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STABILITY ESTIMATES FOR A RADICAL FUNCTIONAL

EQUATION WITH FIXED–POINT APPROACHES
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(Communicated by J. Pečarić)

Abstract. We investigate the stability problem of a radical functional equation using both Brzdȩk
fixed point theorem and fixed point alternative method.

1. Introduction

In 1940, Ulam [24] proposed a problem called the Hyers-Ulam stability in the
field of functional equations: “When is it true that a function which approximately sat-
isfies a certain functional equation must be close to an exact solution for the functional
equation? ”

In the next year, Hyers [13] gave the first, affirmative, and partial solution to
Ulam’s question in Banach spaces. Afterwards, the result obtained by Hyers was gen-
eralized by Aoki [3] with the condition for the bound of the norm of Cauchy difference.
In 1978, Rassias [19] provided the same results as Aoki’s in terms of the additive prop-
erty and the condition for the linearity and later improved them with weaker conditions
as follows.

THEOREM 1. [20, 21] Let E1 be a normed space, E2 be a Banach space, and
f : E1 → E2 be a function. If f satisfies the inequality

|| f (x+ y)− f (x)− f (y)||� θ (||x||p + ||y||p) (1)

for some θ � 0 , for some p ∈ R with p �= 1 , and for all x,y ∈ E1 −{0E1} , then there
exists a unique additive function A : E1 → E2 such that

|| f (x)−A(x)|| � 2θ
|2−2p| ||x||

p (2)

for each x ∈ E1−{0E1} .
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For the recent decades many researchers have studied this problem in a variety of
fields (see, e.g., [4] and [15]). Among the approaches to the stability problems the fixed
point methods are shown to be very efficient and suitable. In 2011, for example, Brzdȩk
and Ciepliński [5] introduced the existence theorem of the fixed point for nonlinear
operator in metric spaces and also obtained the fixed point results in arbitrary metric
space. Moreover, they used the results of the fixed point to investigate the stability
problem of functional equations in non-Archimedeanmetric spaces. Recently, Brzdȩk’s
fixed point method applied to some additive and radical functional equations; see [1],
[2] and [8].

Before the Brzdȩk’s fixed point method, there was another fixed point method
for the Hyers-Ulam stability, called Fixed Point Alternative method. In 1996, Isac
and Rassias [14] were first to provide applications of new fixed point theorems for
the proof of stability theory of functional equations. By using fixed point methods the
stability problems of several functional equations have been extensively investigated by
a number of authors; see [11], [12], [17], [18] and [22] including Brzdȩk’s fixed point
method as aforementioned.

During the past several years many researchers have studied a variety of general-
izations, extensions, and applications of the Hyers-Ulam stability problems for a num-
ber of functional equations, in particular, the ones involving a radical expression such
as the radical quadratic functional equation of the form f (

√
x2 + y2) = f (x) + f (y) .

Now we continue those investigations with a new form of functional equation, called
the radical functional equation

f (x+ y+2
√

xy ) = f (x)+ f (y) . (3)

For the existence of a solution to (3), there are very general results in [9] where
the following conditional equation for functions f : S −→W was considered:

f (p(Π(x)� Π(y))) = f (x)∗ f (y), x,y ∈ S,Π(x)� Π(y) ∈ P0, (4)

where S is a nonempty set, (Y,�) and (W,∗) are groupoids (i.e., Y and W are nonempty
sets endowed with binary operations � : Y 2 −→ Y and ∗ : W 2 −→ W ), Π : S −→ Y ,
and P0 := Π(S) with a section of Π , p : P0 −→ S , (i.e., Π(p(x)) = x , x ∈ P0 .) Then
the radical functional equation (3) can be thought of as a special case of the generalized
radical functional equation (4) simply taking Π(z) =

√
z and p(z) = z2 if S = R (the

set of reals), (Y,�) is the additive group of real numbers. According to Theorem 2.1
in [9] there exists the unique solution A : P0 −→ W for the conditional equation (4)
A(u� v) = A(u)∗A(v) , u,v ∈ P0 , u� v∈ P such that f = A◦Π or A = f ◦ p and hence
it follows that every solution f : R+ −→ R of the radical equation (3) has the form
f (x) = A(

√
x) , where A : R −→ R is an additive function, i.e., A(x+ y) = A(x)+A(y)

for all x,y ∈ R .
Now let us introduce the definition of stability due to Brzdȩk [8] here for our main

results.

DEFINITION 1. Let (X ,+) and (Y,+) be semigroups, d be a metric in Y , E ⊆
C ⊆ R

X2

+ be nonempty, and T be an operator mapping C into R
X
+ (R+ denotes the
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set of nonnegative reals). We say that a radical equation is (E ,T )-stable provided for
every ε ∈ E and f ∈ YX with

d( f (x+ y+2
√

xy) , f (x)+ f (y)) � ε(x,y) (5)

for all x, y ∈ X , there exists a solution R ∈YX of the equation (3) such that

d( f (x), R(x)) � T ε(x) (6)

for all x ∈ X (As usual, BA denotes the family of all functions mapping a set A �= /0
into a set B �= /0).

We note that (E ,T )-stability of a radical equation (3) means that every approxi-
mate (in the sense of (5)) solution of (3) is always close (in the sense of (6)) to an exact
solution to (3).

In 2014, Brzdȩk [8] used the Brzdȩk fixed point method (see Theorem 4 in [8]
or Theorem 2 in this article) to prove a general result on Ulam’s type stability of the
additive functional equation f (x + y) = f (x) + f (y) , mapping a commutative group
into a commutative group and improve some earlier stability estimations on the addi-
tive functional equation. Recently, Brzdȩk, El-hady, and Schwaiger [10] analyzed the
stability results for the generalized radical functional equation (4) with a very general
and uniform approach. We will discuss all the analogies and connections between our
main results and stability results from two papers [8] and [10] just after Theorem 3 and
Theorem 5, respectively on Remarks in the following sections.

The purpose of this paper is to investigate new stability results for the radical func-
tional equation (3) by using both Brzdȩk’s fixed point method (for further references on
related results see [6]) and fixed point alternative method in the subsequent sections. In
addition, we consider the distinctive properties for each method and we raise an open
problem in Remarks 1 and 2, not only discussion of correspondences and connections
between the main results and previous work.

2. Brzdȩk fixed point method

In this section, we will investigate the stability problem for the radical functional
equation (3) by using Brzdȩk fixed point method; see Theorem 2. As usual, N0 , N and
R+ denote the set of non-negative integers, the set of positive integers and the set of
non-negative real numbers, respectively. The fixed point method can be based on the
following theorem; see [8].

THEOREM 2. ([8]) Let X be a non-empty set, (Y, d) be a complete metric space
and f1 , f2 : X → X be given mappings. Suppose that T :YX →YX and Λ : R

X
+ → R

X
+

are two operators satisfying the following conditions

d(T ξ (x), T μ(x)) �
2

∑
j=1

d(ξ ( f j(x)), μ( f j(x))) (7)
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and

Λδ (x) :=
2

∑
j=1

δ ( f j(x)) (8)

for all ξ , μ ∈ YX , δ ∈ R
X
+ and x ∈ X . If there exist ε : X → R+ and φ : X → Y such

that

d(T φ(x), φ(x)) � ε(x) and ε∗(x) :=
∞

∑
n=0

(Λnε)(x) < ∞ (9)

for all x ∈ X , then the limit limn→∞(T nφ)(x) exists for each x ∈ X . Moreover, the
function ψ(x) := limn→∞(T nφ)(x) is a fixed point of T with

d(φ(x), ψ(x)) � ε∗(x)

for all x ∈ X .

We call the fixed point theorem as in Theorem 2 Brzdȩk fixed point method.

THEOREM 3. Let d be a complete metric in R which is invariant (i.e., d(x +
z, y+ z) = d(x,y) for x,y,z ∈ R) and h : R+ → R+ be a function such that

M0 := {m ∈ N : s((1+
√

m)2)+ s(m) < 1} �= /0 (10)

where
s(m) := inf{k ∈ R+ : h(mx) � kh(x) for all x ∈ R+}, (11)

for m ∈ N . Suppose that f : R+ → R satisfies the inequality

d
(

f (x+ y+2
√

xy), f (x)+ f (y)
)

� h(x)+h(y) (12)

for all x,y ∈ R+ . Then there exists a unique solution R : R+ → R to (3) such that

d( f (x),R(x)) � s0h(x) (13)

for all x ∈ R+ , where

s0 := inf
{ 1+ s(m)

1− s((1+
√

m)2)− s(m)
: m ∈ M0

}
.

Proof. Let m ∈ N . On letting y = mx in the inequality (12), we will see that

d
(

f ((1+
√

m)2x), f (x)+ f (mx)
)

� (1+ s(m))h(x) (14)

for all x ∈ R+ . Since h : R+ → R+ is a function, for each m ∈ N cm : R+ → R+ can
be defined by cm(x) = (1+ s(m))h(x) , for all x ∈ R+ .

To apply Brzdȩk fixed point method, for each m ∈ N , we define two operators
Tm : R

R+ → R
R+ and Λm : R

R+
+ → R

R+
+ by

Tmξ (x) := ξ
(
(1+

√
m)2x

)
− ξ (mx) (15)
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and
Λmδ (x) := δ

(
(1+

√
m)2x

)
+ δ (mx) (16)

for all x ∈ R+ and ξ ∈ R
R+ ,δ ∈ R

R+
+ . For each m ∈ N , we also define mappings

f j : R+ → R+ ( j = 1,2) by

f1(x) = (1+
√

m)2x , f2(x) = mx

for all x ∈ R+ . By the definition of Λm , it satisfies (8). Now we will check whether
the condition (7) holds or not. Let ξ ,μ ∈ R

R+ . By using the property of d , we have

d(Tmξ (x), Tmμ(x))

= d
(

ξ ( f1(x))− ξ ( f2(x)), μ( f1(x))− μ( f2(x))
)

� d
(

ξ ( f1(x))− ξ ( f2(x)), μ( f1(x))− ξ ( f2(x))
)

+ d
(

μ( f1(x))− ξ ( f2(x)), μ( f1(x))− μ( f2(x))
)

= d
(

ξ ( f1(x)), μ( f1(x))
)

+ d
(

ξ ( f2(x)), μ( f2(x))
)

for all x ∈ R+ . Hence the inequality (7) holds. Now, we will show that the condition
(9) also holds. By the assumption of d and the inequality (14), we have

d(Tm f (x), f (x)) = d
(

f ((1+
√

m)2x), f (x)+ f (mx)
)

� cm(x) (17)

for all x ∈ R+ , where cm(x) = (1+ s(m))h(x) . We note that

Λmcm(x) = (1+ s(m))
(
h( f1(x))+h( f2(x))

)

� (1+ s(m))
(
s((1+

√
m)2)+ s(m)

)
h(x)

=
(
s((1+

√
m)2)+ s(m)

)
cm(x)

for all x ∈ R+ . Using the mathematical induction, we get that

Λn
mcm(x) =

(
s((1+

√
m)2)+ s(m)

)n
cm(x)

for all x ∈ R+ and each n ∈ N . For each m ∈ M0 and x ∈ R+ , we will see that

c∗m(x) :=
∞

∑
j=0

(Λ j
mcm)(x) � 1+ s(m)

1− s((1+
√

m)2)− s(m)
h(x) (18)

where Λ0
mcm(x) = cm(x) . On letting ε = cm and φ = f in Theorem 2, Brzdȩk fixed

point method implies that
Tm(x) := lim

n→∞
T n

m f (x)
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exists and Tm(x) is a fixed point of Tm such that

d( f (x), Tm(x)) � c∗m(x)

for all m ∈ M0 and x ∈ R+ .
Next, we will check that the Tm satisfies the equation (3) for each m ∈ M0 . Let

n ∈ N0 , m ∈ M0 and T 0
m f (x) = f (x) . Now, we will show that

d
(
T n

m f (x+ y+2
√

xy), T n
m f (x)+T n

m f (y)
)

(19)

�
(
s((1+

√
m)2)+ s(m)

)n
(h(x)+h(y))

for all x,y ∈ R+ . To prove the inequality (19), we will use the mathematical induction.
Let n = 0 . This case follows from the inequality (12). Assume that it holds when
n = k . By using induction step and some properties of our assumption of d , we will
see that

d
(
T k+1

m f (x+ y+2
√

xy ), T k+1
m f (x)+T k+1

m f (y)
)

� d
(
T k

m f ((1+
√

m)2(x+ y+2
√

xy))−T k
m f (m(x+ y+2

√
xy)) ,

T k
m f ((1+

√
m)2x)−T k

m f (mx)+T k
m f ((1+

√
m)2y)−T k

m f (my)
)

� d
(
T k

m f ((1+
√

m)2(x+ y+2
√

xy))−T k
m f (m(x+ y+2

√
xy)) ,

T k
m f ((1+

√
m)2x)+T k

m f ((1+
√

m)2y)−T k
m f (m(x+ y+2

√
xy))

)

+d
(
T k

m f ((1+
√

m)2x)+T k
m f ((1+

√
m)2y)−T k

m f (m(x+ y+2
√

xy)) ,

T k
m f ((1+

√
m)2x)−T k

m f (mx)+T k
m f ((1+

√
m)2y)−T k

m f (my)
)

= d
(
T k

m f ((1+
√

m)2(x+ y+2
√

xy)) ,T k
m f ((1+

√
m)2x)+T k

m f ((1+
√

m)2y)
)

+d
(
T k

m f (m(x+ y+2
√

xy )) ,T k
m f (mx)+T k

m f (my)
)

�
(
s((1+

√
m)2)+ s(m)

)k(
h((1+

√
m)2x)+h((1+

√
m)2y)

)

+
(
s((1+

√
m)2)+ s(m)

)k(
h(mx)+h(my)

)

�
(
s((1+

√
m)2)+ s(m)

)k+1(
h(x)+h(y)

)

for all x,y ∈ R+ and m ∈ M0 . On letting n → ∞ in the inequality (19) we may obtain
the following equality

Tm(x+ y+2
√

xy) = Tm(x)+Tm(y)

for all x,y ∈ R+ and m ∈ M0 . For each m ∈ M0 , we may conclude that the mapping
Tm is a solution of a radical functional equation (3), that is,

Tm(x) = Tm((1+
√

m)2x)−Tm(mx)
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for all x ∈ R+ .
Now, we will show that the choice of m ∈ M0 does not imply that the fixed point

Tm(x) of Tm . In other words, we will show that a mapping R : R+ → R satisfying the
equation (3) and the following inequality

d( f (x), R(x)) � Lh(x) (20)

is equal to Tm for each m∈M0 , where L > 0 is constant. Since the mapping R satisfies
(3), we have

R(x+ y+2
√

xy) = R(x)+R(y) (21)

for all x ,y ∈ R+ .
Let m0 ∈ M0 be fixed. We note that

d(R(x), Tm0(x)) � d(R(x), f (x))+d( f (x), Tm0(x))

�
(
L+

1+ s(m0)
1− s((1+

√
m0)2)− s(m0)

)
h(x)

� h(x)L0

∞

∑
j=0

(
s((1+

√
m0)2)+ s(m0)

) j

where L0 =
(
1− s((1 +

√
m0)2)− s(m0)

)
L +

(
1 + s(m0)

)
. Next, we will show that

for each l ∈ N0 ,

d
(
R(x), Tm0(x)

)
� h(x)L0

∞

∑
j=l

(
s((1+

√
m0)2)+ s(m0)

) j
(22)

for all x ∈ R+ . To show this, we will use the mathematical induction, again. The case
l = 0 follows from the previous inequality. Assume that it holds when the case l ∈ N0 .
Now, for each m0 ∈ M0 ,

d(R(x), Tm0(x))

= d
(
R((1+

√
m0)2x)−R(m0x), Tm0((1+

√
m0)2x)−Tm0(m0x)

)

� h
(
(1+

√
m0)2x

)
L0

∞

∑
j=l

(
s((1+

√
m0)2)+ s(m0)

) j

+h
(
m0x

)
L0

∞

∑
j=l

(
s((1+

√
m0)2)+ s(m0)

) j

� h(x)L0

∞

∑
j=l+1

(
s((1+

√
m0)2)+ s(m0)

) j
.

Hence the inequality (22) holds whenever l ∈ N0 . On taking l → ∞ in the inequality
(22) we have

R = Tm0 (23)
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where m0 ∈ M0 . This means that Tm = Tm0 for each m0 ∈ M0 . Hence we get that

d( f (x), Tm(x)) � 1+ s(m)
1− s((1+

√
m)2)− s(m)

h(x)

for all m ∈ M0 and x ∈ R+ . Thus we may conclude that the inequality (13) holds with
R := Tm and also the uniqueness follows from the equality (23). �

REMARK 1. As we discussed in Introduction Brzdȩk, El-hady, and Schwaiger
[10] presented very abstract stability result concerning the generalized radical func-
tional equation (4) (see Theorem 5 in [10] for the precise stability result) with the con-
cept of Hyers-Ulam property for the Cauchy additive equation g(x+ y) = g(x)+ g(y)
where g is a function from a nonempty groupoid P to another Q . As expected the result
in Theorem 3 we just showed can be deduced from the corresponding one in Theorem 5
in [10]. Clearly, the complete and invariant metric d in Theorem 3 is subinvariant that
is one of two conditions in Theorem 5 in [10] and hence for any f : R+ → R satisfying

d
(

f (x+ y+2
√

xy), f (x)+ f (y)
)

� ψ(x,y), x,y ∈ R+

there is a solution R : R+ → R of the radical equation (3) such that

d( f (x),R(x)) � K(Φ(
√

x)+ χ(x)), x ∈ R+

where χ(z) = infy0∈R+ K[ψ1(z,y0)+ψ2(z,y0)] and K � 1. However, the main stability
result on the radical functional equation (3) in Theorem 3 presents a specific expression
for the control function ψ and an accurate estimation for the stability K(Φ(

√
x)+χ(x))

in terms of the function h(x) and the constant s0 when Π(x) =
√

x and p(x) = x2

in the conditional equation (4). Also, Brzdȩk [8] used a fixed point approach called
Brzdȩk fixed point method to investigate the stability of Cauchy additive functional
equation f (x+ y) = f (x)+ f (y) , in the class of functions taking a commutative group
into anther one and improved some earlier stability estimations. The stability result in
the main theorem (see Theorem 5) in [8] involves two automorphisms u and u′ on a
group (X ,+) with a relationship u′(x) = x− u(x) for x ∈ X . Those mappings on a
group in the stability for Cauchy additive equation, as we proved above, correspond to
the natural number m and (1 +

√
m)2 on the set of nonnegative real numbers in the

stability estimations of the radical functional equation (3).

COROLLARY 1. Let h : R+ → R+ be a mapping such that

lim
n→∞

inf supx∈R+

h((1+
√

n)2)x)+h(nx)
h(x)

= 0 . (24)

Suppose f : R+ → R satisfies

d
(

f (x+ y+2
√

xy), f (x)+ f (y)
)

� h(x)+h(y) , (25)
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for all x,y ∈ R+ . Then there exists a unique solution R : R+ → R to (3) such that

d( f (x), R(x)) � h(x) (26)

for all x ∈ R+ .

Proof. Let n ∈ N and let

an := supx∈R+

h((1+
√

n)2x)+h(nx)
h(x)

for each x ∈ R+ . By the definition s(n) as in Theorem 3, we will see that

s((1+
√

n)2) � supx∈R+

h((1+
√

n)2x)
h(x)

� an

and

s(n) � supx∈R+

h(nx)
h(x)

� an .

These inequalities imply that

s((1+
√

n)2)+ s(n) � 2an (27)

for all x ∈R+ . By our assumption of (24), the sequence {an} has a subsequence {ank}
such that limk→∞ ank = 0 , that is,

lim
k→∞

supx∈R+

h((1+
√

nk)2x)+h(nkx)
h(x)

= 0 . (28)

The inequalities (27) and (28) imply that

lim
k→∞

s((1+
√

nk)2) = lim
k→∞

s(nk) = 0 ,

that is,

lim
k→∞

(
s((1+

√
nk)2x)+ s(nkx)

)
= 0 .

Thus we have

lim
k→∞

1+ s(nk)
1− s((1+

√
nk)2)− s(nk)

= 1 .

On letting s0 = 1 as in Theorem 3, the inequality (26) follows from the inequality
(13). �
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3. Fixed point alternative method

Now, we will state the theorem, the alternative of fixed point in a generalized
metric space. After then we will study the stability by using a fixed point alternative
method. For a given mapping f : R+ → R , let

Df (x,y) = f (x+ y+2
√

xy))− f (x)− f (y) ,

x, y ∈ R+ .

DEFINITION 2. Let X be a set. A function d : X ×X → [0, ∞] is called a gener-
alized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) � d(x, y)+d(y, z) for all x, y, z ∈ X .

Note that the only substantial difference of the generalized metric from the metric
is that the range of generalized metric includes the infinity. Now, we will introduce one
of fundamental results of fixed point theory. For the proof, refer to [16].

THEOREM 4. (The alternative of fixed point [16], [23]) Suppose that we are given
a complete generalized metric space (Ω,d) and a strictly contractive mapping T : X →
X with Lipschitz constant 0 < L < 1 . Then for each given x ∈ X , either

d(Tnx, Tn+1x) = ∞ for all n � 0 ,

or there exists a natural number n0 such that

1. d(Tnx, Tn+1x) < ∞ for all n � n0 ;

2. The sequence {Tnx} is convergent to a fixed point y∗ of J ;

3. y∗ is the unique fixed point of T in the set

Y = {y ∈ X |d(Tn0x,y) < ∞} ;

4. d(y,y∗) � 1
1−L d(y,Ty) for all y ∈ Y .

THEOREM 5. Let f : R+ → R be a function for which there exists a function φ :
R

2
+ → [0,∞) such that there exists a constant L , 0 < L < 1 , satisfying the inequalities

‖ Df (x,y) ‖� φ(x,y) (29)

φ(4x,4y) � 2Lφ(x,y) ,

for all x,y ∈ R+ . Then there exists a unique radical function R : R+ → R defined by
R(x) = limn→∞

1
2n f (4nx) such that

‖ f (x)−R(x) ‖� 1
2(1−L)

φ(x,x) , (30)

for all x ∈ R+ .
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Proof. Consider the set

Ω = {g|g : R+ → R}
and introduce the generalized metric on Ω ,

d(g, h) = in f{c ∈ (0,∞) | ‖ g(x)−h(x) ‖� cφ(x,x) ,x ∈ R+} .

It is easy to show that (Ω,d) is complete. Now we define a function T : Ω → Ω by

Tg(x) =
1
2

g(4x) , g ∈ Ω

for all x ∈ R+ . Note that for all g,h ∈ Ω , let c ∈ (0, ∞) be an arbitrary constant with
d(g,h) � c . Then

‖ g(x)−h(x) ‖� cφ(x,x)

for all x ∈ R+ . By replacing x by 4x and dividing 1
2 in the previous inequality, we

have ∣∣∣
∣∣∣1
2
g(4x)− 1

2
h(4x)

∣∣∣
∣∣∣ � 1

2
cφ(4x,4x) � Lcφ(x,x)

for all x ∈ R+ . Hence we have that

d(Tg, Th) � Ld(g, h) ,

for all g,h ∈ Ω , that is, T is a strictly contractive mapping of Ω with the Lipschitz
constant L . By setting x = y in the inequality (29), then we have

∣∣∣
∣∣∣ f (x)− 1

2
f (4x)

∣∣∣
∣∣∣ � 1

2
φ(x,x) ,

for all x ∈ R+ , that is, d(T f , f ) � 1
2 < ∞ . We can apply the fixed point alternative

method and since limr→∞ d(T r f ,R) = 0 , there exists a fixed point R of T in Ω such
that

R(x) = lim
n→∞

f (4nx)
2n , (31)

for all x ∈ R+ . Letting x = 4nx and y = 4ny in the equation (29) and dividing by 1
2n ,

‖ DR(x,y) ‖ = lim
n→∞

‖ Df (4nx,4ny) ‖
2n

� lim
n→∞

1
2n φ(4nx,4ny)

� lim
n→∞

Lnφ(x,y) = 0 ,

for all x,y ∈ R+ ; that is it satisfies the equation (3). Hence the R is a solution to (3).
Also, the fixed point alternative guarantees that such a R is the unique function. Again
using the fixed point alternative method, we have

d( f ,R) � 1
1−L

d(T f , f ) .
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Hence we may conclude that

d( f ,R) � 1
1−L

d(T f , f ) � 1
2(1−L)

.

That is, the previous inequality implies the equation (30), as desired. �

COROLLARY 2. Let θ and L be positive real numbers with 0 < L < 1 and let
f : R+ → R be a mapping such that

||Df (x,y)|| � θ (||x||+ ||y||) (32)

for all x,y ∈ R+ Then there exists a unique solution R : R+ → R satisfying

|| f (x)−R(x)|| � θ
1−L

||x||

for all x ∈ R+ .

Proof. On taking φ(x,y) = θ (||x||+ ||y||) for all x,y ∈ R+ , it is easy to show that
the inequality (32) holds. Similar to the proof of Theorem 5, we have

|| f (x)−R(x)|| � 1
2(1−L)

φ(x,x) =
θ

1−L
||x||

for all x ∈ R+ . �

REMARK 2. From the main results of stability above in two fixed point methods,
we consider the distinctive properties for each one here. First of all, Brzdȩk fixed point
approach requires the metric have the invariance property, i.e., d(x+ z, y+ z) = d(x,y)
for x,y,z ∈ R while the alternative fixed point one needs just the generalized metric
although a strictly contractive mapping should be assumed. However, both methods in
common apply scaling processes for h and T , respectively. Also the direct dependency
of the equation in the alternative would be higher than Brzdȩk fixed point approach

given the scaling of f (x) in the limiting process, i.e.,
f (4nx)

2n where we might have dif-

ferent bases in scaling depending on the functional equations. Lastly, the use of y = mx
in the Brzdȩk’s method should be remarked. This linear relationship between variables
x and y makes all the computation possibly simple enough to get the very nice stabil-
ity of the radical equation. In the case of Cauchy additive equation on a commutative
group (X ,+) in [8] this linear function can be generalized an automorphism u(x) for
x ∈ X and so we would like to propose one open problem: What are the stability results
by the Brzdȩk fixed point theorem when we generalize the relation between x and y
corresponding to the automorphism u for the stability of Cauchy equation?
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[7] J. BRZDȨK, Stability of additivity and fixed point methods, Fixed Point Theory Appl. (2013), pp.
2013–265.
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