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FOR (k,h)–CONVEX SET–VALUED MAPS
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(Communicated by S. Varošanec)

Abstract. We introduce the class of (k,h) -convex set-valued maps defined on k -convex domains
by

h(t)G(x1)+h(1− t)G(x2) ⊂ G(k(t)x1 + k(1− t)x2), x1,x2 ∈ D, t ∈ [0,1],

and prove a Hermite-Hadamard-type theorem for such maps. Many other properties of (k,h) -
convex set-valued maps are also presented.

1. Introduction

It is well known that if a function f : I → R defined on an interval I is convex,
that is

f (tx+(1− t)y) � t f (x)+ (1− t) f (y), x,y ∈ I, t ∈ [0,1],

then for all a,b∈ I with a < b it satisfies the following Hermite-Hadamard inequalities

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
. (1)

These inequalities, having natural geometrical interpretation and many applica-
tions, are one of the most known results on convex functions. There are many books
and papers containing their historical background, various generalizations, refinements
and extensions for other related classes of functions (see e.g. [3, 5, 7] and the references
given there).

In the paper [4] by Micherda and Rajba, the so called k -convex sets and (k,h)-
convex functions were introduced with the following definitions.

DEFINITION 1. Let k : (0,1)→R be a given function. A subset D of a real linear
space X is called k -convex if k(t)x+ k(1− t)y∈ D for all x,y ∈ D and t ∈ (0,1) .
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DEFINITION 2. Let k,h : (0,1)→R be two given functions and suppose that D⊂
X is a k -convex set. A function f : D → R is called (k,h)-convex if, for all x,y ∈ D
and t ∈ (0,1)

f
(
k(t)x+ k(1− t)y

)
� h(t) f (x)+h(1− t) f (y). (2)

If the inequality in (2) is reversed, f is called (k,h)-concave.

REMARK 1. The class of (k,h)-convex functions generalizes many other known
classes of functions. It is evident that for h(t) = k(t) = t we get the classical convex-
ity. For k(t) = t , the notion of (k,h)-convexity agrees with the one of h -convexity
introduced by Varošanec [10]. Recall that a nonnegative function f : I → R is called
h -convex if

f
(
tx+(1− t)y

)
� h(t) f (x)+h(1− t) f (y) (3)

for all x,y∈ I and t ∈ (0,1) . This notion generalizes the concepts of classical convexity
(for h(t) = t ), s-Breckner-convexity (for h(t) = ts with some s ∈ (0,1) , P-functions
(for h(t) = 1 and Godunova-Levin functions (for h(t) = t−1 ). If s > 0, k(t) = t1/s and
h(t) = t , then f is (k,h)-convex if and only if it is s-Orlicz-convex. For k(t) = h(t) =
1, the class of (k,h )-convex functions consists of all mappings which are subadditive.
If k(t) = h(t) = 1/2 for all t , then (2) produces the family of Jensen-convex functions.
If k is defined by the formula

k(t) =

{
2t for t < 1/2

0 for t � 1/2,
(4)

then f is a (k,k)-convex function if and only if it is star-shaped, i.e. f (tx) � t f (x) for
all t ∈ [0,1] and x ∈ D .

In [4], the following results on the Hermite-Hadamard inequalities for (k,h)-
convex functions are obtained (here D is a k -convex subset of R and the existence
of integrals is assumed in the formulas).

THEOREM 2. [4, Corollary 3.6] Let f : D → R be a (k,h)-convex function,
h(1/2) > 0 and choose a,b ∈ D such that a < b. Then

1
2h(1/2)

∫ 1

0
f
(
k(1/2)[k(t)+ k(1− t)] · (a+b)

)
dt

�
∫ 1

0
f
(
k(t)a+k(1− t)b

)
dt � [ f (a)+ f (b)]

∫ 1

0
h(t)dt. (5)

THEOREM 3. [4, Corollary 3.2] Let f : D → R be a (k,h)-convex function with
h(1/2) > 0 and choose a < b such that [a,b] ⊂ D. Then

f
(
k(1/2)(a+b)

)
2h(1/2)

� 1
b−a

∫ b

a
f (x)dx. (6)
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REMARK 4. It is clear, that if f is a (k,h)-concave function, then the opposite
signs hold in inequalities (5) and (6).

The main purpose of this paper is to prove set-valued counterparts of the above
theorems. Our result generalizes some earlier Hermite-Hadamard type theorems for
convex set-valued maps presented in [5, 9]. As corollaries, we obtain many similar
results for various related classes of set-valued maps.

2. Preliminaries

Let (Y,‖ · ‖) be a Banach space and n(Y ) denote the family of all nonempty sub-
sets of Y . Denote also by cl(Y ) the family of all closed members of n(Y ) and by
clcb(Y ) the family of all closed convex and bounded members of n(Y ) .

DEFINITION 3. Let D be a k -convex subset of a real vector space X and let
k,h : (0,1) → R be two given functions. We say that that a set-valued map G : D →
n(Y ) is (k,h)-convex if

h(t)G(x1)+h(1− t)G(x2) ⊂ G(k(t)x1 + k(1− t)x2) (7)

for all x1,x2 ∈ D and t ∈ [0,1] .

It is clear that for k(t) = h(t) = t , t ∈ [0,1] , condition (7) coincides with the well
known definition of convex set-valued maps (see [1, 6]). Such maps arise naturally
from, e.g., constraints of convex optimization problems and play an important role
in various questions of convex analysis and mathematical economics.

Many of the known properties of convex functions and convex set-valued maps
have their counterparts for (k,h)-convex set-valued maps. Some of them are listed
below.

REMARK 5. 1. If G is (k,h)-convex and single-valued, then inclusion (7) reduces
to equality and we get the (k,h)-affine functions.

2. If g : D → Y is a (k,h)-affine function and A ⊂ Y is h -convex, then G : D →
n(Y ) defined by G(x) = g(x)+A is (k,h)-convex.

3. If g : D → R is (k,h)-convex, then G : D → n(R) defined by G(x) = [g(x),∞)
is (k,h)-convex.

4. A set-valued map G : D→ n(Y ) is (k,k)-convex if and only if its graph GrG =
{(x,y) : x ∈ D,y ∈ G(x)} is a k -convex subset of X ×Y .

5. If G1,G2 : D→ n(Y ) are (k,h)-convex and c∈ R , then G1 +G2 and c ·G1 are
(k,h)-convex.

6. If G1,G2 : D→ n(Y ) are (k,h)-convex and G1(x)∩G2(x) �= /0 for every x∈D ,
then G1 ∩G2 : D → n(Y ) defined by (G1 ∩G2)(x) = G1(x)∩G2(x) is also (k,h)-
convex. Note that the analogous property for G1 ∪G2 does not hold. For instance,
assume that k(t) = h(t) = t and take G1,G2 : [−1,1] → n(R) defined by G1(x) =
[0,x + 1], G2(x) = [0,1− x], x ∈ [−1,1] . Then G1 and G2 are (k,h)-convex, but
G1∪G2 is not.
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7. If G1,G2 : D → n(Y ) are (k,h)-convex, then G1 ×G2 : D → n(Y ×Y ) defined
by (G1×G2)(x) = G1(x)×G2(x) is also (k,h)-convex.

8. If G : D→ n(Y ) is (k,h)-convex, then convG : D→ n(Y) defined by (convG)(x)
= convG(x) is (k,h)-convex (because conv(A+B)= convA+convB for all A,B⊂Y ).

9. If G : D → n(Y ) is (k,h)-convex and intG(x) �= /0 for every x ∈ D , then
intG : D → n(Y ) defined by (intG)(x) = intG(x) is (k,h)-convex (because intA +
intB ⊂ int(A+B) for all A,B ⊂ Y ).

10. If G : D→ n(Y ) is (k,h)-convex, then clG : D→ n(Y ) defined by (clG)(x) =
clG(x) is (k,h)-convex (because clA+ clB ⊂ cl(A+B) for all A,B ⊂ Y ).

LEMMA 6. A set-valued map G : D → clcb(R) is (k,h)-convex if and only if it is
of the form G(x) = [g1(x),g2(x)] , x ∈ D, where g1 : D → R is (k,h)-convex and g2 :
D → R is (k,h)-concave.

Proof. The “if” part is clear. To prove the “only if” part, consider the functions
g1 : D → R and g2 : D → R defined by

g1(x) = infG(x) and g2(x) = supG(x), x ∈ D.

By the (k,h)-convexity of G and the fact that for any A,B ⊂ R , inf(A+B) = infA+
infB and sup(A + B) = supA + supB , we obtain that g1 is (k,h)-convex and g2 is
(k,h)-concave. Since the values of G are convex and closed, the result follows. �

From now we assume that Y is a separable Banach space and I ⊂ R is an interval.
For a given set-valued map G : I → n(Y ) the integral

∫
I G(t)dt is understood in the

sense of Aumann, i.e. it is the set of integrals of all integrable (in the sense of Bochner)
selections of the map G (cf. [1, 2]):∫

I
G(t)dt =

{∫
I
g(t)dt : g : I → Y is integrable and g(t) ∈ G(t), t ∈ I

}
.

A set-valued map G : I → n(Y ) is called integrable bounded, if there exists a non-
negative integrable function ψ : I → R such that G(t) ⊂ ψ(t)B , t ∈ I , where B is
the unit ball in Y . In this case every measurable selection of G is integrable and,
consequently, the Aumann integral of G is nonempty whenever G is measurable.

The following properties of the Aumann integral will be needed in our investiga-
tions:

LEMMA 7. [1, Theorems 8.6.3, 8.6.4 ] Let G : I → cl(Y ) be a measurable set-
valued map.

a) The closure of the integral of G is convex and∫
I
G(t)dt = conv

(∫
I
G(t)dt

)
.

b) If Y is finite dimensional, then the integral of G is convex. In particular, if
Y = R and G(t) = [g1(t),g2(t)], t ∈ I , then∫

I
G(t)dt =

[∫
I
g1(t)dt,

∫
I
g2(t)dt

]
.
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c) If G is integrable bounded, then

∫
I
G(t)dt =

∫
I
convG(t)dt.

3. Hermite-Hadamard inequalities for (k,h)-convex set-valued maps

THEOREM 8. Assume that D is a k -convex subset of real vector space. Let
G : D → clcb(Y ) be a (k,h)-convex integrable bounded set-valued map. Assume that
h(1/2) > 0 and a,b ∈ D. Then

[G(a)+G(b)] ·
∫ 1

0
h(t)dt ⊂

∫ 1

0
G

(
k(t)a+k(1− t)b

)
dt

⊂ 1
2h(1/2)

∫ 1

0
G

(
k(1/2)[k(t)+ k(1− t)](a+b)

)
dt. (8)

Proof. To prove the left inclusion, fix a,b ∈ D and take arbitrary u ∈ G(a) and
v ∈ G(b) . Consider the function g : [0,1]→ Y defined by

g(t) = h(t)u+h(1− t)v, t ∈ [0,1].

By the (k,h)-convexity of G , we get

g(t) ∈ h(t)G(a)+h(1− t)G(b)⊂ G
(
k(t)a+ k(1− t)b

)
,

which means that g is a selection of G . Simple calculations give

∫ 1

0
g(t)dt = u

∫ 1

0
h(t)dt + v

∫ 1

0
h(1− t)dt = (u+ v)

∫ 1

0
h(t)dt.

Hence,

(u+ v)
∫ 1

0
h(t)dt ∈

∫ 1

0
G

(
k(t)a+ k(1− t)b)

)
dt,

which shows that

(
G(a)+G(b)

)∫ 1

0
h(t)dt ⊂

∫ 1

0
G

(
k(t)a+ k(1− t)b)

)
dt.

The proof of the right inclusion is divided into two steps.
First, we assume that Y = R . Then, by Lemma 6, G is of the form G(x) =

[g1(x),g2(x)] , x ∈ D , where g1 : D → R is (k,h)-convex and g2 : D → R is (k,h)-
concave. Let g : [0,1] → R be any integrable selection of the set-valued map t 	→
G

(
k(t)a+ k(1− t)b

)
. Denote ϕ(t) := k(1/2)[k(t)+ k(1− t)](a+b) . Then, by Theo-

rem 2 (cf. also Remark 4), we get

∫ 1

0
g(t)dt �

∫ 1

0
g1

(
k(t)a+ k(1− t)b)

)
dt � 1

2h(1/2)

∫ 1

0
g1

(
ϕ(t)

)
dt
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and ∫ 1

0
g(t)dt �

∫ 1

0
g2

(
k(t)a+ k(1− t)b)

)
dt � 1

2h(1/2)

∫ 1

0
g2

(
ϕ(t)

)
dt.

Hence, by Lemma 7(b),

∫ 1

0
g(t)dt ∈
1

2h(1/2)
·
[∫ 1

0
g1

( 1
2h(1/2)

∫ 1

0
G

(
ϕ(t)

)
dt

)
dt,

∫ 1

0
g2

( 1
2h(1/2)

∫ 1

0
G

(
ϕ(t)

)
dt

)
dt

]

=
1

2h(1/2)

∫ 1

0
G

(
ϕ(t)

)
dt.

Since this relation holds for any integrable selection g of the map t 	→ G
(
k(t)+ k(1−

t)
)
, we get∫ 1

0
G

(
k(t)a+ k(1− t)b)

)
dt ⊂ 1

2h(1/2)

∫ 1

0
G

(
ϕ(t)

)
dt

=
1

2h(1/2)

∫ 1

0
G

(
k(1/2)[k(t)+ k(1− t)](a+b)

)
dt.

Now, assume that Y is an arbitrary separable Banach space. Take a nonzero con-
tinuous linear functional y∗ ∈Y ∗ and consider the set-valued map x 	→ y∗(G(x)) , x∈D .
It is easy to check that this map is (k,h)-convex and has values in clcb(R) . So, by the
previous step,∫ 1

0
y∗

(
G

(
k(t)a+ k(1− t)b

))
dt ⊂ 1

2h(1/2)

∫ 1

0
y∗

(
G

(
ϕ(t)

))
dt. (9)

Take arbitrary z ∈ ∫ 1
0 G

(
k(t)a + k(1− t)b

)
dt . By the definition of the Aumann

integral, there exists an integrable selection g of the set-valued map t 	→ G
(
k(t) +

k(1− t)
)

such that z =
∫ 1
0 g(t)dt . From (9), we obtain

y∗(z) = y∗
(∫ 1

0
g(t)dt

)
=

∫ 1

0
y∗

(
g(t)

)
dt ∈ 1

2h(1/2)

∫ 1

0
y∗

(
G

(
ϕ(t)

))
dt. (10)

Since G is integrable bounded and the values y∗
(
G

(
ϕ(t)

))
are convex, by Lemma 7(c),

we get

∫ 1

0
y∗

(
G

(
ϕ(t)

))
dt =

∫ 1

0
y∗

(
G

(
ϕ(t)

))
= y∗

(∫ 1

0
G

(
ϕ(t)

)
dt

)

⊂ y∗
(∫ 1

0
G

(
ϕ(t)

)
dt

)
. (11)

From (10) and (11), we obtain

y∗(z) ∈ 1
2h(1/2)

y∗
(∫ 1

0
G

(
ϕ(t)

)
dt

)
.
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Since this condition holds for arbitrary y∗ ∈Y ∗ and, by Lemma 7(a), the set
∫ 1
0 G

(
ϕ(t)

)
dt

is convex and closed, by the separation theorem (see [8], Corollary 2.5.11), we obtain

z ∈ 1
2h(1/2)

∫ 1

0
G

(
ϕ(t)

)
dt

and hence, using once more Lemma 7(c),

z ∈ 1
2h(1/2)

∫ 1

0
G

(
ϕ(t)

)
dt.

Consequently,∫ 1

0
G

(
k(t)a+ k(1− t)b

)
dt ⊂ 1

2h(1/2)

∫ 1

0
G

(
ϕ(t)

)
dt

=
1

2h(1/2)

∫ 1

0
G

(
k(1/2)[k(t)+ k(1− t)](a+b)

)
dt,

which finishes the proof. �

THEOREM 9. Assume that D is a k -convex subset of R and choose a < b such
that [a,b] ⊂ D. Let G : I → clcb(Y ) be a (k,h)-convex measurable set-valued map
with h(1/2) > 0 . Then

1
b−a

∫ b

a
G(x)dx ⊂ G

(
k(1/2)(a+b)

)
2h(1/2)

. (12)

Proof. Let z ∈ 1
b−a

∫ b
a G(x)dx. Then, there exists an integrable selection g of G

such that z = 1
b−a

∫ b
a g(x)dx. Suppose, contrary to our claim, that

z /∈ G
(
k(1/2)(a+b)

)
2h(1/2)

.

By the separation theorem, there exists a linear continuous functional y∗ ∈Y ∗ such that

y∗(z) < infy∗
(G

(
k(1/2)(a+b)

)
2h(1/2)

)
. (13)

Consider the function f : D → R defined by

f (x) = infy∗
(
G(x)

)
, x ∈ D.

It is easy to check that f is (k,h)-convex. Therefore, by Theorem 3,

1
b−a

∫ b

a
f (x)dx �

f
(
k(1/2)(a+b)

)
2h(1/2)

. (14)

On the other hand, by (13), and taking into account that y∗(g(x)) � infy∗
(
G(x)

)
= f (x) ,

we obtain

1
b−a

∫ b

a
f (x)dx � 1

b−a

∫ b

a
y∗(g(x))dx = y∗(z) <

f
(
k(1/2)(a+b)

)
2h(1/2)

.

This contradicts (14) and finishes the proof. �
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4. Applications

As an immediate consequence of the Hermite-Hadamard-type inclusions proved
above for (k,h)-convex set-valued maps, we can obtain many similar results for various
related classes of set-valued maps. In this section we present a few examples of them. In
the corollaries below D is assumed to be a k -convex subset of R (with the appropriate
function k ).

For k(t) = h(t) = t , t ∈ (0,1) , Theorem 8 as well as Theorem 9 reduces to the
known Hermite-Hadamard inclusions for convex set-valued maps proved (under some-
what different assumptions on G) in [5, 9].

COROLLARY 10. If G : D → clcb(Y ) is convex and integrable bounded, then

G(a)+G(b)
2

⊂ 1
b−a

∫ b

a
G(x)dx ⊂ G

(a+b
2

)
,

for all a,b ∈ D, a < b.

If we assume that k(t) = t for all t ∈ (0,1) , then from Theorem 8, we obtain a
counterpart of the Hermite-Hadamard inequality for h -convex set-valued maps.

COROLLARY 11. Let G : D → clcb(Y ) be a h-convex integrable bounded set-
valued map. Assume that h(1/2) > 0 and a,b ∈ D. Then

[G(a)+G(b)]
∫ 1

0
h(t)dt ⊂ 1

b−a

∫ b

a
G(x)dx ⊂ G

(
a+b
2

)
2h(1/2)

.

REMARK 12. Taking into account Remark 1, from Corollary 11, we can obtain
further counterparts of the Hermite-Hadamard inequality for s-Breckner-convex set-
valued maps (for h(t) = ts with some s ∈ (0,1)), P-convex set-valued maps (for h(t) =
1) and Godunova-Levin convex set-valued maps (for h(t) = t−1 ).

If we assume that k(t) = t1/s and h(t) = t for all t ∈ (0,1) , then from Theorems
8 and 9, we obtain counterparts of the Hermite-Hadamard inequalities for s-Orlicz-
convex set-valued maps.

COROLLARY 13. Let G : D→ clcb(Y ) be an s-Orlicz-convex integrable bounded
set-valued map. Assume that a,b ∈ D. Then

G(a)+G(b)
2

⊂
∫ 1

0
G

(
t1/sa+(1− t)1/sb

)
dt

⊂
∫ 1

0
G

(
1

21/s

[
t1/s +(1− t)1/s](a+b)

)
dt

and
1

b−a

∫ b

a
G(x)dx ⊂ G

(
a+b

21/s

)
.
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If we assume that k(t) is defined by (4) and h(t) = k(t) for all t ∈ (0,1) , then
from the left-hand side of (8) in Theorem 8, we obtain a counterpart of the Hermite-
Hadamard inequalities for star-shaped set-valued maps.

COROLLARY 14. Let G : D → clcb(Y ) be a star-shaped integrable bounded set-
valued map. Assume that a,b ∈ D\ {0} . Then

G(a)+G(b)
2

⊂ 1
a

∫ a

0
G(t)dt +

1
b

∫ b

0
G(t)dt.
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