∑
i=1

yi

∥∥∥∥∥
X

and

(1− εk−1)

∥∥∥∥∥
k−1

∑
i=1

yi

∥∥∥∥∥
X

�
∥∥∥∥∥

∞

∑
i=1

yi

∥∥∥∥∥
X

.

By the triangle inequality,

||yk||X �
(

1
1− εk

+
1

1− εk−1

)∥∥∥∥∥
∞

∑
i=1

yi

∥∥∥∥∥
X

.

The above-stated equivalence of ‖ · ‖a and ‖ · ‖X now follows from ||Skyk|| � (1 +
ε)||yk||X and (2).

Denote V with the norm ‖ ·‖a by V and Vi with the norm ‖ ·‖a by Vi . It is clear
that V j⊕Vk with the norm ‖·‖a is isometric to Znj ⊕1 Znk . This proves Lemma 3. �
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To complete the proof of Theorem 3, it remains to prove that, for each ε > 0, there
exists an embedding of T∞ into V with distortion < 1+ ε .

Recall that we have identified T∞ with its isometric image M in Y , so that the
image of the root is 0 .

Let {Ri}∞
i=1 be an increasing sequence of positive real numbers. Additional con-

ditions on {Ri}∞
i=1 will be imposed later. Consider finite subsets Mi of M defined

as:
Mi = {x ∈ M : ||x|| � Ri}.

Notice that each Mi can be identified with the binary tree Tni , where ni = �Ri�
and �·� denotes the integer part of a real number. Taking into account the way in
which spaces Zi were introduced, one can conclude that each Mi admits an isometric
embedding Ei into Zni . Embedding Ei may be also regarded as an embedding of Mi

into the summand of V that is equal to Zni .
The rest of the proof goes along the path laid in [16] with the application of log-

arithmic spirals, which being quasi-geodesics in R
2 and far from geodesics (see [10,

p. 4]) can, after proper modifications, become expedient to construct embeddings with
distortion � (1+ ε) .

REMARK 3. The idea behind the proof of Theorem 3 is to find a low-distortion
pasting technique for natural isometric embeddings of balls in M with increasing radii
into V . This is exactly what is achieved by the forthcoming formulae (8), (9), and (10),
which can be regarded as “flows” of �1 -versions of logarithmic spirals.

To execute this idea, let us select an increasing sequence {Ri}∞
i=1 of positive real

numbers in such a way that
R1 = 1, (5)

ε ln(R2i/R2i−1) =
π
2

, (6)

R2i+1

R2i
� 1

ε
. (7)

Further, let c2i−1 and s2i−1 , i ∈ N be real-valued functions on M defined as:

c2i−1(x) =

⎧⎪⎨
⎪⎩

cos2(ε ln(R2i−1/R2i−1)) = 1 when ||x|| � R2i−1,

cos2(ε ln(||x||/R2i−1)) when R2i−1 � ||x|| � R2i,

cos2(ε ln(R2i/R2i−1)) = 0 when ||x|| � R2i,

(8)

s2i−1(x) =

⎧⎪⎨
⎪⎩

sin2(ε ln(R2i−1/R2i−1)) = 0 when ||x|| � R2i−1,

sin2(ε ln(||x||/R2i−1)) when R2i−1 � ||x|| � R2i,

sin2(ε ln(R2i/R2i−1)) = 1 when ||x|| � R2i.

(9)

Clearly, the equalities in the last lines of formulae (8) and (9) follow from (6).
Now, let us introduce the map D : M →⊕∞

i=1Zn2i (considered as a subspace of V ), as
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a casewise function of the form:

D(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1(x)E2(x)+ s1(x)E4(x) when x ∈ M3,

c3(x)E4(x)+ s3(x)E6(x) when x ∈ M5 \M3,

. . . . . .

c2i−1(x)E2i(x)+ s2i−1(x)E2i+2(x) when x ∈ M2i+1 \M2i−1,

. . . . . . ,

(10)

where, by default, it is accepted that a product of 0 and an undefined quantity is 0.
For example, E2(x) is not defined for x ∈ M3 \M2 , but c1(x) = 0 for x ∈ M3 \M2 ,
therefore the first term in the first line is regarded as 0 for such x . Obviously, c2i−1(x)+
s2i−1(x) = 1 for all i and x . Therefore, taking into account (10), equality En0 = 0, and
the fact that V j ⊕Vk is isometric to the �1 -sum Znj ⊕1 Znk , one obtains:

∀x ∈ M ||x|| = ||D(x)||. (11)

What is yet to be supplied is an estimate of the form:

∀x,y ∈ M (1−ψ(ε))||x− y||� ||D(x)−D(y)|| < (1+ ξ (ε))||x− y||, (12)

where functions ψ and ξ take positive values and comply with

lim
ε↓0

ψ(ε) = lim
ε↓0

ξ (ε) = 0.

Evidently, it suffices to look into the case ||y|| � ||x|| only. The simpler case
||y|| � ε||x|| is of no difficulty. Indeed, ||y|| � ε||x|| implies

(1− ε)||x||� ||x||− ||y||� ||x− y||� ||x||+ ||y||� (1+ ε)||x|| (13)

and

(1− ε)||x|| � ||x||− ||y||= ||D(x)||− ||D(y)||
� ||D(x)−D(y)||� ||D(x)||+ ||D(y)||
= ||x||+ ||y||� (1+ ε)||x||.

(14)

Combining (13) and (14) yields:

1− ε
1+ ε

||x− y||� ||D(x)−D(y)|| � 1+ ε
1− ε

||x− y||, (15)

which is exactly an estimate of the desired type (12).
Set R0 = 0. By condition (7) and inequality (15), one may focus only on the case

where
R2i−2 � ||y|| � ||x|| � R2i+1, i = 1,2, . . . . (16)

We begin with the case R2i−1 � ||y|| � ||x|| � R2i .
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In what follows, it is convenient – for the sake of transparency in the calculations
– to write c for c2i−1 , s for s2i−1 as well as E for E2i , and F for E2i+2 . Having stated
so, we write:

||D(x)−D(y)|| = ||c(x)E(x)− c(y)E(y)||+ ||s(x)F(x)− s(y)F(y)||
= ||c(x)(E(x)−E(y))+ (c(x)− c(y))E(y)||

+ ||s(x)(F(x)−F(y))+ (s(x)− s(y))F(y)||.
(17)

We shall dwell longer upon each of the summands in (17). In the first instance, the
Mean Value Theorem implies that, for some number τ ∈ (||y||, ||x||) , the inequality
below is true:

c(x)− c(y) = cos2(ε ln(||x||/R2i−1))− cos2(ε ln(||y||/R2i−1))

= 2cos(ε ln(τ/R2i−1)) · (−sin(ε ln(τ/R2i−1))) · ε 1
τ
(||x||− ||y||).

(18)

Consequently,

||(c(x)− c(y))E(y)|| � 2ε
1
τ
(||x||− ||y||) · ||y||� 2ε||x− y||. (19)

In the same way, it can be established that

||(s(x)− s(y))F(y)|| � 2ε||x− y||. (20)

Collecting inequalities (17), (19), and (20), one arrives at:

(max{c(x)−2ε,0}+max{s(x)−2ε,0})||x− y||
� ||D(x)−D(y)||� ((c(x)+2ε)+ (s(x)+2ε))||x− y||. (21)

In addition, since c(x),s(x) � 0 and c(x)+ s(x) = 1, the next equalities are valid:

lim
ε↓0

(max{c(x)−2ε,0}+max{s(x)−2ε,0}) = 1

and
lim
ε↓0

((c(x)+2ε)+ (s(x)+2ε)) = 1,

whence the targeted estimate (12) is justified by inequality (21).
The remaining subcases of the case R2i−2 � ||y|| � ||x|| � R2i+1 can be consid-

ered using similar formulae as in the case above, and the observation, that for ‖x‖ ∈
[R2i−2,R2i−1] , i � 2, the formulae

D(x) = c2i−1(x)E2i(x)+ s2i−1(x)E2i+2(x) = E2i(x) (22)

and
D(x) = c2i−3(x)E2i−2(x)+ s2i−3(x)E2i(x) = E2i(x)

give the same result.
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To illustrate this statement, consider the case where ||y|| ∈ [R2i−2,R2i−1] and ||x|| ∈
[R2i−1,R2i] . By the observation just made, in this case we may use (22) with c2i−1(y) =
cos2(ε ln(R2i−1/R2i−1)) , which – with the help of the reasoning as in (18) and in the
left inequality of (19) – reveals that, for some number τ ∈ (R2i−1, ||x||) , there holds:

||(c(x)− c(y))E(y)|| � 2 · ε 1
τ
(||x||−R2i−1) · ||y||.

Hence, inequality
||(c(x)− c(y))E(y)|| � 2ε||x− y||

is true in this case, too. In the same manner, estimate (20) can be established. All of the
other subcases of

R2i−2 � ||y|| � ||x|| � R2i+1

can be analyzed by means of similar arguments. The idea is that in the case when either
x or y is in the range where functions c and s have values 0 and 1, we may use the
same estimates as in the case R2i−1 � ||y|| � ||x|| � R2i replacing ‖x‖ or ‖y‖ by the
corresponding Rj in some places. �
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