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ON REARRANGEMENT INEQUALITIES FOR MULTIPLE SEQUENCES
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(Communicated by C. P. Niculescu)

Abstract. The classical rearrangement inequality provides bounds for the sum of products of
two sequences under permutations of terms and show that similarly ordered sequences provide
the largest value whereas opposite ordered sequences provide the smallest value. This has been
generalized to multiple sequences to show that similarly ordered sequences provide the largest
value. However, the permutations of the sequences that result in the smallest value are generally
not known. We show a variant of the rearrangement inequality for which a lower bound can be
obtained and conditions for which this bound is achieved for a sequence of permutations. We also
study a generalization of the rearrangement inequality and a variation where the permutations of
terms can be across the various sequences. For this variation, we can also find the minimizing
and maximizing sequences under certain conditions. Finally, we also look at rearrangement
inequalities of other objects that can be ordered such as functions and matrices.

1. Introduction

The rearrangement inequality [2] states that given two finite sequences of real
numbers the sum of the product of pairs of terms is maximal when the sequences are
similarly ordered and minimal when oppositely ordered. More precisely, suppose x1 �
x2 · · ·� xn and y1 � y2 · · · � yn , then for any permutation σ in the symmetric group Sn

of permutations on {1, · · · ,n} ,

xny1 + · · ·+ x1yn � xσ(1)y1 + · · ·+ xσ(n)yn � x1y1 + · · ·xnyn (1)

The dual inequality is also true [5], albeit only for nonnegative numbers in general
(i.e. xi � 0, yi � 0):

(x1 + y1) · · · (xn + yn) � (xσ(1) + y1) · · · (xσ(n) + yn) � (xn + y1) · · · (x1 + yn) (2)

Eq. (2) says that similarly ordered terms minimize the product of sums of pairs,
while opposite ordered terms maximize the product of sums. In Ref. [4] it was shown
that Eq. (1) and Eq. (2) are equivalent for positive numbers.

In Ref. [6], these inequalities are generalized to multiple sequences of numbers:

Mathematics subject classification (2020): 05A20, 15A45, 54F05.
Keywords and phrases: Combinatorics, inequalities, matrices.

c© � � , Zagreb
Paper MIA-25-32

511

http://dx.doi.org/10.7153/mia-2022-25-32


512 C. W. WU

LEMMA 1. Consider a set of nonnegative numbers {ai j} , i = 1, · · · ,k , j = 1, · · · ,n.
For each i , let a′i1,a

′
i2, · · · ,a′in be the numbers ai1,ai2, · · · ,ain reordered such that a′i1 �

a′i2 � · · · � a′in . Then
n

∑
j=1

k

∏
i=1

ai j �
n

∑
j=1

k

∏
i=1

a′i j

n

∏
j=1

k

∑
i=1

ai j �
n

∏
j=1

k

∑
i=1

a′i j

Note that only half of the rearrangement inequality is generalized. In particular,
the rightmost inequality (the upper bound) in Eq. (1) and the leftmost inequality (the
lower bound) in Eq. (2) are generalized in Lemma 1 by showing that similarly ordered
sequences maximizes the sum of products and minimizes the product of sums. No such
generalization is known for the other half. This paper provides results for the other
direction and generalizes the rearrangement inequalities in various ways.

Eq. (1) can be used to prove the AM-GM inequality which states that the algebraic
mean of nonnegative numbers are larger than or equal to their geometric mean. We will
rewrite it in the following equivalent form.

LEMMA 2. (AM-GM inequality) For n nonnegative real numbers xi , ∑n
i=1 xi �

n n
√

∏n
i=1 xi and ∏n

i=1 xi �
(

∑n
i=1 xi
n

)n
with equality if and only if all the xi are the same.

This allows us to give the following bounds on the other direction of Lemma 1.

LEMMA 3. Consider a set of nonnegative numbers {ai j} , i = 1, · · · ,k , j = 1, · · · ,n.
Then

n n

√
∏
i j

ai j �
n

∑
j=1

k

∏
i=1

ai j

(
∑i j ai j

n

)n

�
n

∏
j=1

k

∑
i=1

ai j

In addition, Lemma 2 implies that if there exists k permutations σi on {1, · · · ,n}
such that ∏k

i=1 aiσi( j) = ∏k
i=1 aiσi(1) for all j , then this set of permutations will achieve

the lower bound and minimize the sum of products, i.e.

n

∑
j=1

k

∏
i=1

aiσi( j) �
n

∑
j=1

k

∏
i=1

ai j

Similarly, if there exists permutations σi such that ∑k
i=1 aiσi( j) = ∑k

i=1 aiσi(1) for all j ,
then this set of permutations will achieve the upper bound and maximize the product of
sums, i.e.

n

∏
j=1

k

∑
i=1

aiσi( j) �
n

∏
j=1

k

∑
i=1

ai j



ON REARRANGEMENT INEQUALITIES FOR MULTIPLE SEQUENCES 513

In the next section we consider scenarios where these conditions can be satisfied for
some sequence of permutations of terms and thus supply the other directions of Lemma
1.

2. Sums of products of permuted sequences

Instead of considering multiple sequences, we restrict ourselves to permutations
of the same sequence and look at sum of products of these sequences.

DEFINITION 1. Let 0 � a1 � a2 . . . � an be a sequence of nonnegative numbers.
Consider k permutations of the integers {1, · · · ,n} denoted as {σ1, · · · ,σk} and define
the value v(n,k) = ∑n

i=1 ∏k
j=1 aσ j(i) . The maximal and minimal value of v among all

k -sets of permutations are denoted as vmax(n,k) and vmin(n,k) respectively.

An immediate consequence of Lemma 1 is that vmax(n,k)= ∑n
i=1 ak

i and is achieved
when all the k permutations σi are the same.

vmin(n,k) and vmax(n,k) can be determined explicitly for small value of n or k .

LEMMA 4. • v(1,k) = ak
i ,

• v(n,1) = ∑n
i=1 ai ,

• vmax(2,k) = ak
1 +ak

2 .

• vmin(2,2m) = 2am
1 am

2

• vmin(2,2m+1) = (a1 +a2)am
1 am

2

• vmax(n,2) = ∑n
i=1 a2

i

• vmin(n,2) = ∑n
i=1 aian−i+1

Proof. For k = 1 there is only one sequence and v(n,1) = ∑n
i=1 ai . For n = 1, the

only permutation is (1) , so v(1,k) = ak
1 . When n = 2, there are only two permutations

on the integers {1,2} , and vmax(2,k) = ak
1 + ak

2 . If k = 2m , vmin(2,k) = 2am
1 am

2 is
achieved with m of the permutations of one kind and the other half the other kind. If
k = 2m+1, vmin(2,k) = (a1 +a2)am

1 am
2 is achieved with m of the permutations of one

kind and m+1 of them the other kind.
The rearrangement inequality (Eq. (1)) implies that for k = 2, vmax(n,2) = ∑n

i=1 a2
i

and vmin(n,2) = ∑n
i=1 aian−i+1 by choosing both permutations to be (1,2 , · · · , n ) for

vmax(n,2) and choosing the two permutations to be (1,2 , · · · , n ) and (n ,n−1, · · · , 2 ,
1) for vmin(n,2) . �

Our next result is a lower bound on vmin :
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LEMMA 5. vmin(n,k) � n∏i a
k/n
i .

Proof. The product ∏i j aσi( j) is equal to ∏i a
k
i . Thus by Lemma 2, v(n,k) �

n n
√

∏i a
k
i = n∏i a

k/n
i . �

Our main result in this section is that this bound is tight when k is a multiple of n .

THEOREM 1. If n divides k , then vmin(n,k) = n∏n
i=1 ak/n

i and is achieved by
using each cyclic permutation k/n times..

Proof. By Lemma 5 v(n,k) � n∏n
i=1 ak/n

i . Consider the n cyclic permutations
r1 = (1,2, . . . ,n) , r2 = (2, . . . ,n,1) , . . . , rn = (n,1, . . . ,n − 1) . It is clear that us-
ing k/n copies of each permutation ri to form k permutations results in v(n,k) =
n∏n

i=1 ak/n
i . �

3. The dual problem of product of sums

DEFINITION 2. Let 0 � a1 � a2 . . . � an be a sequence of nonnegative numbers.
Consider k permutations of the integers {1, · · · ,n} denoted as {σ1, · · · ,σk} and define
the value w(n,k) = ∏n

i=1 ∑k
j=1 aσ j(i) . The maximal and minimal value of v among all

k -sets of permutations are denoted as wmax(n,k) and wmin(n,k) respectively1.

Analogous to Section 2 the following results can be derived regarding wmax and
wmin .

LEMMA 6. • wmin(n,k) = ∏n
i=1 kai = kn ∏i ai

• wmax(1,k) = ka1

• wmax(n,1) = ∏i ai

• wmin(2,k) = k2 ∏i ai .

• wmax(2,2m) = (a1 +a2)2m2 .

• wmax(2,2m+1) = (ma1 +(m+1)a2)(ma2 +(m+1)a1) .

• wmin(n,2) = 2n ∏i ai .

• wmax(n,2) = ∏i(ai +an−i+1) .

• wmax(n,k) �
(

k∑i ai
n

)n
with equality if n divides k .

1To reduce the amount of notation, v , w , vmin , vmax , wmin , wmax are redefined in various subsections
and the results about them are valid within the subsection.
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4. The special case where ai is an arithmetic progression

Consider the special case where the elements ai form an arithmetic progression,
i.e. ai are equally spaced where ai+1 −ai is constant and does not depend on i . Even
though vmin are difficult to compute in general, explicit forms for wmax can be found
for many values of n and k .

THEOREM 2. If k = 2t +nu for nonnegative integers t and u, then wmax(n,k) =(
k(a1+an)

2

)n
.

Proof. It is easy to see that ∑i ai = n(a1 + an)/2. By Lemma 6 wmax(n,k) �(
k(a1+an)

2

)n
. By using t copies of the permutation (1, · · · ,n) and t copies of the per-

mutation (n, · · · ,1) followed by u copies each of the cyclic permutations ri , we see
that ∑ j σ j(i) = t(a1 +an)+un(a1 +an)/2 = (t +un/2)(a1+an) = k(a1 +an)/2 for all

i and thus w(n,k) =
(

k(a1+an)
2

)n
. �

COROLLARY 1. If k is even, then wmax(n,k) =
(

k(a1+an)
2

)n
.

COROLLARY 2. If n is odd and k � n−1 , then wmax(n,k) =
(

k(a1+an)
2

)n
.

The case when k is odd and n is even is more involved. Let ai = a1 +(i−1)d =
(a1−d)+ id for i = 1, · · · ,n and d � 0. Given a k -set of permutations σ j define wi as
wi = ∑k

j=1 σ j(i) . This implies that ∑k
j=1 aσ j(i) = k(a1 −d)+wid . Next we show there

is a sequence of permutations for which wi −wj � 1 for all i, j when k � n−1.

LEMMA 7. If n is even, there exists a sequence σ j of n− 1 permutations of

{1, · · ·n} such that wi = n2

2 −1 for i = 1, · · · n
2 and wi = n2

2 for i = n
2 +1, · · · ,n.

Proof. Recall the cyclic permutations denoted as ri . Consider the index set S =
{i : 2 � i � n, i �= n/2 + 1} . Let us compute ∑ j∈S r j(i) . Since r1(i) = (1,2, . . . ,n)
and rn/2+1 = (n/2+1,n/2+2, . . .,n/2) , ∑n−1

j∈S r j(i) = n(n+1)/2− r1(i)− rn/2+1(i) is

equal to n(n+ 1)/2− i− (n/2+ i) = n2/2− 2i for i = 1, · · · ,n/2 and equal to n(n+
1)/2− i− (i−n/2) = n2/2− (2i−n) for i = n/2+1, · · · ,n . Let σ̃ be the permutation
defined as σ̃(i) = 2i− 1 for i = 1 · · ·n/2 and σ̃(i) = n− 2i for i = n/2 + 1 · · · ,n .
Define the (n− 1)-set of permutations {σi} as σ̃ plus the cyclic permutations with
index in S , we get ∑n−1

j=1 σ j(i) = n2/2− 1 for i = 1, · · · ,n/2 and ∑ j σ j(i) = n2/2 for
i = n/2+1, . . . ,n . �

COROLLARY 3. If n is even and k is odd, there does not exists a k -set of permu-
tations such that wi = wj for all i, j . If k � n− 1 , then there exists k permutations
such that wi −wj � 1 for all i, j .
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Proof. If n is even and k is odd, ∑i wi = kn(n+ 1)/2 is not divisible by n as k
and n + 1 are both odd. This means it is not possible for wi = wj for all i, j . If n
is odd, the case k = n− 1 can be achieved with k/2 permutations (1, · · · ,n) and k/2
permutations (n,n−1, . . . ,1) . If n is even, the case k = n−1 follows from Lemma 7.
If k > n , it follows by induction from the k−2 case and adding the two permutations
(1, · · · ,n) and (n,n−1, · · · ,1) . �

LEMMA 8. If w1 + w2 = v1 + v2 and |w2 −w1| � |v2 − v1| , then (x + w1)(x +
w2) � (x+ v1)(x+ v2) .

Proof. Let y = w1 +w2 . Then (x+w1)(x+w2) = x2 +yx+w1(y−w1) . Since the
function x(y−x) has a maximum at y

2 , this implies that (x+w1)(x+w2) is maximized
when w1 = w2 . �

LEMMA 9. If k � n−1 , then for the set permutations σ j that maximizes w(n,k) ,
the corresponding wi must satisfy wi −wj � 1 for all i, j . If in addition, n is odd or k
is even, then wi = wj for all i, j .

Proof. If wi −wj > 1 for some pair (wi,wj) , by Lemma 8 we can reduce wi

and increase wj by 1 repeatedly until wi − wj � 1 for all i, j without increasing
wmax(n,k) = ∏n

i=1 ∑k
j=1 aσ j(i) = ∏n

i=1 k(a1 −d)+wid . If n is even and k is odd, ∑i wi

is not divisible by n and the only set of wi such that wi −wj � 1 for all i, j is the
one described in Lemma 7. If n is odd or k is even, there exists a set of permutations
corresponding to wmax(n,k) such that wi = wj by Theorem 2. �

THEOREM 3. If n is even and k is odd such that k � n−1 , then

wmax(n,k) =
(

ka1 +
(

k(n−1)−1
2

)
d

)n/2 (
ka1 +

(
k(n−1)+1

2

)
d

)n/2

Proof. Note that k can be written as k = 2t + (n− 1) . As a consequence of
Lemmas 7, 9, the value wmax(n,k) is achieved with t copies of (1, . . . ,n) , t copies
of (n, . . . ,1) , σ̃ and the cyclic permutations with index in S . Then wi = t(n+ 1)+
n2/2− 1 = k(n+1)−1

2 for i = 1, · · · ,n/2, and wi = t(n+ 1)+ n2/2 = k(n+1)+1
2 for i =

n/2+1, · · ·,n . Thus

wmax(n,k) =
n

∏
i=1

k(a1−d)+wid

=
(

k(a1−d)+
d(k(n+1)−1)

2

)n/2 (
k(a1−d)+

d(k(n+1)+1)
2

)n/2

and the conclusion follows. �
Theorems 2 and 3 show that the value of wmax(n,k) and the corresponding maxi-

mizing set of permutations can be explicitly found when k � n−1 or k is even.
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4.1. The special case ai = i

Consider the special case where the sequence ai is just the first n positive in-
tegers, i.e. v(n,k) = ∑n

i=1 ∏k
j=1 σ j(i) and w(n,k) = ∏n

i=1 ∑k
j=1 σ j(i) . The values of

vmin(n,k) and wmax(n,k) can be found respectively in OEIS [7] sequence A260355
(https://oeis.org/A260355) and sequence A331988 (https://oeis.org/A331988).

THEOREM 4. If k = 2t +nu for nonnegative integers t and u, then wmax(n,k) =(
k(n+1)

2

)n
. In particular, if k is even or if n is odd and k � n− 1 , then wmax(n,k) =(

k(n+1)
2

)n
.

THEOREM 5. If n is even and k is odd such that k � n− 1 , then wmax(n,k) =(
k2(n+1)2−1

4

)n/2
.

For example, Theorem 4 shows that wmax(3,k) = 8k3 for k > 1. More details
about vmin and wmax for this special case, including tables of values, can be found in
Ref. [10].

5. The special case when ai is a geometric progression

We can get analogous results for vmin if the sequence ai is a geometric progres-
sion of the form ai = cdbi for some constants c,d � 1 and an arithmetic progression bi

of n nonnegative numbers. This is due to the fact that αi
def= log(ai) = log(c)+ log(d)bi

is an arithmetric progression of nonnegative numbers. Furthermore, if there exists per-
mutations σi such that ∑i αiσi( j) = ∑i αiσi(1) , then ∏i aiσi( j) = ∏i aiσi(1) . This implies
that we get the following analogous result to Theorem 2.

THEOREM 6. If k = 2t + nu for nonnegative integers t and u, then vmin(n,k) =

n∏n
i=1 ak/n

i = nckd
k(b1+bn)

2 .

6. A generalization of the rearrangement inequality

In Ref. [1], Eqs (1–2) are generalized as follows:

THEOREM 7. Let f be real valued function of 2 variables defined on Ia× Ib . If

f (x2,y2)− f (x2,y1)− f (x1,y2)+ f (x1,y1) � 0

for all x1 � x2 in Ia and y1 � y2 in Ib , then

∑
i

f (ai,bn−i+1) � ∑
i

f (ai,bσ(i)) � ∑
i

f (ai,bi) (3)

for all sequences a1 � a2 · · · � an in Ia , b1 � b2 · · · � bn in Ib , and all permutation σ
of {1, · · · ,n} .

https://oeis.org/A260355
https://oeis.org/A331988
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Theorem 7 unifies Eq. (1) and Eq. (2) as they can be derived by choosing f (x,y) =
xy and f (x,y) = − log(x+ y) respectively. The assumption xi � 0 and yi � 0 in Eq.
(2) are used to ensure that the log is well-defined. In this section, we generalize this
theorem by replacing the summation and subtraction with a general function and real
intervals with partially ordered sets and give a more direct way to unify Eq. (1) and Eq.
(2).

DEFINITION 3. For a function g with n arguments and for i �= j define gi j(x,y,z)
as g(z) but with the i-th and j -th argument replaced with x and y respectively. Simi-
larly, we define gi(x,z) as g(z) except with the i-th argument replaced with x .

For instance if g(z1,z2,z3) is a function of 3 arguments, then g1,3(x,y,(z1,z2,z3))=
g(x,z2,y) and g2(x,(z1,z2,z3)) = g(z1,x,z3) .

DEFINITION 4. A function g on n variables satisfies property S if the value
g(xσ(1), · · · ,xσ(n)) does not depend on the permutation σ ∈ Sn .

THEOREM 8. Let Ia and Ib be two sets with corresponding partial orders �a and
�b . Let f : Ia× Ib → Ic be a function of 2 variables defined on Ia× Ib . Let g : In

c → Id
be a function of n variables defined on In

c . Let �d be a partial order on Id .
If

gi j( f (x1,y1), f (x2,y2),z) �d gi j( f (x2,y1), f (x1,y2),z) (4)

for all x1 �a x2 in Ia and y1 �b y2 in Ib and all pairs of indices i < j and all z , then

g({ f (ai,bn−i+1)|i = 1, . . . ,n})
�d g({ f (ai,bσ(i))|i = 1, . . . ,n}) �d g({ f (ai,bi)|i = 1, . . . ,n}) (5)

for all sequences a1 �a a2 · · · �a an in Ia , b1 �b b2 · · · �b bn in Ib , and all permutation
σ ∈ Sn .

Proof. The proof is similar to Ref. [9] where we use the permutahedron ordering
Pn on Sn , with σ1 � σ2 if σ1 can be formed from σ2 by exchanging the elements of an
adjacent inversion and we consider the partial order on Sn generated by the transitive
closure of Pn . Let x1 �a x2 �a · · · �a xn and y1 �b y2 �b · · · �b yn and define gσ =
g( f (x1,yσ(1)), f (x2,yσ(2)), . . .) for σ ∈ Sn . If σ1 �σ2 , then Eq. (4) implies that gσ1 �d

gσ2 . Since the greatest element and the least element in the partial order is the identity
and the reverse permutation respectively, the conclusion follows. �

A slight variation of Theorem 8 is the following:

THEOREM 9. Let Ia , Ib , Ic , Id , f and g be as defined in Theorem 8. .
If Eq. (4) is satisfied for all x1 �a x2 in Ia and y1 �b y2 in Ib and all pairs of

indices i �= j and all z , and g satisfies property S , then

g({ f (aμ(i),bμ(n−i+1))|i = 1, . . . ,n}) �d g({ f (ai,bσ(i))|i = 1, . . . ,n})
�d g({ f (aμ(i),bμ(i))|i = 1, . . . ,n}) (6)
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for all sequences a1 �a a2 �a · · · �a an in Ia , b1 �b b2 �b · · · �b bn in Ib , and all
permutation σ ,μ ∈ Sn .

The proof of Theorem 9 is similar to Theorem 8 except that we define gσ as

gσ = g( f (xμ(1),yμ(σ(1))), f (xμ(2),yμ(σ(2))), . . .).

LEMMA 10. Let x1 , x2 , y1 and y2 be real numbers. If x1 � x2 and y1 � y2 , then

x1y1 + x2y2 � x1y2 + x2y1

and
(x1 + y1)(x2 + y2) � (x1 + y2)(x2 + y1)

Proof. The inequalities follow from the fact that they can both be rearranged into
(x2− x1)(y2 − y1) � 0. �

Theorem 8 gives us a more direct way to unify Eq. (1) and Eq. (2). If we choose
g(x1,x2, . . .) = ∑i xi and f (x,y) = xy , then Lemma 10 implies that Eq. (4) is satisfied
and we obtain Eq. (1). If we choose g(x1,x2, . . .) = −∏i xi and f (x,y) = x+ y , then
Lemma 10 with the additional assumption that xi,yi � 0 ensures that z � 0 and thus
Eq. (4) is satisfied and we obtain Eq. (2). Not having to use the log function to prove
Eq. (2) will be useful when we look at more general products such as the Hadamard
product of matrices in Section 8.

Other choices of f and g beyond addition and multiplication are for example max
and min functions. Table 1 lists some of these choices for f and g that satisfies Eq.
(4) where R�0 denotes the set of nonnegative real numbers .

f (x1,x2) g(x1, · · · ,xn) Domain

x1× x2

∑i xi R

maxi xi R�0

−mini xi R�0

x1 + x2

−Πixi R�0

maxi xi R

−mini xi R

max(x1,x2)
−∑i xi R

−Πixi R�0

−mini xi R

min(x1,x2)
∑i xi R

Πixi R�0

maxi xi R

Table 1: Examples of functions f and g such that Eq. (4) is satisfied. All the functions g satisfy
property S .

We will look at more general examples in Section 8.
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6.1. Circular rearrangement inequality

In Ref. [12] the following variant of the rearrangement inequality is studied for
a sequence of numbers a1 � a2 � · · · � an . Consider the value V (σ) = aσ(1)aσ(2) +
aσ(2)aσ(3) + · · ·+aσ(n)aσ(1) , where σ is a permutation of {1,2, · · ·n} . Let σm1 denote
the permutation (1,n− 1,3,n− 3,5, · · · ,n− 6,6,n− 4,4,n− 2,2,n) and σm2 denote
the permutation(1,3,5, · · ·,n, · · · ,6,4,2) . It was shown in Ref. [12] that V (σ) is mini-
mized and maximized when the permutation σ is equal to σm1 and σm2 respectively.

As the proof of this result only relies on properties of addition and multiplication
described in Lemma 10, the following extension follows readily:

THEOREM 10. If f , g satisfies Eq. (4), f is symmetric, g satisfies property S
and a1 � a2 � · · · � an , then the value of

g
(
f
(
aσ(1),aσ(2)

)
, f

(
aσ(2),aσ(3)

)
, · · · , f

(
aσ(n),aσ(1)

))
is minimized and maximized when the permutation σ is equal to σm1 and σm2 respec-
tively.

A consequence is the dual to the result in Ref. [12].

COROLLARY 4. If 0 � a1 � a2 � · · · � an , then the value of

W (σ) =
(
aσ(1) +aσ(2)

)(
aσ(2) +aσ(3)

)×·· ·× (
aσ(n) +aσ(1)

)
is minimized and maximized when the permutation σ is equal to σm2 and σm1 respec-
tively.

6.2. Extension to multiple sequences

Theorem 8 can be generalized to multiple sequences as well.

THEOREM 11. Let f be a function of k variables and let g be function of n
variables.

If

gi j( fml(x1,y1,w), fml (x2,y2,w),z) �d gi j( fml(x2,y1,w), fml(x1,y2,w),z) (7)

for all x1 �i x2 and y1 � j y2 and all pairs of indices i < j , m < l and all z , w, then

g({ f (a1i,a2σ2(i), · · · ,akσk(i)|i = 1, . . . ,n})�d g({ f (a1i,a2i, · · ·aki)|i = 1, · · · ,n})
for all permutations σ j ∈ Sn and for all sequences ai j , 1 � i � k , 1 � j � n where for
all i , ai1 �i ai2 �i · · · �i ain .

Proof. This follows by induction on the number of arguments of f and the fact
that once all the sequences are similarly ordered, exchanging any pair of adjacent terms
in one sequence will not increase the value of g as a consequence of Eq. (7). �

The corresponding extension of Theorem 9 to multiple sequences is
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THEOREM 12. Let f be a function of k variables and let g satisfies property S .
If Eq. (7) is satisfied for all x1 �i x2 and y1 � j y2 and all pairs of indices i �= j , m < l
and all z , w, then

g({ f (a1σ1(i),a2σ2(i), · · · ,akσk(i)|i = 1, . . . ,n})
�d g({ f (a1μ(i),a2μ(i), · · · ,akμ(i))|i = 1, · · · ,n})

for all permutations μ , σ j ∈ Sn and for all sequences ai j , 1 � i � k , 1 � j � n where
for all i , ai1 �i ai2 �i · · · �i ain .

Similarly, if the functions f in Table 1 are extended as functions of k variables
and the domain is R�0 they would satisfy Eq. (7).

7. Another variation of the rearrangement inequality

In Theorem 8, the sequences ai and bi are separate and the permutation σ acts
on bi only. We next introduce a variant of the rearrangement inequality where the
permutation acts on the union of ai and bi .

THEOREM 13. Let I be a set with partial order � and let f : I × I → Ic be a
function of 2 variables. Let g : In

c → Id be a function of n variables. Let �c and �d

be partial orders for sets Ic and Id respectively. Let ai be a set of 2n elements in I
such that a1 � a2 � ·· · � a2n and let bi be any permutation of the elements of ai . If
x �c y ⇒ gi(x) �d gi(y) for all i and

f (x1,x2) �c f (x2,x1), (8)

and
gi j( f (x1,y1), f (x2,y2),z) �d gi j( f (x2,y1), f (x1,y2),z) (9)

for all x1 � x2 and y1 � y2 in I and all pairs of indices i < j and all z , then

g({ f (ai,a2n−i+1)|i = 1, · · ·n})�d g({ f (b2i−1,b2i)|i = 1, · · ·n}) (10)

If f is symmetric, i.e.
f (x,y) = f (y,x) (11)

for all x , y in I , and Eq. (9) is satisfied for all x1 � x2 and y1 � y2 in I and all pairs
of indices i < j and all z , then

g({ f (b2i−1,b2i)|i = 1, · · ·n}) �d g({ f (a2i−1,a2i)|i = 1, · · ·n}) (12)

Proof. Let ci be a permutation of bi such that v = g({ f (ci,c2n−i+1|i = 1, · · · ,n})
is a minimal element under �d . Then by Theorem 8, ci can be chosen such that
ci � ci+1 for 1 � i � n−1 and for n+1 � i � 2n−1. Suppose cn+1 ≺ cn . By Eq. (8)
we can swap these two terms without causing v to be nonminimal. Again by Theorem
8, we can reorder ci for 1 � i � n such that they are nondecreasing under � and also
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reorder ci for n+1 � i � 2n such that they are nondecreasing. If cn+1 ≺ cn we repeat
the process again. It’s clear that this needs to be repeated at most a finite number of
times and eventually we have cn+1 � cn . Thus we have a sequence of ci such that
ci � ci+1 for 1 � i � n− 1 and for n + 1 � i � 2n− 1, in addition to cn � cn+1 ,
i.e., c1 � c2 · · · � c2n . Since each swap of 2 elements in the permutation results in
comparable elements in Id , this minimal element v is also the least element v under
�d among all the permutations of bi .

Next, let di be a permutation of bi such that v = g({ f (d2i−1,d2i}|n = 1, · · · ,n})
is a maximal element under �d . Then by Theorem 8, di can be chosen such that
d2i−1 � d2i+1 and d2i � d2i+2 for 1 � i � n− 1. Furthermore, by repeated use of
Theorem 8 and Eq. (11) we can assume d2i−1 � d2i as well. Suppose d2n−1 ≺ d2(n−1) .
Then d2(n−1)−1 ≺ d2(n−1) and by Eq. (11) we can swap d2(n−1) and d2(n−1)−1 without
changing the value of v . Again by repeated application of Theorem 8 and Eq. (11)
we can reorder d2i for 1 � i � n such that they are nondecreasing under � and also
reorder d2i−1 for 1 � i � n such that they are nondecreasing in addition to ensuring
d2i−1 � d2i without changing v . It is easy to see that after this reordering d2n−1 �
d2(n−1) . Applying this procedure for j = n− 1, . . . ,3,2 sequentially shows that for
each 2 � j � n , d2 j−1 � d2( j−1) . This in addition with the fact that d2i � d2i−1 shows
that d1 � d2 · · · � d2n . Similarly, this maximal element v is also the greatest element v
among all the permutations of bi . �

By choosing g(x1,x2, · · ·) = ∑i xi and f (x,y) = xy or g(x1,x2, · · ·) = −∏i xi and
f (x,y) = x+ y , we have the following result.

COROLLARY 5. Let ai be a set of 2n numbers and let bi be the numbers ai sorted
such that b1 � b2 � · · · � b2n . Then

n

∑
i=1

bib2n−i+1 �
n

∑
i=1

a2i−1a2i �
n

∑
i=1

b2i−1b2i.

If in addition ai � 0 , then

n

∏
i=1

(b2i−1 +b2i) �
n

∏
i=1

(a2i−1 +a2i) �
n

∏
i=1

(bi +b2n−i+1) .

It is interesting to note that when {ai} = {x1,x1,x2,x2, · · · ,xn,xn} consists of n
numbers each occuring twice, then the optimal permutations in Corollary 5 correspond
to the optimal permutations in Eqns. (1–2).

Similarly, we can generalize Theorem 11 to multiple sequences when the permu-
tation is among all kn numbers {ai j} .

THEOREM 14. Consider a sequence of kn elements ai in I with partial order
� such that a1 � a2 � ·· · � akn . Let bi be and arbitrary permutation of ai . Let
f (x1, · · · ,xk) be a function defined on Ik such that

fml(x,y,z) = fml(y,x,z)



ON REARRANGEMENT INEQUALITIES FOR MULTIPLE SEQUENCES 523

for all x , y , z and pairs of indices m < l and Eq. (9) is satisfied for all x1 � x2 and
y1 � y2 in I and all pairs of indices i < j and all z , then

g({ f (b( j−1)k+1,b( j−1)k+2, · · · ,b jk| j = 1. · · · ,n})
�d g({ f (a( j−1)k+1,a( j−1)k+2, · · · ,a jk| j = 1, · · · ,n})

Proof. The proof is similar to Theorem 13. Let di be a permutation of bi such
that

v = g({ f (d( j−1)k+1,d( j−1)k+2, · · · ,d jk| j = 1, · · ·n})
is a maximal element. Then by Theorem 11, di can be chosen such that d( j−1)k+i �
d jk+i for 1 � i � k and 1� j � n−1. Furthermore, by Eq. (11) we can also assume that
d( j−1)k+i � d( j−1)k+i+1 for 1 � i � k−1 and 1 � j � n . Suppose dk(n−1)+1 ≺ dk(n−1) .
By Eq. (11) we can swap dk(n−2)+1 and dk(n−1) without changing the value of v .
Again by repeated application of Eq. (11) and Theorem 8, we can reorder di such that
d( j−1)k+i � d jk+i for 1 � i � k and 1 � j � n−1 without changing v while ensuring
d( j−1)k+i � d( j−1)k+i+1 for 1 � i � k− 1 and 1 � j � n . If dk(n−1)+1 ≺ dk(n−1) we
repeat this process (which terminates after a finite number of times) until dk(n−1)+1 �
dk(n−1) . Applying this procedure for j from n− 1, · · · ,3,2 sequentially shows that
for each 2 � j � n , d( j−1)k+1 � dk( j−1) . This along with d( j−1)k+i � d( j−1)k+i+1 for
1 � i � k−1 and 1 � j � n shows that d1 � d2 � ·· · � dkn . �

We get the following result when we set g(x1, · · · ,xn)= ∑n
i=1 xi and f (x1, · · · ,xk) =

∏k
i=1 xi or if we set g(x1, · · · ,xn) = −∏n

i=1 xi and f (x1, · · · ,xk) = ∑k
i=1 xi .

COROLLARY 6. Let ai � 0 be a set of kn numbers and let bi be the numbers ai

reordered such that b1 � b2 � · · · � bkn . Then

n n

√
kn

∏
i=1

ai �
n

∑
j=1

k

∏
i=1

a( j−1)k+i �
n

∑
j=1

k

∏
i=1

b( j−1)k+i

and
n

∏
j=1

k

∑
i=1

b( j−1)k+i �
n

∏
j=1

k

∑
i=1

a( j−1)k+i �
(

∑kn
i=1 ai

n

)n

.

Suppose there exists ci , a reordering of the numbers ai such that ∏k
i=1 c( j−1)k+i =

∏k
i=1 c(l−1)k+i for all 1 � j, l � n. Then

n

∑
j=1

k

∏
i=1

c( j−1)k+i �
n

∑
j=1

k

∏
i=1

a( j−1)k+i

Suppose there exists ci , a reordering of the numbers ai such that ∑k
i=1 c( j−1)k+i =

∑k
i=1 c(l−1)k+i for all 1 � j, l � n, then

n

∏
j=1

k

∑
i=1

a( j−1)k+i �
n

∏
j=1

k

∑
i=1

c( j−1)k+i
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The bounds n n
√

∏kn
i=1 ai and

(
∑kn

i=1 ai
n

)n

in Corollary 6 are due to the AM-GM

inequality (Lemma 2).

7.1. The special case when ai is an arithmetic progression

In general, Corollary 6 provides a tight bound only on one side. On the other hand,
both a tight upper and lower bound can be derived under certain conditions when the
numbers ai form an arithmetic progression.

DEFINITION 5. For a permutation σ of {1, · · · ,kn} , define

v(n,k) =
n

∑
i=1

k

∏
j=1

aσ((i−1)k+ j).

Let vmin(n,k) and vmax(n,k) be the minimal and maximal values respectively of v(n,k)
among all permutations σ of {1, · · · ,kn} .

DEFINITION 6. For a permutation σ of {1, · · · ,kn} , define

w(n,k) =
n

∏
i=1

k

∑
j=1

aσ((i−1)k+ j).

Let wmin(n,k) and wmax(n,k) be the minimal and maximal values respectively of
w(n,k) among all permutations σ of {1, · · · ,kn} .

Suppose ai � 0 is an arithmetic progression, with ai = a1 + (i− 1)d , for i =
1, · · · ,kn , d � 0. Corollary 6 implies that

THEOREM 15. • vmin(n,k) � ndk n

√
Γ( a1

d +nk)
Γ( a1

d ) .

• vmax(n,k) = ∑n
i=1 ∏k

j=1 a(i−1)k+ j = dk ∑n
i=1

Γ( a1
d +ik)

Γ( a1
d +(i−1)k) .

• wmax(n,k) �
(

k(a1+akn)
2

)n
.

• wmin(n,k) = ∏n
i=1 ∑k

j=1 a(i−1)k+ j = kn ∏n
i=1

(
a1 +

(
ik− k+1

2

)
d
)

= k2ndn
Γ
(
n+ 2a1+(k−1)d

2kd

)
Γ
(

2a1+(k−1)d
2kd

) .

THEOREM 16. If k = 2t +nu for nonnegative integers t and u, then wmax(n,k) =(
k(a1+akn)

2

)n
.
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Proof. The proof is similar to the proof of Theorem 2. Instead of using cyclic
permutations ri of {1, · · · ,n} and the permutation (n,n− 1, · · · ,1) , we apply them to
(( j − 1)n + 1,( j− 1)n + 2, · · · , jn) and this is equivalent to adding ( j − 1)n to each
term of the j -th permutation. For instance, for n = k = 3, w(n,k) is maximized by
(a1,a5,a9,a2,a6,a7,a3,a4,a8) . �

This implies that if n is odd and k � n− 1 or if k is even, then wmax(n,k) =(
k(a1+akn)

2

)n
.

THEOREM 17. If n is even and k is odd such that k � n−1 , then

wmax(n,k) =
(

ka1 +
(

k(kn−1)−1
2

)
d

)n/2 (
ka1 +

(
k(kn−1)+1

2

)
d

)n/2

Proof. The proof is similar to the proof of Theorem 3, except that we add ( j−1)n
to each term of the j -th permutation in the k -set of permutations of {1, · · · ,n} . This

adds an additional ∑k
j=1( j − 1)n = (k− 1)kn/2 to each wi and thus wi = k(kn+1)−1

2

for i = 1, · · · ,n/2, and wi = k(kn+1)+1
2 for i = n/2 + 1, · · · ,n . Thus wmax(n,k) =

∏n
i=1 k(a1−d)+wid =

(
k(a1−d)+ d(k(kn+1)−1)

2

)n/2 (
k(a1−d)+ d(k(kn+1)+1)

2

)n/2
and

the conclusion follows. �
Analogous to Theorem 6, we have the following result for a geometric progression:

THEOREM 18. For a geometric progression sequence ai = cdbi where c,d � 1
and bi is an arithmetic progression of kn nonnegative numbers, if k = 2t + nu for

t,u � 0 , then vmin(n,k) = n∏kn
i=1 a1/n

i = nckd
k(b1+bkn)

2 .

7.2. The special case ai = i

DEFINITION 7. For a permutation σ of {1, · · · ,kn} , define

v(n,k) =
n

∑
i=1

k

∏
j=1

σ((i−1)k+ j).

Let vmin(n,k) and vmax(n,k) be the minimal and maximal values respectively of v(n,k)
among all permutations σ of {1, · · · ,kn} .

DEFINITION 8. For a permutation σ of {1, · · · ,kn} , define

w(n,k) =
n

∏
i=1

k

∑
j=1

σ((i−1)k+ j).

Let wmin(n,k) and wmax(n,k) be the minimal and maximal values respectively of
w(n,k) among all permutations σ of {1, · · · ,kn} .
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We have vmin(n,1) = wmax(1,n) = n(n+1)/2, vmin(1,k) = wmax(k,1) = k! , and

vmin(n,k) � n n
√

(kn)! . Furthermore, wmax(n,k) �
(

k(nk+1)
2

)n
with equality if k = 2t +

nu for nonnegative integers t and u .

THEOREM 19. vmin(n,2) = n(n+1)(2n+1)/3 , wmax(n,2) = (2n+1)n .

Proof. By Corollary 6, vmin(n,2) = ∑n
i=1 i(2n− i + 1) = (2n + 1)∑n

i i−∑n
i i2 =

n(n+1)(2n+1)/2−n(n+1)(2n+1)/6= n(n+1)(2n+1)/3. Similarly, wmax(n,2) =
∏n

i=1(i+(2n− i+1))= (2n+1)n . �
Theorem 17 implies that

COROLLARY 7. If n is even and k is odd such that k � n−1 , then wmax(n,k) =(
k2(kn+1)2−1

4

)n/2
.

The value of vmin(n,3) can be found in OEIS [7] as OEIS sequence A072368
(https://oeis.org/A072368). The values of vmin(n,k) can be found in sequence
A331889 (https://oeis.org/A331889). The values of wmax(n,k) can be found in
sequence A333420 (https://oeis.org/A333420). The values of wmin(n,k) can be
found in sequence A333445 (https://oeis.org/A333445). The values of vmax(n,k)
can be found in sequence A333446 (https://oeis.org/A333446).

8. Rearrangement inequalities for generalized sum-of-products and
product-of-sums

So far the examples above deal mainly with sequences of real numbers. In this
section we look at other partially ordered sets for which Eq. (4) can be satisfied.

DEFINITION 9. (Ref. [3]) A partially ordered group (G,+,�) is defined as a
group G with group operation + and a partial order � on G such that z+x � z+y ⇔
x+ z� y+ z⇔ x � y for all x,y,z ∈ G .

DEFINITION 10. Define C as the set of tuples (I,+I ,�I,J,+J,�J,K,+K ,�K ,∗)
satisfying the following conditions:

1. (I,+I,�I) , (J,+J,�J) and (K,+K ,�K) are partially ordered Abelian groups.

2. ∗ : I×J → K is a distributive operation, i.e. it satisfies (x+I y)∗ z = x∗ z+K y∗ z
and x∗ (y+J z) = x∗ y+K x∗ z .

3. ∗ is nonnegativity-preserving: if x �I 0 and y �J 0, then x∗ y�K 0.

If (I,+,�I)) is a partially ordered group with an associative, distributive and non-
negativity preserving operation ∗ : I× I → I whose identity is in I , then (I,+,�I,∗) is
a partially ordered ring. If in addition ∗ is commutative, then (I,+,�I,∗) is a partially
ordered commutative ring.

https://oeis.org/A072368
https://oeis.org/A331889
https://oeis.org/A333420
https://oeis.org/A333445
https://oeis.org/A333446
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.
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Structures in C have been useful in extending Schur’s inequality [11]. Examples
of elements in C are listed in Table 2. Analogous to Lemma 10 we have

LEMMA 11. Let a1,a2 ∈ I , b1,b2 ∈ J . If a1 �I a2 and b1 �J b2 , then

a1 ∗ b1 +K a2 ∗ b2 �K a1 ∗ b2 +K a2 ∗ b1

If addition I = J and ∗ is symmetric, then

(a1 +I b1)∗ (a2 +I b2) �K (a1 +I b2)∗ (a2 +I b1)

Proof. This follows from the fact that both inequalities can be rewritten as (a2 −
a1)∗ (b2−b1) �K 0. �

By choosing g as the sum and f as the product, or choosing g as the product and
f as the sum, Theorem 8 along with Lemma 11 can be used to prove the following
result

THEOREM 20. Let (I,�I ,J,�J,K,�K ,∗) be a tuple in C . Let a1 �I a2 �I · · · �I

an , and b1 �J b2 �J · · · �I bn , then

∑
i

ai ∗ bn−i+1 �K ∑
i

ai ∗ bσ(i) �K ∑
i

ai ∗ bi

for all σ ∈ Sn . If in addition I = J = K , ∗ is symmetric, a1 �I 0 and b1 �J 0 , then

∗
i

(Ai +Bn−i+1) �K ∗
i

(
Ai +Bσ(i)

) �K ∗
i

(Ai +Bi)

for all σ ∈ Sn .

Theorem 20 can be used to prove the following generalized Chebyshev’s sum in-
equality:

COROLLARY 8. Let (I,�I,J,�J,K,�K ,∗) be a tuple in C . Let a1 �I a2 �I

· · · �I an , and b1 �J b2 �J · · · �I bn , then

∑
i

ai ∗∑
j

b j �K n∑
i

ai ∗ bi.

Proof.

∑
i

ai ∗∑
j

b j = ∑
i

∑
j

ai ∗ b j = ∑
i

∑
j

ai ∗ bσ j(i) �K ∑
j
∑
i

ai ∗ bi �K n∑
i

ai ∗ bi

where σ j(i) = (i+ j mod n)+1. �

Similarly, Theorem 11 can be used to prove:
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THEOREM 21. Let (I,�I , I,�I, I,�I ,∗) be a tuple in C . Let ai j be a sequence
of elements in I that for each i , 0 �I ai1 �I ai2 �I · · · �I ain . Then

∑
i
∗

j
a jσ j(i) �I ∑

i
∗

j
a ji

for all permutations σ j ∈ Sn . If in addition ∗ is symmetric, then∗
i

∑
j

a jσ j(i) �I ∗
i

∑
j

a ji

for all permutations σ j ∈ Sn .

Theorem 13 implies:

THEOREM 22. Let (I,�I , I,�I ,K,�K ,∗) be a tuple in C with ∗ symmetric. Let
a1 �I a2 �I · · · �I a2n be a sequence of 2n elements of I . Then

n

∑
i=1

(ai ∗ a2n−i+1) �K

n

∑
i=1

(
aσ(2i−1) ∗ aσ(2i)

) �K

n

∑
i=1

(a2i−1 ∗ a2i.)

for all σ ∈ S2n . If in addition I = K and a1 �I 0 , then

n∗
i=1

(a2i−1 +a2i) �I

n∗
i=1

(
aσ(2i−1) +aσ(2i)

) �I

n∗
i=1

(ai +a2n−i+1)

for all σ ∈ S2n .

Similarly, Theorem 22 implies the following variation of the Chebyshev’s sum
inequality.

COROLLARY 9. Let (I,�I, I,�I ,K,�K ,∗) be a tuple in C with ∗ symmetric. Let
a1 �I a2 �I · · · �I a2n be a sequence of 2n elements of I . Then

n

∑
i=1

aσ(i) ∗
2n

∑
j=n+1

aσ( j) �K n
n

∑
i=1

a2i−1 ∗ a2i.

for all σ ∈ S2n .

Proof.

n

∑
i=1

aσ(i) ∗
2n

∑
j=n+1

aσ( j) =
n

∑
i=1

2n

∑
j=n+1

aσ(i) ∗ aσ( j) =
n

∑
i=1

2n

∑
j=n+1

aσ(i) ∗ aσ(μ j(i))

�K

2n

∑
j=n+1

n

∑
i=1

a2i−1 ∗ a2i �K n
n

∑
i=1

a2i−1 ∗ a2i

where μ j(i) = (i+ j mod n)+n+1. �
Theorem 14 implies:
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COROLLARY 10. Let (I,�I, I,�I , I,�I,∗) be a tuple in C with ∗ symmetric. Let
0 �I a1 �I a2 �I · · · �I akn be a sequence of kn elements of I . Then

n

∑
j=1

k∗
i=1

aσ(( j−1)k+i) �I

n

∑
j=1

k∗
i=1

a( j−1)k+i.

and
n∗

j=1

k

∑
i=1

a( j−1)k+i �I

n∗
j=1

k

∑
i=1

aσ(( j−1)k+i)

for all σ ∈ Skn .

An analogue of Theorem 10 is the following:

THEOREM 23. Let (I,�I , I,�I , I,�I,∗) be a tuple in C with ∗ symmetric. Let
a1 �I a2 �I · · · �I an and V (σ) = aσ(1) ∗ aσ(2) +I aσ(2) ∗ aσ(3) +I · · ·+I aσ(n) ∗ aσ(1) ,
where σ ∈ Sn . Then

V (σm1) �I V (σ) �I V (σm2)

for all permutations σ ∈ Sn where σm1 and σm2 are as defined in Section 6.1. If in
addition a1 �I 0 , then the inequality still holds if we swap ∗ with + and reverse the
direction.

8.1. Ordered inner product spaces

Consider the case where I = J is an ordered vector space I with a real-valued inner
product 〈·, ·〉 : I× I → R with corresponding partial order � such that the following is
true:

x,y � 0 ⇒ 〈x,y〉 � 0.

Examples of such ordered inner product spaces include R
n , L2 and l2 spaces and

Hermitian matrices2. Then Lemma 11 becomes:

LEMMA 12. If a1 � a2 and b1 � b2 , then

〈a1,b1〉+ 〈a2,b2〉 � 〈a1,b2〉+ 〈a2,b1〉
and

〈a1 +b1,a2 +b2〉 � 〈a1 +b2,a2 +b1〉
Theorem 20 then becomes

THEOREM 24. Let a1 � a2 � ·· · � an , and b1 � b2 � ·· · � bn . Then

∑
i

〈ai,bn−i+1〉 � ∑
i

〈ai,bσ(i)〉 � ∑
i

〈ai,bi〉

for all σ ∈ Sn .

2where the partial order is the Loewner partial order and the inner product is the Frobenius inner product
〈A,B〉 = tr(AB) .
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8.2. Hermitian matrices

Let us now choose I and J to be the set of Hermitian matrices with the Loewner
partial order, i.e. A�L B if A−B is positive semidefinite. Since the product of two pos-
itive semidefinite Hermitian matrices that commutes is positive semidefinite, Lemma 11
implies:

LEMMA 13. Let A1 , A2 , B1 , B2 be Hermitian matrices of the same order such
that Ai commutes with B j for all i, j . If A1 �L A2 and B1 �L B2 , then

A1B1 +A2B2 �L A1B2 +A2B1

If in addition A1 commutes with A2 , then

(A1 +B1)(A2 +B2) �L (A2 +B1)(A1 +B2)

This along with Theorem 20 can be used to prove the following result which was
also proved in Ref. [8].

THEOREM 25. Let A1 �L A2 �L · · · �L An , and B1 �L B2 �L · · · �L Bn be Her-
mitian matrices of the same order such that Ai commutes with B j for all i, j . Then

∑
i

AiBn−i+1 �L ∑
i

AiBσ(i) �L ∑
i

AiBi

for all σ ∈ Sn .

Similarly

THEOREM 26. Let 0�L A1 �L A2 �L · · · �L An , and 0�L B1 �L B2 �L · · · �L Bn

be Hermitian matrices of the same order such that Ai and Bi commutes with A j and
with B j for all i, j . Then

∏
i

(Ai +Bn−i+1) �L ∏
i

(
Ai +Bσ(i)

) �L ∏
i

(Ai +Bi)

for all σ ∈ Sn .

Similarly, Theorem 21 can be used to prove:

THEOREM 27. Let Ai j be a sequence of positive semidefinite Hermitian matrices
of the same order for 1 � i � k , 1 � j � n such that for each i , Ai1 �L Ai2 �L · · · �L Ain

and Ai j commutes with Aml for all i �= m. Then

∑
i

∏
j

A jσ j(i) �L ∑
i

∏
j

A ji

for all permutations σ j ∈ Sn . If in addition Ai j commutes with Aml for all i, j,m, l ,
then

∏
i

∑
j

A jσ j(i) �L ∏
i

∑
j

A ji

for all permutations σ j ∈ Sn .



532 C. W. WU

Theorem 22 implies:

THEOREM 28. Let A1 �L A2 �L · · · �L A2n be a sequence of 2n commuting Her-
mitian matrices. Then

n

∑
i=1

AiA2n−i+1 �L

n

∑
i=1

Aσ(2i−1)Aσ(2i) �L

n

∑
i=1

A2i−1A2i.

for all σ ∈ S2n . If in addition A1 �L 0 , then

n

∏
i=1

(A2i−1 +A2i) �L

n

∏
i=1

(
Aσ(2i−1) +Aσ(2i)

) �L

n

∏
i=1

(Ai +A2n−i+1)

for all σ ∈ S2n .

Corollary 10 implies:

COROLLARY 11. Let 0�L A1 �L A2 �L · · · �L Akn be a sequence of kn commut-
ing Hermitian matrices. Then

n

∑
j=1

k

∏
i=1

Aσ(( j−1)k+i) �L

n

∑
j=1

k

∏
i=1

A( j−1)k+i

and
n

∏
j=1

k

∑
i=1

A( j−1)k+i �L

n

∏
j=1

k

∑
i=1

Aσ(( j−1)k+i)

for all σ ∈ Skn .

For both the Kronecker product ⊗ and Hadamard product � , the product of two
positive semidefinite Hermitian matrices is Hermitian and positive semidefinite. In
addition, the Hadamard product is a symmetric operator. Lemma 11 then implies the
following:

LEMMA 14. Let A1 , A2 , B1 , B2 be Hermitian matrices. If A1 �L A2 and B1 �L

B2 , then
A1⊗B1 +A2⊗B2 �L A1⊗B2 +A2⊗B1

If in addition Ai and Bi are of the same order, then

A1�B1 +A2�B2 �L A1�B2 +A2�B1

(A1 +B1)� (A2 +B2) �L (A2 +B1)� (A1 +B2)

This allows us to prove the following series of results:
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THEOREM 29. Let A1 �L A2 �L · · · �L An , and B1 �L B2 �L · · · �L Bn be Her-
mitian matrices. Then

∑
i

(Ai ⊗Bn−i+1) �L ∑
i

(
Ai ⊗Bσ(i)

) �L ∑
i

(Ai⊗Bi)

for all σ ∈ Sn . If in addition Ai and Bi are of the same order, then

∑
i

(Ai �Bn−i+1) �L ∑
i

(
Ai �Bσ(i)

) �L ∑
i

(Ai�Bi)

for all σ ∈ Sn .

Theorem 29 was also shown in Ref. [8].

THEOREM 30. Let 0�L A1 �L A2 �L · · · �L An , and 0�L B1 �L B2 �L · · · �L Bn

be Hermitian matrices of the same order. Then⊙
i

(Ai +Bn−i+1) �L

⊙
i

(
Ai +Bσ(i)

) �L

⊙
i

(Ai +Bi)

for all σ ∈ Sn .

THEOREM 31. Let Ai j be a sequence of positive semidefinite Hermitian matrices
such that for each i , Ai1 �L Ai2 �L · · · �L Ain . Then

∑
i

⊗
j

A jσ j(i) �L ∑
i

⊗
j

A ji,

THEOREM 32. Let Ai j be a sequence of positive semidefinite Hermitian matrices
of the same order for 1 � i � k , 1 � j � n such that for each i , Ai1 �L Ai2 �L · · · �L Ain .
Then

∑
i

⊙
j

A jσ j(i) �L ∑
i

⊙
j

A ji

and ⊙
i

∑
j

A jσ j(i) �L

⊙
i

∑
j

A ji

for all permutations σ j ∈ Sn .

THEOREM 33. Let A1 �L A2 �L · · · �L A2n be a sequence of 2n Hermitian ma-
trices. Then

n

∑
i=1

(Ai�A2n−i+1) �L

n

∑
i=1

(
Aσ(2i−1)�Aσ(2i)

) �L

n

∑
i=1

(A2i−1�A2i) .

for all σ ∈ S2n . If in addition A1 �L 0 , then

n⊙
i=1

(A2i−1 +A2i) �L

n⊙
i=1

(
Aσ(2i−1) +Aσ(2i)

) �L

n⊙
i=1

(Ai +A2n−i+1)

for all σ ∈ S2n .
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COROLLARY 12. Let 0 �L A1 �L A2 �L · · · �L Akn be a sequence of kn Hermi-
tian matrices. Then

n

∑
j=1

k⊙
i=1

Aσ(( j−1)k+i) �L

n

∑
j=1

k⊙
i=1

A( j−1)k+i

n⊙
j=1

k

∑
i=1

A( j−1)k+i �L

n⊙
j=1

k

∑
i=1

Aσ(( j−1)k+i)

for all σ ∈ Skn .

9. Conclusions

We consider several variants and generalizations of the rearrangement inequality
for which we can generalize to multiple sequences and find both the set of permutations
that maximizes or minimizes the sum of products or product of sums of terms and
where the permutation can be chosen across sequences. We also study rearrangement
inequalities beyond real numbers where the elements are vectors, matrices or functions.
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