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FOURIER TRANSFORM OF VARIABLE ANISOTROPIC HARDY SPACES

WITH APPLICATIONS TO HARDY–LITTLEWOOD INEQUALITIES
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(Communicated by I. Perić)

Abstract. Let p(·) : Rn → (0,1] be a variable exponent function satisfying the globally log-

Hölder continuous condition and A a general expansive matrix on R
n . Let Hp(·)

A (Rn) be the
variable anisotropic Hardy space associated with A defined via the radial maximal function.

In this article, via the known atomic characterization of Hp(·)
A (Rn) and establishing two useful

estimates on anisotropic variable atoms, the author shows that the Fourier transform f̂ of f ∈
Hp(·)

A (Rn) coincides with a continuous function F in the sense of tempered distributions, and F
satisfies a pointwise inequality which contains a step function with respect to A as well as the
Hardy space norm of f . As applications, the author also obtains a higher order convergence of
the continuous function F at the origin. Finally, an analogue of the Hardy–Littlewood inequality
in the variable anisotropic Hardy space setting is also presented. All these results are new even
in the classical isotropic setting.

1. Introduction

The main purpose of this article is to investigate the Fourier transform on the

variable anisotropic Hardy space Hp(·)
A (Rn) from [22], where p(·) : R

n → (0,1] is
a variable exponent function satisfying the so-called globally log-Hölder continuous
condition [see (5) and (6) below] and A is a general expansive matrix on Rn (see
Definition 1 below). The problem of describing the Fourier transform of classical Hardy
spaces Hp(Rn) originated from the fundamental work Fefferman and Stein [15], which
has started an intensively studied area of real-variable Hardy spaces. First, using entire
functions of exponential type, Coifman [8] characterized the Fourier transform f̂ of
f ∈ Hp(R) (namely, for the dimension n = 1). For the study of the Fourier transform
on Hardy spaces in the higher dimensions, we refer the reader to [5, 9, 16, 26] and their
references.

In particular, the following well-known result was obtained by Taibleson and
Weiss [26]: for each fixed p ∈ (0,1] , the Fourier transform f̂ of f which belongs to
Hp(Rn) coincides with a continuous function F in the sense of tempered distributions
and, for each ξ ∈ Rn ,

|F(ξ )| � C‖ f‖Hp(Rn)|ξ |n(1/p−1), (1)
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where C is a positive constant depending only on n and p . Moreover, the inequality (1)
further implies the famous Hardy–Littlewood inequality for Hardy spaces, namely, for
each given p ∈ (0,1] , there exists a positive constant R such that, for any f ∈Hp(Rn) ,[∫

Rn
|ξ |n(p−2) |F(ξ )|p dξ

]1/p

� R‖ f‖Hp(Rn), (2)

where F is as in (1); see, for instance, [25, p. 128]. In addition, via the known atomic
characterization of the anisotropic Hardy space Hp

A(Rn) , Bownik and Wang [5] proved
that both inequalities (1) and (2) hold true for the Hardy space Hp

A(Rn) . Very recently,
these results were extended to the setting of Hardy spaces associated with ball quasi-
Banach function spaces or the anisotropic mixed-norm Hardy space H�p

�a (Rn) , where

�a := (a1, . . . ,an) ∈ [1,∞)n and �p := (p1, . . . , pn) ∈ (0,1]n

are two vectors; see [18, 17].
On another hand, as a generalization of the classical Hardy space Hp(Rn) , the

variable Hardy space Hp(·)(Rn) , in which the constant exponent p is replaced by a
variable exponent function p(·) : Rn → (0,∞] , was first studied by Nakai and Sawano
[23] and, independently, by Cruz-Uribe and Wang [11] with some weaker assumptions
on p(·) than those used in [23]. For more development about this Hardy space and
other function spaces with variable exponents, we refer the reader to [1, 2, 10, 13, 14,
20, 21, 24, 27, 28, 29, 30, 31]. In addition, the anisotropic Hardy space Hp

A(Rn) , with
p < ∞ , which was first investigated by Bownik [4], has proved important for the study
of discrete groups of dilations in wavelet theory, and also includes both the classical
Hardy space and the parabolic Hardy space of Calderón and Torchinsky [7] as special
cases. Based on these work, recently, Liu et al. [22] introduced the variable anisotropic

Hardy space Hp(·)
A (Rn) with respect to the expansive matrix A , and established its

various real-variable characterizations. Nowadays, this anisotropic setting has proved
useful not only in developing function spaces arising in harmonic analysis, but also in
many other branches such as the wavelet theory (see, for instance, [3, 4, 12]) and partial
differential equations (see, for instance, [6, 19]).

Motivated by the real-variable theory of the variable anisotropic Hardy space

Hp(·)
A (Rn) from [22] and the aforementioned results about the characterizations of the

Fourier transform on classical Hardy spaces Hp(Rn) and anisotropic Hardy spaces
Hp

A(Rn) as well as anisotropic mixed-norm Hardy spaces H�p
�a (Rn) , in this article, we

first extend the inequality (1) to the setting of variable anisotropic Hardy spaces and
then also give out some applications of our main result.

To be precise, in Section 2, we recall the notions of expansive matrices, variable
Lebesgue spaces Lp(·)(Rn) and variable anisotropic Hardy spaces (see, Definitions 1
and 4 below).

The goal of Section 3 is to obtain the main result, namely, Theorem 1 below. For
this purpose, we first establish two uniform pointwise estimates on anisotropic variable
atoms (see Lemmas 1 and 2 below) as well as an auxiliary inequality (see Lemma 4 be-

low). Using these and the known atomic characterization of Hp(·)
A (Rn) from [22, The-

orem 4.8], we then show that the Fourier transform f̂ of f which belongs to Hp(·)
A (Rn)
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coincides with a continuous function F in the sense of tempered distributions. We also
prove that this continuous function F , multiplied by a step function with respect to A ,
can be pointwisely controlled by a positive constant multiple of the Hardy space norm
of f . This elucidates the necessity of vanishing moments of anisotropic variable atoms
in some sense [see Remark 1(ii) below].

In Section 4, as applications, applying a technical inequality obtained in the proof
of Theorem 1, we first show a higher order convergence of the continuous function F
at the origin (see Theorem 2 below). Then we prove that the function F , multiplied
by some power of a step function with respect to A , is p+ -integrable, and this integral
can be controlled by a positive constant multiple of the Hardy space norm of f (see
Theorem 3 below). This result is a generalization of the Hardy–Littlewood inequality
for the present setting of variable anisotropic Hardy spaces.

Finally, we make some conventions on notation. Let N := {1,2, . . .} , Z+ := {0}∪
N and 0 be the origin of Rn . For each fixed multi-index α := (α1, . . . ,αn) ∈ (Z+)n =:
Zn

+ , let |α| := α1 + · · ·+ αn and ∂ α := ( ∂
∂x1

)α1 · · · ( ∂
∂xn

)αn . We use C to denote a
positive constant which is independent of the main parameters, but may vary in different
setting. The symbol g � h means g � Ch and, if g � h � g , then we write g ∼ h . If
f � Ch and h = g or h � g , we then write f � h ∼ g or f � h � g , rather than f �
h = g or f � h � g . In addition, for any set E ⊂Rn , we denote by 1E its characteristic
function, by E� the set Rn \E and by |E| its n-dimensional Lebesgue measure. For
any d ∈ R , we denote by �d	 the largest integer not greater than d .

2. Preliminaries

In this section, we recall the notions of expansive matrices and variable anisotropic
Hardy spaces (see, for instance, [4, 22]).

The following definition of expansive matrices is from [4].

DEFINITION 1. A real n× n matrix A is called an expansive matrix (shortly, a
dilation) if

min
λ∈σ(A)

|λ | > 1,

here and thereafter, σ(A) denotes the set of all eigenvalues of A .

By [4, p. 5, Lemma 2.2], we know that there exist an open ellipsoid Δ , with |Δ| =
1, and r ∈ (1,∞) such that Δ ⊂ rΔ ⊂ AΔ . Thus, for any i ∈ Z , Bi := AiΔ is open,
Bi ⊂ rBi ⊂ Bi+1 and |Bi|= bi with b := |detA| . For any x∈ Rn and i ∈ Z , an ellipsoid
x+Bi is called a dilated ball. Let B be the set of all such dilated balls, namely,

B := {x+Bi : x ∈ R
n, i ∈ Z} (3)

and let τ := inf{k ∈ Z : rk � 2}.
In [4, p. 6, Definition 2.3], the following homogeneous quasi-norm was intro-

duced.
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DEFINITION 2. Given a dilation A , a measurable mapping ρ : Rn → [0,∞) is
called a homogeneous quasi-norm, with respect to A , if

(i) x 
= 0 implies ρ(x) ∈ (0,∞) ;

(ii) for any x ∈ R
n , ρ(Ax) = bρ(x) ;

(iii) there exists a constant C ∈ [1,∞) such that, for any x , y ∈ Rn , ρ(x + y) �
C[ρ(x)+ ρ(y)] .

For any given dilation A , in [4, p. 6, Lemma 2.4], it was proved that all homoge-
neous quasi-norms with respect to A are equivalent. Therefore, once A is fixed, we can
use the step homogeneous quasi-norm ρ defined by setting, for any x ∈ Rn ,

ρ(x) :=
{

bi when x ∈ Bi+1 \Bi,
0 when x = 0

for convenience.
Recall also that an infinitely differentiable function φ is called a Schwartz function

if, for any k ∈ Z+ and multi-index γ ∈ Zn
+ ,

‖φ‖γ,k := sup
x∈Rn

[ρ(x)]k |∂ γ φ(x)| < ∞.

Let S (Rn) be the set of all Schwartz functions as above, equipped with the topology
determined by {‖ · ‖α ,�}α∈Zn

+, �∈Z+ , and S ′(Rn) its dual space, equipped with the
weak-∗ topology. Throughout this article, for any φ ∈ S (Rn) and i ∈ Z , let φi(·) :=
biφ(Ai·) .

For any measurable function p(·) : Rn → (0,∞] , let

p− := ess inf
x∈Rn

p(x), p+ := esssup
x∈Rn

p(x) and p := min{p−,1}. (4)

Denote by P(Rn) the set of all measurable functions p(·) satisfying 0 < p− � p+ <
∞ .

Given a function p(·)∈P(Rn) , the modular functional ρp(·) and the Luxemburg–
Nakano quasi-norm ‖ f‖Lp(·)(Rn) , with respect to p(·) , are defined, respectively, by
setting, for any measurable function f ,

ρp(·)( f ) :=
∫

Rn
| f (x)|p(x) dx and ‖ f‖Lp(·)(Rn) := inf

{
λ ∈ (0,∞) : ρp(·)( f/λ ) � 1

}
.

Furthermore, the variable Lebesgue space Lp(·)(Rn) is defined to be the set of all mea-
surable functions f such that ρp(·)( f ) < ∞ , equipped with the quasi-norm ‖ f‖Lp(·)(Rn) .

Let Clog(Rn) be the set of all p(·) ∈ P(Rn) satisfying the globally log-Hölder
continuous condition, which means there exist two positive constants Clog(p) and C∞ ,
and p∞ ∈ R such that, for any x, y ∈ Rn ,

|p(x)− p(y)|� Clog(p)
log(e+1/ρ(x− y))

(5)
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and

|p(x)− p∞| � C∞

log(e+ ρ(x))
. (6)

DEFINITION 3. Let φ ∈ S (Rn) satisfy
∫
Rn φ(x)dx 
= 0. The radial maximal

function Mφ ( f ) of f ∈S ′(Rn) , with respect to φ , is defined by setting, for any x∈Rn ,

Mφ ( f )(x) := sup
i∈Z

| f ∗φi(x)|.

Applying [22, Definition 2.4 and Theorem 3.10], we now give an equivalent defi-
nition of variable anisotropic Hardy spaces as follows.

DEFINITION 4. Let p(·) ∈ Clog(Rn) and φ be as in Definition 3. The variable

anisotropic Hardy space Hp(·)
A (Rn) is defined by setting

Hp(·)
A (Rn) :=

{
f ∈ S ′(Rn) : Mφ ( f ) ∈ Lp(·)(Rn)

}
and, for any f ∈ Hp(·)

A (Rn) , let ‖ f‖
H

p(·)
A (Rn)

:= ‖Mφ ( f )‖Lp(·)(Rn) .

3. Fourier transforms of Hp(·)
A (Rn)

In this section, we study the Fourier transform f̂ , where the distribution f comes

from the variable anisotropic Hardy space Hp(·)
A (Rn) .

Recall that, for any φ ∈ S (Rn) , its Fourier transform, denoted by Fφ or φ̂ , is
defined by setting, for any v ∈ Rn ,

Fφ(v) = φ̂ (v) :=
∫

Rn
φ(x)e−2π ıx·v dx.

here and thereafter, ı :=
√−1 and x · v := ∑n

k=1 xkvk for any x := (x1, . . . ,xn) , v :=
(v1, . . . ,vn) ∈ Rn . Moreover, for any f ∈ S ′(Rn) , its Fourier transform, also denoted
by F f or f̂ , is defined by setting, for any φ ∈ S (Rn) ,

〈F f ,φ〉 = 〈 f̂ ,φ〉 := 〈 f , φ̂ 〉.

We now present the main result of this article as follows: the Fourier transform

f̂ of f ∈ Hp(·)
A (Rn) coincides with a continuous function F in the sense of tempered

distributions, and F satisfies a pointwise inequality.

THEOREM 1. Let p(·) ∈ Clog(Rn) satisfy 0 < p− � p+ � 1 , where p−, p+ are

as in (4). Then, for any f ∈ Hp(·)
A (Rn) , there exists a continuous function F on Rn

such that
f̂ = F in S ′(Rn),
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and there exists a positive constant C , depending only on A, p− and p+ , such that,
for any x ∈ Rn ,

|F(x)| � C‖ f‖
H

p(·)
A (Rn)

max

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}

, (7)

here and thereafter, ρ∗ is as in Definition 2 with A replaced by its adjoint matrix A∗ .

To prove this theorem, we need some notions and technical lemmas. First, for any
r ∈ (0,∞] and measurable set E ⊂ Rn , the Lebesgue space Lr(E) is defined to be the
set of all measurable functions f such that, when r ∈ (0,∞) ,

‖ f‖Lr(E) :=
[∫

E
| f (x)|r dx

]1/r

< ∞

and
‖ f‖L∞(E) := esssup

x∈E
| f (x)| < ∞.

In addition, the dilation operator DA is defined by setting, for any measurable
function f on Rn ,

DA( f )(·) := f (A·).
Moreover, we have the following identity: for any k ∈ Z , f ∈ L1(Rn) and x ∈ Rn ,

f̂ (x) = bk
(
Dk

A∗FDk
A f
)

(x).

The succeeding notions of anisotropic (p(·),r,s)-atoms and variable anisotropic

atomic Hardy spaces Hp(·),r,s
A (Rn) are from [22].

DEFINITION 5. (i) Let p(·) ∈ P(Rn) , r ∈ (1,∞] ,

s ∈
[⌊(

1
p−

−1

)
lnb

lnλ−

⌋
,∞
)
∩Z+, (8)

where p− is as in (4). A measurable function a on Rn is called an anisotropic
(p(·),r,s)-atom (shortly, a (p(·),r,s)-atom) if

(i)1 supp a ⊂ B , where B ∈ B with B as in (3);

(i)2 ‖a‖Lr(Rn) � |B|1/r

‖1B‖Lp(·)(Rn)
;

(i)3
∫
Rn a(x)xγ dx = 0 for any γ ∈ Zn

+ with |γ| � s .

(ii) Let p(·) ∈ Clog(Rn) , r ∈ (1,∞] and s be as in (8). The variable anisotropic

atomic Hardy space Hp(·),r,s
A (Rn) is defined to be the set of all f ∈ S ′(Rn) sat-

isfying that there exist a sequence {λi}i∈N ⊂ C and a sequence of (p(·),r,s)-
atoms, {ai}i∈N , supported, respectively, in {B(i)}i∈N ⊂ B such that

f = ∑
i∈N

λiai in S ′(Rn).
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Moreover, for any f ∈ Hp(·),r,s
A (Rn) , let

‖ f‖
Hp(·),r,s

A (Rn)
:= inf

∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

,

where the infimum is taken over all the decompositions of f as above.

Following the proof of [5, Lemma 4], we easily obtain the following uniform
estimate for atoms; the details are omitted.

LEMMA 1. Let p(·) , r and s be as in Definition 5(ii). Assume that a is a
(p(·),r,s)-atom supported in x0 + Bk0 with some x0 ∈ Rn and k0 ∈ Z . Then there
exists a positive constant C , depending only on A and s, such that, for any α ∈ Z

n
+

with |α| � s and x ∈ Rn ,∣∣∣∂ α
(
FDk0

A a
)

(x)
∣∣∣� Cb−k0/r‖a‖Lr(Rn) min

{
1, |x|s−|α |+1

}
. (9)

From Lemma 1, we deduce a uniform estimate on the Fourier transform of atoms,
which is later used to prove Theorem 1.

LEMMA 2. Let p(·)∈Clog(Rn) with p+ ∈ (0,1] , r and s be as in Definition 5(ii).
Then there exists a positive constant C such that, for any (p(·),r,s)-atom and x ∈ Rn ,

|â(x)| � Cmax

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}

, (10)

where ρ∗ is the homogeneous quasi-norm with respect to A∗ and p− , p+ are as in (4).

To show Lemma 2, we need the following inequalities, which are just [4, p. 11,
Lemma 3.2].

LEMMA 3. Let A be some fixed dilation. Then there exists a positive constant C ,
depending only on A, such that, for any x ∈ Rn ,

1
C

[ρ(x)]lnλ−/ lnb � |x| � C[ρ(x)]lnλ+/ lnb when ρ(x) ∈ (1,∞),

and
1
C

[ρ(x)]lnλ+/ lnb � |x| � C[ρ(x)]lnλ−/ lnb when ρ(x) ∈ [0,1].

We now give the proof of Lemma 2.
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Proof of Lemma 2. Let a be a (p(·),r,s)-atom supported in x0 +Bk0 with some

x0 ∈R
n and k0 ∈Z . Then, from (9) with α = (

n times︷ ︸︸ ︷
0, . . . ,0) , it follows that, for any x∈R

n ,

|â(x)| =
∣∣∣bk0

(
Dk0

A∗FDk0
A a
)

(x)
∣∣∣

=
∣∣∣bk0

(
FDk0

A a
)(

(A∗)k0x
)∣∣∣

� bk0b−k0/r‖a‖Lr(Rn) min

{
1,
∣∣∣(A∗)k0x

∣∣∣s+1
}

,

which, together with the size condition of a , implies that

|â(x)| � bk0

∥∥∥1x0+Bk0

∥∥∥−1

Lp(·)(Rn)
min

{
1,
∣∣∣(A∗)k0x

∣∣∣s+1
}

(11)

� bk0 max

{
b
− k0

p− , b
− k0

p+

}
min

{
1,
∣∣∣(A∗)k0x

∣∣∣s+1
}

.

To obtain (10), we next consider two cases: ρ∗(x) � b−k0 and ρ∗(x) > b−k0 .
Case 1). ρ∗(x) � b−k0 . In this case, note that ρ∗((A∗)k0x) � 1. By (11), Lemma

3 and the fact that

1− 1
p+

+(s+1)
lnλ−
lnb

� 1− 1
p−

+(s+1)
lnλ−
lnb

> 0

[see (4) and (8)], we conclude that, for any x ∈ Rn satisfying ρ∗(x) � b−k0 ,

|â(x)| � bk0 max

{
b
− k0

p− , b
− k0

p+

}[
ρ∗
(
(A∗)k0x

)](s+1) lnλ−
lnb

(12)

∼ max

{
b

k0[1− 1
p− +(s+1) lnλ−

lnb ]
, b

k0[1− 1
p+

+(s+1) lnλ−
lnb ]
}

[ρ∗(x)](s+1) lnλ−
lnb

� max

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}

.

This proves (10) for Case 1).
Case 2). ρ∗(x) > b−k0 . In this case, note that ρ∗((A∗)k0x) > 1. By (11), Lemma

3 again and the fact that
1
p−

−1 � 1
p+

−1 � 0,

we know that, for any x ∈ Rn satisfying ρ∗(x) > b−k0 ,

|â(x)| � bk0 max

{
b
− k0

p− , b
− k0

p+

}
∼ max

{
b

(1− 1
p− )k0 , b

(1− 1
p+

)k0

}
� max

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}

.
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This finishes the proof of (10) for Case 2) and hence of Lemma 2. �

By borrowing some ideas from the proof of [30, Lemma 5.9], we obtain the fol-
lowing technical lemma.

LEMMA 4. Let p(·) ∈ P(Rn) with p+ ∈ (0,1] . Then, for any {λi}i∈N ⊂ C and
{B(i)}i∈N ⊂ B ,

∑
i∈N

|λi| �
∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

,

where p is as in (4).

Proof. Let λ := ∑i∈N |λi| . Note that, for any {λi}i∈N ⊂ C and t ∈ (0,1] ,(
∑
i∈N

|λi|
)t

� ∑
i∈N

|λi|t .

By the fact that p ∈ (0,1] [see (4)], we find that∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

λ‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

�
∥∥∥∥∥∑

i∈N

|λi|1B(i)

λ‖1B(i)‖Lp(·)(Rn)

∥∥∥∥∥
Lp(·)(Rn)

� ∑
i∈N

|λi|
λ

∥∥∥∥∥ 1B(i)

‖1B(i)‖Lp(·)(Rn)

∥∥∥∥∥
Lp(·)(Rn)

= 1,

which implies the desired conclusion and hence completes the proof of Lemma 4. �
To prove Theorem 1, we also need the following atomic characterizations of the

variable anisotropic Hardy space Hp(·)
A (Rn) established in [22, Theorem 4.8].

LEMMA 5. Let p(·)∈Clog(Rn) , r ∈ (max{p+,1},∞] with p+ as in (4), s be as in

(8) and N ∈N∩ [�( 1
p −1) lnb

lnλ− 	+2,∞) with p as in (4). Then Hp(·)
A (Rn) = Hp(·),r,s

A (Rn)
with equivalent quasi-norms.

Now, we show Theorem 1.

Proof of Theorem 1. Let p(·) ∈ Clog(Rn) , r ∈ (max{p+,1},∞] , s be as in (8)

and f ∈ Hp(·)
A (Rn) . Then, from Lemma 5 and Definition 5(ii), we deduce that there

exist a sequence {λi}i∈N ⊂ C and a sequence of (p(·),r,s)-atoms, {ai}i∈N , supported,
respectively, in {B(i)}i∈N ⊂ B such that

f = ∑
i∈N

λiai in S ′(Rn),
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and

‖ f‖
H

p(·)
A (Rn)

∼
∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

. (13)

Therefore, by the continuity of Fourier transform on S ′(Rn) , we know that

f̂ = ∑
i∈N

λiâi in S ′(Rn). (14)

Moreover, for any i ∈ N , ai ∈ L1(Rn) implies that âi ∈ L∞(Rn) . By this, Lemmas 2
and 4, and (13), we conclude that, for any x ∈ Rn ,

∑
i∈N

|λi||âi(x)| � ∑
i∈N

|λi|max

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}

(15)

� ‖ f‖
H

p(·)
A (Rn)

max

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}

< ∞.

Thus, for any x ∈ Rn ,

F(x) := ∑
i∈N

λiâi(x) (16)

makes sense pointwisely and

|F(x)| � ‖ f‖
H

p(·)
A (Rn)

max

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}

.

We next prove that the above function F is continuous on Rn . To do this, we only
need to show that F is continuous on any compact subset of Rn . Note that, for any
given compact subset X , there exists a positive constant C(A,X) , depending only on the
dilation A and X , such that ρ∗(·) � C(A,X) holds true absolutely on X . From this and
the estimate of (15), it follows that, for any x ∈ X ,

∑
i∈N

|λi||âi(x)| � max

{[
C(A,X)

] 1
p− −1

,
[
C(A,X)

] 1
p+

−1
}
‖ f‖

H
p(·)
A (Rn)

,

Therefore, the summation ∑i∈N λiâi(·) converges uniformly on X . This, combined
with the fact that, for any i ∈ N , âi is continuous, implies that F is also continuous on
any compact subset X and hence on Rn .

Finally, to complete the proof of Theorem 1, by (14) and (16), it suffices to show
that

F = ∑
i∈N

λiâi in S ′(Rn). (17)
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To this end, by Lemma 2 and the definition of Schwartz functions, we find that, for any
φ ∈ S (Rn) and i ∈ N ,∣∣∣∣∫

Rn
âi(x)φ(x)dx

∣∣∣∣
�

∞

∑
k=1

∫
(A∗)k+1B∗

0\(A∗)kB∗
0

max

{
[ρ∗(x)]

1
p− −1

, [ρ∗(x)]
1

p+
−1
}
|φ(x)|dx+‖φ‖L1(Rn)

�
∞

∑
k=1

bkb
k( 1

p− −1)
b
−k(� 1

p− −1�+2) +‖φ‖L1(Rn)

∼ 1,

where B∗
0 is the unit dilated ball with respect to A∗ and, for any t ∈ R , �t� denotes the

least integer not less than t . By this, Lemma 4 and (13), we further have

lim
K→∞

∞

∑
i=K+1

|λi|
∣∣∣∣∫

Rn
âi(x)φ(x)dx

∣∣∣∣ � lim
K→∞

∞

∑
i=K+1

|λi| = 0,

which implies that, for any φ ∈ S (Rn) ,

〈F,φ〉 = lim
K→∞

〈
K

∑
i=1

λiâi, φ

〉
.

This finishes the proof of (17) and hence of Theorem 1. �

REMARK 1. (i) When p(·) ≡ p ∈ (0,1] , the Hardy space Hp(·)
A (Rn) in The-

orem 1 coincides with the anisotropic Hardy space Hp
A(Rn) from [4], and the

inequality (7) becomes

|F(x)| � C‖ f‖Hp
A (Rn)[ρ∗(x)]

1
p−1

with C as in (7). In this case, Theorem 1 is just [5, Theorem 1].

(ii) Let f ∈ Hp(·)
A (Rn)∩ L1(Rn) . In this case, we have F = f̂ and, using the in-

equality (7) with x = 0 , we have f̂ (0) = 0. This implies that the function

f ∈ Hp(·)
A (Rn)∩L1(Rn) has a vanishing moment, which elucidates the necessity

of the vanishing moment of atoms in some sense.

(iii) Very recently, in [17, Theorem 2.4], Huang et al. obtained a result similar to

Theorem 1 with the Hardy space Hp(·)
A (Rn) replaced by the anisotropic mixed-

norm Hardy space H�p
�a (Rn) , where

�a := (a1, . . . ,an) ∈ [1,∞)n and �p := (p1, . . . , pn) ∈ (0,1]n.

We should point out that the integrable exponent of the anisotropic mixed-norm
Hardy space H�p

�a (Rn) is a vector �p ∈ (0,1]n , whose associated basic function
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space is the mixed-norm Lebesgue space L�p(Rn) which has different orders of
integrability in different variables; however, the integrable exponent of the Hardy

space Hp(·)
A (Rn) investigated in the present article is a variable exponent func-

tion,
p(·) : R

n → (0,1],

whose associated basic function space is the variable Lebesgue space Lp(·)(Rn) ;
Obviously, L�p(Rn) and Lp(·)(Rn) cannot cover each other, so do [17, Theorem
2.4] and Theorem 1 of the present article.

4. Applications

As applications of Theorem 1, in this section, we first present a higher order con-
vergence of the function F given in Theorem 1 at the point 0 . Then we obtain an
analogue of the Hardy–Littlewood inequality in the variable anisotropic Hardy space
setting.

We begin with the following result.

THEOREM 2. Let p(·) ∈ Clog(Rn) satisfy 0 < p− � p+ � 1 , where p−, p+ are

as in (4). Then, for any f ∈ Hp(·)
A (Rn) , there exists a continuous function F on Rn

such that f̂ = F in S ′(Rn) and

lim
|x|→0+

F(x)

[ρ∗(x)]
1

p+
−1

= 0, (18)

where ρ∗ is the homogeneous quasi-norm with respect to A∗ .

Proof. Assume that p(·) ∈Clog(Rn) , r ∈ (max{p+,1},∞] , s is as in (8) and f ∈
Hp(·)

A (Rn) . Then, by Lemma 5 and Definition 5(ii), we know that there exist a sequence
{λi}i∈N ⊂ C and a sequence of (p(·),r,s)-atoms, {ai}i∈N , supported, respectively, in
{B(i)}i∈N ⊂ B such that

f = ∑
i∈N

λiai in S ′(Rn),

and

‖ f‖
H

p(·)
A (Rn)

∼
∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

. (19)

Moreover, from Theorem 1 and its proof, we deduce that there exists a continuous
function on Rn , namely,

F = ∑
i∈N

λiâi (20)
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such that f̂ = F in S ′(Rn) .
Therefore, to complete the proof of Theorem 2, it suffices to show that (18) holds

true for the function F as in (20). Indeed, for any (p(·),r,s)-atom a supported in a
dilated ball x0 + Bk0 with some x0 ∈ Rn and k0 ∈ Z , by an argument similar to that
used in Case 1) of the proof of Lemma 2, we conclude that, for any x ∈ Rn with
ρ∗(x) � b−k0 ,

|â(x)| � max

{
b

k0[1− 1
p− +(s+1) lnλ−

lnb ]
, bk0[1− 1

p+
+(s+1) lnλ−

lnb ]
}

[ρ∗(x)](s+1) lnλ−
lnb .

This, together with the fact that

1− 1
p−

+(s+1)
lnλ−
lnb

> 0,

further implies that

lim
|x|→0+

|â(x)|
[ρ∗(x)]

1
p+

−1
= 0. (21)

On another hand, from (20), it follows that, for any x ∈ Rn ,

|F(x)|
[ρ∗(x)]

1
p+

−1
� ∑

i∈N

|λi| |âi(x)|
[ρ∗(x)]

1
p+

−1
. (22)

In addition, by Lemma 4 and (19), we find that ∑i∈N |λi| < ∞ . Thus, the equality (21)
implies that, for any given ε ∈ (0,1) , there exists a positive constant ν such that, for
any i ∈ N and x ∈ R

n with |x| � ν ,

|âi(x)|
[ρ∗(x)]

1
p+

−1
<

ε
∑i∈N |λi|+1

.

By this and (22), we know that, for any x ∈ Rn with |x| � ν ,

|F(x)|
[ρ∗(x)]

1
p+

−1
< ε.

Thus,

lim
|x|→0+

F(x)

[ρ∗(x)]
1

p+
−1

= 0,

which completes the proof of (18) and hence of Theorem 2. �

REMARK 2. (i) Similar to Remark 1, if p(·)≡ p∈ (0,1] , then the Hardy space

Hp(·)
A (Rn) in Theorem 2 coincides with the anisotropic Hardy space Hp

A(Rn)
from [4]. In this case, Theorem 2 is just [5, Corollary 6].
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(ii) By Theorem 2 and Lemma 3, we find that

lim
|x|→0+

F(x)

|x|
lnb

lnλ+
( 1

p+
−1)

= 0. (23)

Note that, when p(·) ≡ p ∈ (0,1] and A = d In×n for some d ∈ R with |d| ∈
(1,∞) , here and thereafter, In×n denotes the n× n unit matrix, the Hardy space

Hp(·)
A (Rn) coincides with the classical Hardy space Hp(Rn) of Fefferman and

Stein [15]. In this case, lnb
lnλ+

= n and p+ = p , and hence (23) goes back to the
well-known result on Hp(Rn) (see [25, p. 128]).

As another application of Theorem 1, we also establish a variant of the Hardy–
Littlewood inequality in the variable anisotropic Hardy space setting as follows.

THEOREM 3. Let p(·) ∈ Clog(Rn) satisfy 0 < p− � p+ � 1 , where p−, p+ are

as in (4). Then, for any f ∈ Hp(·)
A (Rn) , there exists a continuous function F on Rn

such that f̂ = F in S ′(Rn) and

(∫
Rn

|F(x)|p+ min
{

[ρ∗(x)]
p+− p+

p− −1
, [ρ∗(x)]p+−2

}
dx

) 1
p+

� C‖ f‖
H

p(·)
A (Rn)

, (24)

where ρ∗ denotes the homogeneous quasi-norm with respect to A∗ and C is a positive
constant depending only on A, p− and p+ .

Proof. Let p(·) ∈ Clog(Rn) with p+ ∈ (0,1] , s be as in (8) and f ∈ Hp(·)
A (Rn) .

Then, by Lemma 5 and Definition 5(ii), it is easy to see that there exist a sequence
{λi}i∈N ⊂ C and a sequence of (p(·),2,s)-atoms, {ai}i∈N , supported, respectively, in
{B(i)}i∈N ⊂ B such that

f = ∑
i∈N

λiai in S ′(Rn),

and ∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

� 2‖ f‖
H

p(·)
A (Rn)

< ∞. (25)

Moreover, by Theorem 1 and its proof, we conclude that there exists a continuous
function on Rn , namely,

F = ∑
i∈N

λiâi (26)

such that f̂ = F in S ′(Rn) .
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Therefore, to prove Theorem 3, it suffices to show that (24) holds true for the
function F as in (26). To this end, by the fact that p � p+ � 1 and the well-known
inequality that, for any {αi}i∈N ⊂ C and t ∈ (0,1] ,

[
∑
i∈N

|αi|
]t

� ∑
i∈N

|αi|t (27)

as well as (25), we find that

(
∑
i∈N

|λi|p+

)1/p+

=

⎛⎝∑
i∈N

∥∥∥∥∥ |λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

∥∥∥∥∥
p+

Lp(·)(Rn)

⎞⎠1/p+

(28)

=

⎛⎝∑
i∈N

∥∥∥∥∥ |λi|p+1B(i)

‖1B(i)‖p+
Lp(·)(Rn)

∥∥∥∥∥
Lp(·)/p+(Rn)

⎞⎠1/p+

�
∥∥∥∥∥∑

i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p+
∥∥∥∥∥

1/p+

Lp(·)/p+(Rn)

=

∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p+}1/p+
∥∥∥∥∥∥

Lp(·)(Rn)

�

∥∥∥∥∥∥
{

∑
i∈N

[
|λi|1B(i)

‖1B(i)‖Lp(·)(Rn)

]p}1/p
∥∥∥∥∥∥

Lp(·)(Rn)

� 2‖ f‖
Hp(·)

A (Rn)
.

On another hand, by (26), the fact that p+ ∈ (0,1] , (27) and the Fatou lemma, it is
easy to see that

∫
Rn

|F(x)|p+ min
{
[ρ∗(x)]

p+− p+
p− −1

, [ρ∗(x)]p+−2
}

dx (29)

� ∑
i∈N

|λi|p+

∫
Rn

[
|âi(x)|min

{
[ρ∗(x)]

1− 1
p− − 1

p+ , [ρ∗(x)]
1− 2

p+

}]p+

dx.

If we can prove the following assertion: there exists a positive constant R such that, for
any (p(·),2,s)-atom a ,

(∫
Rn

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p− − 1

p+ , [ρ∗(x)]
1− 2

p+

}]p+

dx

)1/p+

� R, (30)
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then, by this assertion, (29) and (28), we have(∫
Rn

|F(x)|p+ min
{
[ρ∗(x)]

p+− p+
p− −1

, [ρ∗(x)]p+−2
}

dx

)1/p+

� R

(
∑
i∈N

|λi|p+

)1/p+

� ‖ f‖
H

p(·)
A (Rn)

.

This is the desired conclusion (24).
Thus, to complete the whole proof, it remains to show the assertion (30). Indeed,

for any (p(·),2,s)-atom a supported in a dilated ball x0 +Bk0 with some x0 ∈ R
n and

k0 ∈ Z , we easily know that(∫
Rn

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p− − 1

p+ , [ρ∗(x)]
1− 2

p+

}]p+

dx

)1/p+

(31)

�
(∫

(A∗)−k0+1B∗
0

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p− − 1

p+ , [ρ∗(x)]
1− 2

p+

}]p+

dx

)1/p+

+
(∫

((A∗)−k0+1B∗
0)

�

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p− − 1

p+ , [ρ∗(x)]
1− 2

p+

}]p+

dx

)1/p+

=: I1 + I2,

where B∗
0 is the unit dilated ball with respect to A∗ .

Let ε be a fixed positive constant such that

1− 1
p+

+(s+1)
lnλ−
lnb

− ε � 1− 1
p−

+(s+1)
lnλ−
lnb

− ε > 0.

Then, for I1 , from the estimate of (12), it follows that

I1 � bk0[1+(s+1) lnλ−
lnb ] max

{
b

k0
p− , b

k0
p+

}(∫
(A∗)−k0+1B∗

0

(32)

×
[
min

{
[ρ∗(x)]

1− 1
p− − 1

p+
+(s+1) lnλ−

lnb , [ρ∗(x)]
1− 2

p+
+(s+1) lnλ−

lnb

}]p+

dx

)1/p+

� bk0[1+(s+1) lnλ−
lnb ] max

{
b

k0
p− , b

k0
p+

}
min

{
b
−k0[1− 1

p− +(s+1) lnλ−
lnb −ε]

,

× b
−k0[1− 1

p+
+(s+1) lnλ−

lnb −ε]
}(∫

(A∗)−k0+1B∗
0

[ρ∗(x)]ε p+−1 dx

)1/p+

∼ bk0ε

[
0

∑
k=−∞

b−k0+kb(−k0+k)(ε p+−1)

]1/p+

∼ 1.

To deal with I2 , by the Hölder inequality, the Plancherel theorem, the fact that 0 <
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p− � p+ � 1 and the size condition of a , we conclude that

I2 �
{∫

((A∗)−k0+1B∗
0)

�
|â(x)|2 dx

} 1
2

×
⎧⎨⎩
∫

((A∗)−k0+1B∗
0)

�

[
min

{
[ρ∗(x)]

1− 1
p− − 1

p+ , [ρ∗(x)]
1− 2

p+

}] 2p+
2−p+

dx

⎫⎬⎭
2−p+
2p+

� ‖a‖L2(Rn)

⎧⎨⎩ ∞

∑
k=0

b−k0+k
[
min

{
b

(−k0+k)(1− 1
p− − 1

p+
)
, b

(−k0+k)(1− 2
p+

)
}] 2p+

2−p+

⎫⎬⎭
2−p+
2p+

� ‖a‖L2(Rn)

⎧⎨⎩b−k0

[
min

{
b
−k0(1− 1

p− − 1
p+

)
, b

−k0(1− 2
p+

)
}] 2p+

2−p+

⎫⎬⎭
2−p+
2p+

� max

{
b

k0( 1
2− 1

p− )
, b

k0( 1
2− 1

p+
)
}

min

{
b
−k0( 1

2− 1
p− )

, b
−k0( 1

2− 1
p+

)
}

∼ 1.

This, combined with (31) and (32), implies that (30) holds true and hence finishes the
proof of Theorem 3. �

REMARK 3. Recall that the well-known Hardy–Littlewood inequality for the clas-
sical Hardy space Hp(Rn) is as follows: Let p ∈ (0,1] . Then for each f ∈ Hp(Rn) ,
we can find a continuous function F on R

n satisfying that f̂ = F in S ′(Rn) and[∫
Rn

|x|n(p−2) |F(x)|p dx

]1/p

� C‖ f‖Hp(Rn) , (33)

where C is a positive constant independent of f and F (see [25, p. 128]).
We point out that the inequality (24) in Theorem 3 is an analogue of the Hardy–

Littlewood inequality in the present setting. Indeed, similar to Remark 1, when p(·) ≡
p ∈ (0,1] , the Hardy space Hp(·)

A (Rn) in Theorem 3 becomes the anisotropic Hardy
space Hp

A(Rn) from [4]. In this case, p+ = p− = p and hence Theorem 3 is just [5,
Corollary 8]. Moreover, if A = d In×n for some d ∈ R with |d| ∈ (1,∞) , then the

anisotropic Hardy space Hp
A (Rn) (namely, the Hardy space Hp(·)

A (Rn) with p(·)≡ p ∈
(0,1]) coincides with the classical Hardy space Hp(Rn) of Fefferman and Stein [15].
In this case, ρ∗(x) ∼ |x|n for any x ∈ Rn , and hence the Hardy–Littlewood inequality
(24) is just (33).
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