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REGULARITY OF COMMUTATOR OF BILINEAR
MAXIMAL OPERATOR WITH LIPSCHITZ SYMBOLS

GUORU WANG AND FENG LIU*

(Communicated by I. Peri¢)

Abstract. This paper is devoted to exploring the regularity properties of the commutator of max-
imal operator in the bilinear setting. More precisely, we introduce the commutator of bilinear
maximal operator and bilinear maximal commutator. We establish some new boundedness and
continuity for the above operators on the Sobolev spaces, Triebel-Lizorkin spaces and Besov
spaces under the condition that the symbol function belongs to the Lipschitz space.

1. Introduction

In a very recent article [ 15], Liu and Wang established the Sobolev regularity prop-
erties of the commutator of Hardy—Littlewood maximal operator and the maximal com-
mutator as well as their fractional variants with Lipschitz symbols. The first motivation
of this paper is to explore the above results to the bilinear setting. In addition, we prove
the bounds and continuity for the commutator of bilinear maximal operator and bilin-
ear maximal commutator on the fractional Sobolev spaces, Triebel-Lizorkin spaces and
Besov spaces. Let us recall some definitions and backgrounds.

DEFINITION 1. Let 0 < o < n. The bilinear fractional maximal operator My, is
defined as

Me(f,8)(x) = sup !

__ 1 P )eli— 3l
10 |B(O,r)|1=o/n /B(O’r) [fx+y)glx—y)ldy

where x € R"” and O = (0,0,...,0) € R". Let b be a locally integral function defined
on R". The commutators of the bilinear fractional maximal operator with b in the i-th
entry (i = 1,2) are defined by

[maab]l(fvg) :ma(bf7g)_bma(f7g)7 [mohbb(fvg) = ma(f,bg) _bma(f,g)

The bilinear fractional maximal commutator 9 . is given by

1
My (f,8)(x) = sup [B(O. A/
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When o =0, the operator 21, reduces to the usual bilinear maximal operator 9J7.
In this case the operator [0, b]; reduces to the commutator of bilinear maximal oper-
ator in the i-th entry (i = 1,2), which is denoted by [901,5];. Meanwhile, the operator
My, becomes the bilinear maximal commutator 91, . It should be pointed out that the
commutators of bilinear operators were originally introduced by Pérez and Torres [21]
who studied the boundedness for the commutators of the bilinear Calderén—Zygmund
operator [T,b]; (i =1,2), where T is the bilinear Calder6n—Zygmund operator.

The regularity theory of maximal operators is an active topic of current research.
The first work was due to Kinnunen [8] who showed that the Hardy-Littlewood maxi-
mal operator

1
I = s [ 17O

is bounded on the first order Sobolev space whr (R") for 1 < p < e, where n > 1,
B(x,r) denotes the open ball in R”" centered at x with radius r and |B(x,r)| is the
volume of B(x,r). Here WP (R") is defined as

WHPR™) == {f :R" = R || fllwroey = [/ lo@e) + IV lp@n < oo},

where Vf = (D1 f,...,D,f) is the weak gradient of f. Kinnunen’s work has initiated
anew research direction in harmonic analysis. We can consult[1, 2, 3,9, 10, 14,22, 23]
for related works. Since the derivatives of the maximal operator are not sublinearity,
the continuity of .# : WIP(R") — W'P(R") for 1 < p < oo is certainly a nontriv-
ial issue. This question was addressed by Luiro [19] and later extensions were given
in [20, 1]. The regularity properties of maximal operators on other smooth function
spaces have also been studied by many authors. For example, see [12] for the frac-
tional Sobolev spaces, [11, 20, 14, 16, 26] for the Triebel-Lizorkin spaces and Besov
spaces. Particularly, Carneiro and Moreira [1] showed that if 1 < py,ps,p < e and
1/p=1/p1+1/ps, then the map 9T : WP1(R") x WP2(R") — WP (R") is bounded
and continuous. Moreover, if f € W71 (R") and g € W!P2(R"), then

IVIR(f,8) ()| < M(IV],8)(x) +MM(f,|Vg]) (x),

for almost everywhere x € R". Very recently, Liu, Liu and Zhang [14] extended the
above result to the fractional version.

THEOREM A. ([14]) Let 1 < p1,p2,pip2/(p1+p2) <o, 0< a<n(l/p+
1/p2) and 1/q=1/p1+1/ps— a/n. Then the map My : WHPH(R") x WhP2(R?) —
WL4(R") is bounded and continuous. Particularly, if f € WP (R") and g € WhP2(R"),
then

Hfma(ﬁg)”WLq(R") Sanpip Hf”WLm (Rn)HgHWLPz(Rn)~

Moreover, the following pointwise estimate holds:

[V (f,8)(0)] < Mo (|VS],8)(x) +Ma(f,[Vel) (),

for almost everywhere x € R".

In [14], the authors also established the boundedness and continuity of bilinear
maximal operator on the inhomogeneous Triebel-Lizorkin spaces F/?(R") and the
inhomogeneous Besov spaces BY¥(R").
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THEOREM B. ([14]) (i) Let 0<s<1, 1 < py,p2,p,q<coand 1/p=1/p;+
1/pa. Then the map M : F/Y(R™) x FP*1(R") — FP(R") is bounded and continu-
ous. Moreover, there exists a constant C > 0 such that

Hm(f7g)||Ff’q(R") < C”fHFv”l"q(Rn)||g||pf2>q(Rn)

forall f e F'Y(R") and g € F/*(R").

(i) Let 0<s <1, 1 < py,p2,p,q <o and 1/p=1/p1+1/ps. Then the map
M : BYVI(R™) x BY*(R") — BY(R") is bounded and continuous. Moreover; there
exists a constant C > 0 such that

Hm(ﬁg)”Bf‘”(R") < CHf”B_fl‘”(Rn) HgHBfM(Rn)

forall feBYY(R") and g € BY*(R™).

We would like to remark that the one dimensional case of )t was originally in-
troduced by Calderén in 1964 when he raised the striking conjecture whether the map
9 : L*(R) x L*(R) — L'(R) is bounded. In the remarkable paper [ 13] Lacey addressed
the above conjecture by showing that 9t is bounded from LP!(R) x L2(R) to L”(R)
for 1/p1+1/p2=1/p, 1 < p1,pa <o and 2/3 < p < 1. For n > 2, we get by
Holder’s inequality that

19, &) ler ) Snprpa [1F112o oy 181l L2 () (1)

provided that 1 < py,p2,p <eoand 1/p=1/p;+1/p>. It was shown in [14] that

19 (f, &) |Lr Ry Semprpa 1oy ey 181l L2 (mr), 2)

and
Mg o LPHR") x LP2(R") — LY(R") is continuous, (3)

provided that 1 < p1,pa,p1p2/(p1+p2) <eo, 0< a <n(l/pi+/1/p2) and 1/q =
1/pi+1/p2—a/n.

On the other hand, an interesting extension of regularity theory is the investigation
on the regularity properties for the commutators of maximal operators. Let b be a
locally integral function defined on R". The commutator of the Hardy—Littlewood
maximal operator is defined by

(b)) () = bx)-A f(x) — M (BF)(x), x€R.

The maximal commutator of .# with b is defined as

My () = sup s [ 1600 ~BOIFOly, e R

r>0

Liu, Xue and Zhang [18] studied the regularity for the commutators of maximal oper-
ators. They proved that if 1 < py,pa,p <o, 1/p=1/p1+1/p, and b € WhP2(R"),
both [b,.#] and M, are bounded from W!»1(R") to W'P(R"). The above result
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was later extended to the fractional version by Liu and Xi in [17]. More precisely, let
0 < a < n. For a locally integral function b defined on R", the commutator of the
fractional maximal operator is defined by

b, M) (f)(x) = b(x) Mof(x) — Mo(bf)(x), x€R

where the fractional maximal operator .#,, is defined as

1
Mo fx) = 7/ dy, xeR".
) =R B Jagen N

The maximal commutator of .#, with b is defined by

1
Mluxf(x) = Ssup

r>0 W /B(x,r) |b(x> a b(y)”f(y)|dy7 xeR"

Clearly, (b, #y) = [b, #] and M}, o, = M;, when o = 0. Liu and Xi [17] proved that
if 1 <pi,p2,p1p2/(p1+p2)<e,0<a<n/py, 1/qg=1/p1+1/pr—0o/nand b e
WLr2(R"), then both [b,.#,] and M}, are bounded from W!P1(R") to W!4(R").
Very recently, Liu and Wang [15] investigated the Sobolev regularity of [b,.#] and
M, o with b € Lip(R"). Here Lip(R") denotes the inhomogeneous Lipschitz space,
which is defined as

Lip(R") := {f : R" — C continuous : || f{|pip(rn) < =},
where
1f Liprny == [1F 1l () + [1F | ip ey < oo,
and

”fHLip(R") = sup sup M
xeR" heR"\ {0} |l

We now list partial result of [15] as follows:

THEOREM C. ([15]) Let 1 <p <o, 0o <n/pand 1/qg=1/p—a/n. If
b € Lip(R"), then the map [b,Mg) : WP (R") — W14 (R") is bounded and continuous.
In particular; if f € WYP(R"), then for each i € {1,...,n} and almost every x € R",

V(b a](f))(x)] < 2Vnl|b|ip(rn) Ao f (x) + 2[|b|| o (en) M| V] ().

Consequently,

B, 2] (F)llwramey Senp 1Pl|Lipen) 1 llwrp rn)-
The above boundedness also holds for My, o .

The first one of main motivations is to extend Theorem C to the bilinear setting.
Before formulating our main results, let us point out the following comments, which
are very useful in our proofs of main theorems.
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REMARK 1. Let 1 < p1,p2,pip2/(p1+p2) <o, 0< oo <n(l/p1+1/ps) and
1/q=1/p1+1/pr—o/nand b e L*(R"). If f € LP1(R") and g € LP2(R"), then the
following facts are valid:

(1) For any fixed i = 1,2, in view of (2) and Holder’s inequality,

11900, B1i(f &) | (ry Soempr.pa 1161 =y [1F Wl or ey 8l o2 ey - 4)
Combining (4) with the sublinearity of 21, implies that

[Me, D) : LP1(R") x LP2(R") — L4(R") is continuous.
(i1) Observe that
mb,a(f7g)(x) < |b(x)|§ma(f,g)(x) —|—9)Ta(bf,g)(X),
which together with (2) and the sublinearity of 9, implies that
199%, 0. (f,8) | La(rn) Seemprops 161wy | f 1o ey |8 | o2 () - 5

By (5) and the sublinearity of 9, ,, we obtain

My o : LV (R") x LP2(R") — LI(R") is continuous. (6)

The first one of main results can be formulated as follows:

THEOREM 1. Let 1 < p1,p2,p1p2/(p1+p2) <, 0< o <n(l/p1+1/p2),
1/g=1/p1+1/py—a/n and b € Lip(R"). Then for i = 1,2, the map

(Mg, b]; - WHPH(R") x WHP2(R") — WH(R")
is bounded and continuous. Moreover; if f € W'PL(R") and g € W'P2(R"), we have

V[, bli(f,8) ()]
< 2n/n||b|| Liprny M (f, ) (x) (7)
+n([b(x) |+ [|b]] =) ) (M (IV £],8) (x) + Ma (f,|Ve]) (x)

for almost everywhere x € R". As an application of (7), we have

1[99, 0)i(f: &) llwraey Senprpa 16lLipn) [Lf lyros oy l18llwrra gy (8)
Inequalities (7) and (8) hold for My, o .

The second motivation of this paper is to establish the bounds and continuity for
the commutator of bilinear maximal operator and bilinear maximal commutator on the
Triebel-Lizorkin spaces and Besov spaces. The rest of main results are the following.
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THEOREM 2. Let 0 <s< 1, 1 < py,p2,p,q <o, 1/p=1/p1+1/py and b €
Lip(R"). Then for any i = 1,2, the map

(900, : FPH(R") x FP9(R") — FP9(R")

is bounded and continuous. Moreover, there exists a constant C > 0 such that
90,51 CF. )y < ClBlipgen) |1 o 18] 2 g ©)

holds for all f € F'"(R") and g € FP*(R"). The same conclusions hold for M,.

THEOREM 3. Let 0 <s< 1, 1 < py,p2,p,q <o, 1/p=1/p1+1/py and b €
Lip(R"). Then for any i = 1,2, the map

(90, 6], : BYI(R") x B> (R") — BL9(R")
is bounded and continous. Moreover, there exists a constant C > 0 such that

908, Bl )l gy < CHBLipzen g g 18 52 (10)
holds for all f € BY"(R") and g € BY*?(R"). The same conclusions hold for ;.

For 0 <s <1 and 1 < p <eo wedenoteby W*?(R") the fractional Sobolev spaces
defined by the Bessel potentials. It was pointed out in [7] that F//(R") = W5P(R")
forany s >0 and 1 < p < eo. As an application of Theorem 2, we have

COROLLARY 1. Let 0<s< 1, 1 <pi,po,p<eo, I/p=1/p1+1/pr and b €
Lip(R"). Then for any i = 1,2, the map

[, b]; : WHPLH(R™) x WHP2(R") — WP(R")
is bounded and continuous. Moreover, there exists a constant C > 0 such that

11992, 8)i(f, &) lwsr(rr) < CllBLipn) [ [lwsr1 ey 1€ lwsrz (e
holds for all f € WHPL(R") and g € WHP2(R"). The same conclusions hold for My,.

This paper is organized as follows.

In section 2 we prove Theorem 1. The proof of Theorem 1 for [Mg,b]; follows
from Theorem A and a characterization of the product of a Sobolev function and a
Lipschitz function (see Lemma 1). The proof of Theorem 1 for 90, 4 is based on some
properties on Sobolev spaces and some refine analyses, which include the difference
and derivative estimates for the bilinear fractional maximal commutators.

In section 3 we prove Theorem 2. The proof of Theorem 2 for [90,b]; is based
on Theorem B(i) and a characterization of the product of a Triebel-Lizorkin function
and a Lipschitz function (see Lemma 2). The proof of Theorem 2 for 97, is based on
some properties of Triebel-Lizorkin spaces and the difference estimates for the bilinear
maximal commutators.
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In section 4 we prove Theorem 3. The proof of Theorem 3 for [9, b]; follows from
Theorem B(ii) and a characterization of the product of a Besov function and a Lipschitz
function (see Lemma 4). The proof of Theorem 3 for 91, is based on some properties
of Besov spaces and the difference estimates for the bilinear maximal commutators.

Throughout this paper, the letter C will stand for positive constants not necessarily
the same one at each occurrence but is independent of the essential variables. For
any p € (1,00), we denote by p’ the conjugate index of p,ie, 1/p+1/p'=1. If
there exists a constant ¢ > 0 depending only on ¥ such that A < ¢B, we then write
A <y B. For r > 1 and a function f defined on R", we define the operator M, by

M, (f) = (A (f)".
2. Proof of Theorem 1

In this section we prove Theorem 1. Throughout this section, let f € W!P1(R"),
g € WhP2(R") and b € Lip(R"), where 1 < p1,pa,pipa/(p1+p2) <o, 0< a <
n(l/p1+1/p2) and 1/g=1/p1+1/pr— a/n. We divide the proof of Theorem 1 into
two subsections.

2.1. Proof of Theorem 1 for [, b]; (i=1,2)
We start now the following lemma, which plays a key role in the proof of Theorem

1 for [Me,b]; (i=1,2).

LEMMA 1. ([15]). Let 1 < p < oo. If u € WHP(R") and b € Lip(R"), then bu €
WLP(R™). Moreover;
V(bu) = bVu+uVb,

almost everywhere in R". In particular,
[Dullwr.p ey < VAlB|Lipn) l1llwro @)

We prove now Theorem 1 for [9,b]; (i=1,2).

Proof of Theorem 1 for [My,b]; (i =1,2). We only consider the case i =1,
since another one is analogous. It follows from Theorem A that 9, (f,g) € Wh4(R").
Applying Lemma | and Theorem A, one obtains

||bma(fyg)HW1~q(R") 5O¢7n7m,pz ||b||Lip(R") Hma(fag)”WLq(R’l)

Senpip HbHLip(R”)||fHWl>I’l(]R")||g||Wl>I’2(]R")7

1M (B &)llwra(ny Secnpr.pa 10y (Rn)Hgle‘pz(Rn)
506%1?171?2 HbHLip(R")||fHW1~p1(Rn)”g”WLpz(Rn)'
The above estimates show that

H[ma7bh(f7g)||whq(ﬂ§n) < Hbma(fvg)wa(Rn) + Hfma(bﬁg)nwhq(ﬂ{")

5a,n71’171?2 HbHLip(R")Hf”WLPl(R")HgHWLPZ(R")'
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This proves (8) for [9Mg,b]; . The bound (7) follows from Theorem A and Lemma 1.

It remains to prove the continuity of [My,b];. Let f; — f in WHPL(R") and
gj — g in W'P2(R") as j — co. By Lemma 1, one has that bf; — bf in Whr1(R").
This together with Theorem A implies that My (bf;,g) — Me(bf,g) in WHI(R") as
j — . Moreover, we get from Theorem A that M (fj,g;) — Ma(f,g) in WHI(R")
as j — . Hence, [Ma,b]1(fj,8;) — [Ma,b)1(f,g) in WH(R") as j — . This
completes the proof of Theorem 1 for [Mg,b];. O

2.2. Proof of Theorem 1 for 01, ,,

In this subsection we prove Theorem 1 for 9, ,. Before presenting the proof,
let us introduce some notation. Let u € LP(R") with 1 < p <. For all h € R\ {0},
y€R" and i =1,...,n, we define the function u;,; by setting

_u(x+he;) —u(x)

upi(x) = Y , xeR™

It is well known that for u,; — Du in LP(R") when h — 0 if u € WhP(R") for
1 < p < eo. For y € R" and any arbitrary function u defined on R", we define the first
order difference of u by

Ayu(x) 1= uy(x) — u(x),

where u,(x) = u(x+y). We set

Ayu n
G(u; p) := limsup ”y”ﬂ
ly|—0 vl

According to [6, Section 7.11], we have
uc WH(R"), 1< g<oo <= ucLi(R")and G(u;q) < . (11)
In order to prove Theorem 1 for 9, o, we need the following remark.

REMARK 2. It was shown in [15] that if b € Lip(R"), the weak partial derivatives

Dib,i=1,...,n, exist almost everywhere. Moreover, we have
b he;) —b
Dib(x) = lim blx+ hei) — b(x)
h—0 h

and

1Dib(x)| < (18] Lip(re)
for almost every x € R". Here ¢; = (0,...,0,1,0,...,0) is the canonical i-th base
vectorin R” fori=1,...,n.

Proof of Theorem 1 for M, o,. The proof of Theorem 1 for M, ,, will be divided
into three steps:
Step 1: Proof of My o(f,g) € WHI(R").
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Fix x, h € R", by the sublinearity of 91, , and the fact that M, o (f,g)(x+h) =
My, a(fh,gn) (%), we have
ALy 0 (f,8) (X)]
= |(Mp,0(f58))n(x) — My (£, 8) (%)
< My 0 (firs 1) (%) — I oo (fis 81) (%) + D o (fi, 81) () — My o (£, 8) (X)| (12)
< |Anb (x) [N (fis 81) () + Mo (|ARD| i, g1) (x) + My o (A S, Ang) (x)
+ My o (Anf,8)(X) + MM o (f, Ag) (x).-

In view of Holder’s inequality, (2) and Remark 1, one has

1| Anb Do (frs )l 2a(mry < 1D Lipgwny AN e (s 8) ] 2o ()
5057"71717172 ||b||Lip(R”)|h|Hf”L”l(R”)HgHL"Z(R")-
1996 (18D fi, 1) || o (@) Seemprps 180D full L1 @) l| 8l 72 (o)
§oc.,n.,p1,pz ||b||Lip(R")|h|||fh||LP1(R")HgHLpz(R")
§oc.,n.,p1,pz ||b||Lip(R")|h|||fHLP1 (R”)||g||L1’2(R")~
By (5) and Minkowski’s inequality,
|90, o (A S Ang) + My o (Anf8) + My o (f s Ang) || La ()
<19, o (Anf, Ang) || Laqwny + 19,0 (Anf s 8) | 2wy + 19,0 (f, Ang) |l La(rry
Seenpr.py 1Pl z=@ny (1ALf | p1 (e
+ 1l ey 1ARE || 22 (7))

) H I Anf 1oy @) ll gl ez ()

Senpr.py 1Pz=@ny (1Anf | ey 1€l zr2 ey + 1 | 2o (me) [| A 202 () ) -
Since f € W1 (R") and g € W!P2(IR"), an application of (11) gives that
G(fip1) <o, G(g:p2) <

Above estimates together with (12) and Minkowski’s inequality imply that

G(Mp,a(f.8):9)
18O (F 8 e
= limsup
h—0 |h|
< hmsup

|h| H|Ahb|9ﬁa(fh7gh)||m RY) +11msup 7 ||ma(|Ahb|fh»gh)HLq R7)
+11msup I ||5mb a(Anf,8n8) + My o (Anf,8) + My o (f, An8) || La(rr)
§a,n,p1,pz ([1bl|Lipny + G(fs p1) + G(g5p2)) <

which combining with (5) and (11) leads to 91, o(f,g) € Wha(R?).
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Step 2: Proof of (7) for My o(f,8)-
To prove (7) for 91y, (f,g), it is enough to show that

Di(M, 0. (f8)) (%)
< |Dib(x)[ M (f,8) () + Ma (IDib|f,8) (x) + [b(x)[Me (Dif ,8) (x)  (13)
+ Mo (bDif,8)(x) + [b(x)[Ma (£, Dig) (x) + Mo (bf, Dig) (x)

forany i =1,...,n and almost every x € R".
Fix i € {1,...,n}, we get by (12) that

|90 (f58))n.i(x)]
< |bpi ()Mo (fins 81) () + M (|bril i, 81) (X) + Mo (fr,i> Ang) (x) (14)
+ My o (f,ir &) (X) + M 0 (S 81,i) (X).

Since f € WhPI(R"), g € WIP2(R"), b € Lip(R") and My, o(f,g) € WHI(R"), we
have that fj,; — D;f in LP'(R") and g;,; — D;g in LP2(R") as h — 0, (M, o(f,8))ni —
DMy, o(f,g) in LI(R") as h — 0. By Holder’s inequality, we have that |by;|f, —
|Dib|f in LPI(R") when h — 0. Moreover, it is clear that [|Aglirmey — 0 as
h — 0. In view of (3), we see that My (fi,8n) — M (f,g) in L1(R") as h — 0 and
Mo (|bnil frr8n) — Ma(|Dib|f,g) in LIY(R") as h — 0. In view of (6), we know that
My o (friAng) — 0 in LI(R") as h— 0, My, o (fni,8) — Mp.o(Dif,g) in LI(R") as
h—0, My o(f,8ni) = Mp o(f,Dig) in L1(R") as h — 0. By Holder’s inequality, one
has that |by, ;| M (fr,8n) — |Dib|Ma(f,g) in LY(R") as h — 0. Based on the above
analyses, there exist a sequence {/i }x> satisfying a; > 0 and limy_.. /s =0 and a
measurable set E with |[R"\ E| =0 such that forall x € E,

(i) (M (+8) )y () — DMy (£,8))(x) as k — oo

(i) 51y 1 (9180, ) () — [ Dib () [ec(£.,8) (¥) s k — oo

(i) Der ([ il foy 1) () — M (1D, 2) (x) as k — oo

(IV) Emb’a(fhk’hAhkg)(x) —0as k— o]

(v) mb,a(fhk,ivg)(x) - mb,a(Difvg)(x) as k — oo}

Vi) My o (f,8ni) (x) — My o (f,Dig)(x) as k — oo.

In view of (14) and the above estimates (i)—(vi), we have that for any x € E,

1Di(My 0 (f,8))(X)]

= |]}Elgo(mb,a(f7g))hk,i(x)|

< Jim (1 05) s (s ) (6) - e[
+ My o (frgi» &) (X) + Mo (5 81y i) (%)

= [Dib(x)|Ma(f,8)(x) + M (|Dib|f,8)

< |Dib(x)[Me(f,8)(x) + Mo (|Dib|f, g)
+ Mo (bDif, ) (x) + |b(x)| Mo (f,Dig

fhkvghk)(x) + mb,a(fhk,iaAhkg)(x)

~—

x) + My o (Dif,8)(x) +IMyp o (f,Dig) (x)
)+ 1b(x) Mo (Dif, g)(x)

(x) + Mo (bf, Dig)(x).

X

— =

This proves (13).
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Step 3: Proof of (8) for My, o .
By (2), Minkowski’s inequality, Holder’s inequality and (7) for 9 , we have

VO o (f,8) || Lamny S 11Dl Liprny 19Me (f 5 €)Ml a(rry
+ 161l 1@y 1M (V£ ], &) 29 () + 190, [ VED) || L0 (Rn )

§oc.,n.,p1.,pz HbHLip(R")”fHWLPl(Rn)”g”WLPz(RH)'

which together with (5) leads to (8) for 901, . Then Theorem 1 is proved. [J

3. Proof of Theorem 2

This section is devoted to proving Theorem 2. Throughout this section, let f €
FHY(R"), g € F*9(R") and b € Lip(R"), where 1 < py,p2,p,q < and 1/p =
1/p1+1/pa.

3.1. Proof of Theorem 2 for [901,5]; (i=1,2)

In order to prove Theorem 2 for [901,b]; (i = 1,2), we need the following result,
which provides a characterization of the product of a Triebel-Lizorkin function and a
Lipschitz function.

LEMMA 2. ([4]). Let 0<s <1 and 1 < p,q <oo. If u€ F/'(R") and b €
Lip(R"), then bu € F"(R"). Moreover,

11| o gny < ClIBILipeen) el g gn)-

Proof of Theorem 2 for [, b]; (i =1,2). We consider the case i = 1 since an-
other one is analogous. It is not difficult to check that

19911 (£, pony < IBRBF,8) gy + [BCE ) | -

In view of Lemma 2, one has bf € F/"/(R"). By Theorem B(i) and Lemma 2, we
have

1902(5..9) | pagany < CUBS | v g 18] 2 g

< ClBlwip(eny L1 1 g 18] 72 gy

1B9F )| oy < 1BlILipgeen) 190CF,8) | g
< CIb ip(ee 11 g o 18] 24 -
These estimates together imply that
1992, 011 (£ )| sy < ClBlLipny 11 v g 18 2 -

This proves (9) for [9,5];.
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It remains to prove the continuity of [90,5];. Let f; — f in F'"(R") and g; — g
in F?9(R") as j — . By Lemma 2, one has that bf; — bf in F/"(R"). This
together with Theorem B(i) implies that MM (bfj,g;) — M(bf,g) in EVY(R") as j —
oo. Invoking Theorem B(i), we have that M(fj,g;) — M(f,g) in FPI(R") as j —
co. Combining this with Lemma 2 gives that b9(f;,g;) — bIM(f,g) in F(R") as
j — oo. From the above facts we see that [90,5](f;,g;) — [M,b]i(f,g) in F(R")
as j — oo. This completes the proof of Theorem 2 for [9,0];. O

3.2. Proof of Theorem 2 for 91,

In what follows, let R, = {{ € R";1/2 < || < 1}. For a measurable function
g:R"xXZ xR, — R, we set

lelparsi= | ( 24( [, leteroprag)™)"

Denote by F//(IR") the homogeneous Triebel-Lizorkin spaces. In [25], Yabuta ob-
served that

LP(R?)

£l gpa ey ~ 1 A0k¢ fllpagrs, forO<s<1,1<p<eo, 1<g<eo, 1<r<min{p,q}.

The following properties of Triebel-Lizorkin spaces are valid (see [5, 7, 24]): )
11l pagny ~ 11l gpany + 1 flogny,  fors >0, 1< p,qg <ee, (16)

1Al zpany < I fllggagny, forsi <s2,0<p, g <eo, )

£ gpaz gy < N Flgpas gy fors €R, 0<p<oo, 0< g1 <ga<ee. (18)

To prove Theorem 2 for 91, the following lemma is useful.

LEMMA 3. ([14]) Fora fixed 6 > 1, we have that for any 6 < p, q, r < oo,

‘KZM@ﬂﬂbm)m (Zwuhm)mmwy

keZ

NI”I”

LP(RY)

Proof of Theorem 2 for M;,. The proof will be divided into two steps.
Step 1: Proof of the boundedness part. For any { € R,, x€ R" and k € Z, we
get from (12) that

A0 (f,8) (%))
< |A27k¢jb‘9ﬁ(f27k¢j ;ngkg)(x) + W(Aszgbfszgyngkcj)(x) (19)
+ MMy (Ag s [, 89 48) (X) + MMy (Aysp f,8) (X) + DMy (f, Ay i 8) (%)
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Let 7 € (1,00) be such that ' € (pp/p,min{p2,gp>/p}). Clearly, p; > p1/p >t
and gp1/p >t. In view of (15), (19) and Minkowski’s inequality, we write

199 (f, &)l g ey

R E——"

keZ

1/q

LP(R)

< CH ( Z 2]“‘1(/%” |A27ké‘b|m(f2—ké‘7g2—kc)dc>q) Va

keZ LP(R™)
ks a\1/q
ez mios ot 0ie)) v,
s a\/a (20)
+C <k€%2 q(/mnmb(Aszcf,AszCg)dC> ) HU’(R”)
ks a\ 1/4
| (Z2o(f, e (sere)a) ) 7
ks T\ 1/4
+C (1{6222 q(/mnsm,, (£:85108)dC)") .
5
=: ZA,‘.
i=1
By Holder’s inequality, one obtains
M(f,8)(x) < Mc(f) ()M (g)(x), VT >1. (©29)

Estimate for A, . By the sublinearity of 2T, we have

fm(fszg,gz*kg)(x) < fm(Az*kgﬂ Aszgg)(x) +W(A2*k¢f,g)(x)

(22)
+MM(f, Ay -k 8) (x) + (S, 8) (x).
It follows that

q
Ay < C||b| = (wn)

(22'@( /m R f,ATkgg)dC)q)l/

keZ

Lr(R7)

iy (22,@(/% ‘Az,kgbm(Az,kgf,g)dg)q>1/q

keZ

s ( 2 ksq (/% ‘Az,kgb\im(ﬁAz—kgg)dC)q) 1/q

keZ

a\ 1/q
v (2 ( [ 18ycctioms.0)ac)”)
keZ R
=:A11+A 12 +A I3+ A 4.

LP(R")
(23)

Lr(R")

LP(RM)
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By (21) and Holder’s inequality,

H(zzkw / M(Ag-ig f,8g- kgg)dC) )

keZ

Lr(R")

<C (szsq / M;(Ay- kgf) My (A,- kcg)dC> )1/4

keZ

Lr (Rn)

1/q
ks
<C (kezz M Bt PN g 1M (B g )17 )) ey @4
ksp/p ap1/p p/(ap1)
s¢ (ke/ 1 Bkl ran)™7) |
ksp/p2|| 0, apa/p\ P/ (1P
X ‘(kez 2 (| M; (Az—kgg)”Lpz/p(mn)) ) @)

Notice that p; > p;/p >t > 1 and gp,/p >t. In view of (15)—(18) and Lemma 3,

. p/(ap1)
H( stp/m HM’(AT"Cf)HLI’I/I’(QR,I))W'/F>
keZ

LP1 (Rn)

p/(ap1)

<C (25)

‘ ( 2 (ka/m A, - kngLpl/p mn))qm/p)
keZ

< C”fHFPl qpl/P( R7) CHf”prqpl/p(Rn) < C”fHEY”l‘”(Rn)'

sp/py sp/py

LP1(RM)

Clearly, ¢’ € (p2/p, min{pa,qp2/p}). Let o € (¢',;min{pa,qp2/p}). In view of (15)—
(18), Lemma 3 and Holder’s inequality, we obtain

r/(apa)
H ( z (2ksp/p2||M,/ (A2”‘Cg)”u’2/ﬁ(m ))‘IPZ/p) 2
kel n

LP2(R™)

<cC p/(ap2)

‘ ( 3 (25772 My (A i 8) \\La(mn))m/p>
kez

e 26)

ksp/p2 ap/p\" /(ap2)
<cH(kezz 182 tg8llusen) ™)

g CHgHsz.qu/P(Rn) C”g”FPZ ‘1P2/P(Rn < CHgHFI)Z q Rn)

sp/p2 sp/p2

It follows from (24)—(26) that

A1t < Bl g 1121 o gl 2 g - e
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By (15)-(18), (21), (25), Lemma 3 and Holder’s inequality, we have

s < C” ( 3 2k (/m Ay b1V (B 4 f)My (g)d§>f1> 1/q

keZ

Lr(R")

‘ p/(ap1)
<c|| (M Ay 1 Dl s, )7
ke, "

LPL(R)

p/(ap2) (28)

X ‘ ( Z (zksp/pz ”Az*kngt’ (8) Hy)z/l’(m ))qu/p>
keZ "

<Cl v

X ‘Mt’ (g) ( 2 (2k§p/p2 "Aszgb||Lpz/p(mn))qp2/p>
keZ

LP2(R")

p/(ap2)

LP2(R")

Note that

( Y (2ksr/r2 ||A2”‘CbHLPZ/P(%,I))LHQ/I?

) p/(ap2)
kEZ

0 p/(ap2)
<< z (2kSp/p2"AszngLpz/p(mn))m/p>
k= —oo0

oo

(X @18y s bl e, )

)p/ (qp2) (29)
k=1

0 oo

p/(ap2) »/(apa)
< Clblemeny (3 290) 7+ Clblugpmn ( X 249070) 7
k=—eo k=1

< C||Dl|Liprn)-
Combining (28) with (29) and (16) implies that
A1 < Clblip@n) 117219 o 1811 7729 geny - (30)
Similar arguments to (30) show that
A1z < CblLipn) £ 1| grra g |81l 29 oy (31
An argument similar to (29) shows that for any 7 > 1,

5 1/q
(3258 4blfrm,)) < CllbllLipgan): (32)
keZ

Combining (33) with (1) and (16) implies that

Arg < cHim(f,g)(I£ZZ2ksqllAz—k¢b\\Zl<mn>> "

LP(R)
< Clb[Lipn 19, &)l Lr (rr) (33)
< C||DlILipwn) 1 l|ze1 ey 181 22 (e

< CHbHLip(R”) ”fHFY”l"’(Rn) ”g”]«“_{’Z‘”(Rn)'
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It follows from (23), (27), (30), (31) and (33) that
A < ClBwipge ||l g 181 22 g
Estimate for A, . By the sublinearity of 9T, we have

Em(Aszgbfszg»ngkg)(x)
< fm(Az*kchz*kgfa A2*k§g)(x) + fm(Az*kchz*kgf,g)(x)
+IM(Ay kg bf, Ay v 8)(x) + IM(Ay 4 DS, 8) ().

It follows from (35) that

Ay < C|b|| = (n)

(Z

1/q
ksq
e / M(Ay1g A1) ) s

(3 20( / M(Ay 1 f.8)d0) )Uq

keZ

(kézkw(/mn sm(f,Az,kgg)qu) 1/q

+CH< stq(/mn fm(Aszgbf»g)dc>q> v

keZ
=:1Ay 1 +Ax+A23+ Ay

+C|B|| = (mr)

Lr(R7)

+C|B|| =)

Lr(R7)

Lr(R7)

For A, 1, we get from (27) that

Azl < CHbHLip(R")||fHFf1‘q(Rn)HgHFfZ‘q(R")'

For Aj,, we can choose § > 1 such that § < min{p;,q} and &' < p,.

(34)

(33)

(36)

(37)

Let

B € (6,min{pi,q}). In view of (15), (16), (21), Holder’s inequality and Lemma 3, we

have

Azp < C||b|| = (mery

(B 29( [ Moo sz 91at)’)

ke Lr(®7)
< C|b|| = (wmy [1Ms1 (&) || L2 (e
1/
<CZ 215 Qs N 1) o
1/
< Clblmgn glrscen | ( Z 2 W80 Dl o, ) o
< Clplian s (2 M0 Mosn)) e

< C||b||L°°(R")||g||LP2(R")||ng”l~q(Rn)

< Cllluipan 11 21 g 18 2 -

(38)
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Similar argument to (38) shows that

A3 < Cblluipn 1L g g 81 92 g -

589

(39)

For A4, let 6, B be given as in (38). By (16), (21), (32), Holder’s inequality and

Lemma 3, we have

maee](z

1/q

2ksq (/mn Ms(Ay-iebf )M (8)dC> q)

L (R7)

kEZ
1/q
< , " ksq B q
< ClM (8) 72 s (kexzz 1M5(82-4h N Esi)) [y
1/q
< Cllgllrr2 e 254 || Mg (A, i bf)||4
lellrgee | ( 325160y ,) |y
1/q
< Cllgllr2 gn 2K4||A, 4 b7
el ey | £ S 20804l n)
< Clbllipen I | e g 81l gr2a gy
It follows from (36)—(40) that
Az < CIb|Lipgen) S 1] 214 gy 1811 2 gy -
Estimate for Az . By (27), we have
ar<c|(Z 20 [ e+ 1Blimen)
[(Z (), ®
a\ 1/q
xiJ)T(Aszgf,Aszgg)dQ ) Lo (R
a\ 1/q
< C|Ib|| = sen 2ksq / M(Asr £, A rr8)d
el (2 2( [, MMBoncfboe)a)’) ], o

< ClBlipa L g 18 2 e
Estimate for A4. In view of (38),

as< (S 29( [ 00+ 10l sy e .01a) )

keZ n

(Z2( [ masier.01a2)’)

keZ

LP(RY)

1/q
< C|b]| = (mm

e
< ClIb[lLipn) S 11 g4 gy 181 £r2a gy -
Estimate for As. Applying (39), we have
’ a\1/4
As<c||(Z25( [ 000+ 15l M8y 104

keZ R

(Z2( [ m(r.ayac0)at)’)

keZ

LP(RY)

1/q
< Clbll=(en)|

LP(R")

< C”b”Lip(R”) ”fHFS"l"q(Rn) “gHF{’Z"’(Rn)'

(40)

(41)

(42)

(43)

(44)
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Finally, it follows from (20), (34) and (41)—(44) that
1998 (f @)l gy < ClbILipen) 1]z gy 18]l gr2d ey - “45)
Combining (45) with (5) and (16) implies (9) for I;,.

Step 2: Proof of the continuity part.
Let f; — f in F'"(R") and g; — g in F/*?(R") as j — oo. In view of (6), it
suffices to prove that

199 (f,85) — MM (f,8) || prarny — O as j — eo. (46)

Next we shall prove (46) by contradiction. If (46) is not true, without loss of
generality we may assume that there exists ¥ > 0 such that

||mb(fjvgj) _mb(fvg)HRP‘q(R") >, for a11]> 1. (47)

Since My (fj,87) — Mp(f,g) in LP(R") as j — oo, we may assume without loss of
generality (by extracting a subsequence) that |9, (f},8;)(x) — M, (f,g)(x)] — O as
Jj — oo for almost every x € R". It follows that

Ay kg (M (f,8) — Mp(f,8))(x) = 0 as j— oo (48)

forevery (k,§) € Z x R, and almost every x € R". By (12), we have that for (x,k,{) €
R" X 7 x R,,

1Ay I, (f,8) (x)]
<A kg DIMUAy ke 189 k8) (X) + [Ag -k DIIM(Ag i f8) (%)
+ Ak DIM(f, Agir8) (x) + [Ag-i DIM(f, 8) ()
+ (A ke DAy By k¢ 8) (%) + IM(Ay ke DA, i f,8) (%)
+IMN(Ag kb Ay 8)(X) + M(Ay b, 8) (x) (49)
+[6() MDAy kg f Dy r g 8) () + M(bAy k¢ f, Ay k£ 8) ()
+ [b(x) (A i f18) (x) + IM(bA, s f,8) (%)
+ [b() IS, Ay i 8) (x) + MUBS, Ay 8) (%)
=: @ g(x,k,C).

It is clear that

Mgk I (f7,8)) (¥)] < @y, (K, ).
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Note that

0,0, (XK, §) — @r.(x,k, 8|

< (IAz—kgbl+|b(x)|)(9ﬁ(Az—kg(f-—f) Ayig (85— 8))(x)
+fm(Az e (fi = 1), 80 k8) (%) + MM(Ag i f, 854 (85— 8)) (%)

M(Aykg (fj = 1) 8 — 8) () +M(Agsg (f = £),8) (%)

+9ﬁ( ke f:8j —8)(X) +M(fj — .4,k (8 — &) (x)
IS = A48 () + TS, Ay g (85— 8))(x))
+ Ak DIM(f — £.85 — 8)(x) + [Ag-ig DI S — f,8) (%)
+ 1Ay 4 BIM(f 85— 8)(x) + IM(Ag kg by (f5 = £): Byrp (85— 8)) (%)
‘Hm(Az kb i (f5 = 1), Bk 8) (%)

M(A,- kgbAz k¢f7A2 kg(gj 8)(x)
+mmk@%qm £).8—8)) ©0
+IM(Ay ke bAykg (i = f):8 )( X) + MDAy kg bAysp fr8— 8)(¥)
+ Mg b (fi = 1)y Dorg (85— 8))(x) + I Ayt b(f — £)s Ay 8) (%)
+ DAy kb Ayip (8 — 8)) () + MM(Agib(f — £),8 — &) (x)
+ M(Agigb(fi = 1),8) (%) +IM(Ayirbf 85— 8) (%)
FIM(BA kg (fj = F)i Dok (87— 8)) (%) +IN(BAykp (fi — [)s Byt g) (x)
FM(bAy ke f Mgk (8] — 8)) () + IM(bAyie (fj — f), (g — &) (%)
+ MDAy (fi = [),8) (%) +IM(bAy -1 fr8) — &) (%)
MBS — 1) Dyre (8 —8)) () +IM(B(fj = [), Ag-rgg) (x)
+ MBS, Ayrc (85— 8)) (%)

. q)j(x7k7 C)

From (49) and (50) we see that

|Agie (M (f:85) — Mu(f,8)) (%)

= |A2*k§mb(fjvgj)(x)_AZ*ké'mb(f7g)(x)| (51
< Prig; (x,k, §) + Or.g(x.k, ¢) < Dj(x,k, &)+ 207.¢(x,k, g).

forall (x,k,{) € R" x Z x R,,. An argument similar to (45) gives that

1jllp.g.1.s < ClIBllLipn (17 = Fll prra e 187 — 8ll g2 gy

(52)
+ 117 _fHF{’I‘”(Rn) “gHF{’2>q(Rr1) + ||fHF{’1"q(Rn) 18 _g”F{’Z‘”(Rn))v

1207 6llp.g.1.5 < ClID I Lipgeen) 1f | grra ey 18] 2 oy (53)



592 G. WANG AND F. L1U

In view of (52), we can find a subsequence {j¢}7.; C {j}7_, such that

Z Hq)jz, qu,hx < oo (54
(=1

It follows from (51) that
Ak (M (£, 850) — M (£, 8)) (%)

@, (x,k,§) + 207 4(x,k,C) = T(x,k, ), (335

Ms

<

=1

for all (x,k,§) € R" X Z x R,,. Then we get by (54), (55) and Minkowski’s inequality
that ||T[ 4,15 < . It follows that [y, T'(x,k,{)d{ < oo for every k € Z and almost
every x € R". Then we use (48), (55) and the dominated convergence theorem to get

s s (1) = M) =0 s b e (S6)

for every k € Z and almost every x € R". By the fact that ||T']|, 4,1, < o again

1/
22’“4 / rxkcdc)) ‘< (57)
keZ

for almost every x € R". In view of (55),
| 1O 0) ~Mf )@ < [ Tk g, 68)

forall (x,k,§) € R" x Z xR, and £ > 1. By (56)—(58) and the dominated convergence
theorem,

a\ 1/q
(Z2( [ 180k Sis50) =Dl 0)@IAE) ) =0 as b e (59)
ke, R

By (55) again and the fact that ||T][, 415 < e°,

( 2 2k (/mn ‘Az—kcj(mb(f./’mgjﬁ) - mb(f’g))(x)|d§> q> "

keZ

< (2 2ksq(/m |F(x,k,§)|d§>q> o oo,

keZ

(60)

for almost every x € R". By (59), (60) and the dominated convergence theorem,

HAZ*"C(mb(fngjz) —fmb(f»g))Hm%hx — 0 asl—ee.

This leads to |90, (fj,,8j,) —MMs(f, &)l pa(mny — 0 as £ — oo, which contradicts with
(47). Theorem 2 in now proved. [
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4. Proof of Theorem 3

In this section we prove Theorem 3. Throughout this section let f € BY'(R"),
g € B{*"(R") and b € Lip(R"), where 1 < py,pa2,p,q<oand 1/p=1/p;+1/p,.
4.1. Proof of Theorem 3 for [901,5]; (i=1,2)

To prove Theorem 3 for [90,5]; (i =1,2), we need the following Lemma.

LEMMA 4. ([4]). Let 0 <s<1 and 1 < p,q<eoo. If u€ By (R") and b €
Lip(R"), then bu € BY(R"). Moreover,

[16ul| gragny < CllbI|Lipgn lluell gran -

Proof of Theorem 3 for [M,b]; (i =1,2). We only consider the case i = 1 since
another one is analogous. One can easily check that

I [mab]l(f7g)”3f‘”(R") < ||m(bf»8)HB§’>"(Rn) + ||bm(f»8)HB§’>"(R")'

In view of Lemma 4 and Theorem B(ii), one has

||§m(bf,g)HBg,q(Rn) < C”beBfl"q(Rn) HgHBfM(Rn)

< ClBlp(en) 11| 019 gy 18 g2

169(f,8) || gpamny < ClIbl|Lipen) [19(f5 &)l ro(en)
< CbllLipen)1F 1| g1 gy 181 gr2a -

Thus, we have
1992, 611 (£.8)l| pany < ClIB o1 11501 g 1811 29 -

This proves (10) for [90,5];.

Next we prove the continuity of [90,5];. Let f; — f in B{"/(R") and g; — g
in Bf*(R") as j — o. By Lemma 4, one sees that bf; — bf in By"?(R"). This
together with Theorem B(ii) implies that 9(bf;,g;) — M(bf,g) in BYI(R") as j —
oo. Theorem B(ii) also gives that M(fj,g;) — M(f,g) in BY!(R") as j — oo. This
together with Lemma 4 implies that b9(f},g;) — bIM(f,g) in BY(R") as j — oo.
From the above facts we see that [901,b]1(fj,g;) — [9,b]1(f,g) in BY/(R") as j— oo.
This completes the proof of Theorem 3 for [91,5];. O

4.2. Proof of Theorem 3 for 91,

We denote the homogeneous Besov spaces by BY?(IR"). It is well known that

/1l e mny ~ 1f lgpany + 1f lp(rey, for s>0, 1 <p,q<eo, (61)
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Hf”Bfl‘”(R") < HfHsz"’(R")v fors; <s2, 0 < p, g <oo. (62)
”fHBf"’Z(Rn) < Hf”B_f‘”l (Rn)> forseR, 0< g1 < g2 <0, 0 < p <o (63)
It was observed by Yabuta [25] thatfor 0<s <1, I <p<oo, I <g<Looand 1 <r<p,

1/r
P lgpoceey ~ (229 ([ 1sagrrag)

keZ
For a measurable function g : R” x Z x R,, — R, we define

lellpas = ( 3 299( / L lek0) rasag)"’) .

keZ

q 1/q
LP(R")) : (64)

By (64) and Fubini’s theorem, one gets
Hf”Bf‘”(R" | A, k§f||pqs7 for 0<s<1,1<p<oo, 1 <g<oo. (65)

Proof of Theorem 3 for M;,. We divide the proof of Theorem 3 for 91, into two
steps.

Step 1: Proof of the boundedness part.

By (65) and (19), we write

1992 (f, &) 574 )
< C( szxq(/mn /Rn |A27kgfmb(f,g)(x)|1’dxdc>q/p>l/q

keZ

S q/p\ 1/4q
S C(}(g%zqu(/%n /Rn |A2*k§bm(f2—kg7gz—k§)(x)\%Zxdé) )

+C<k§i2k5‘1</m /n(m(A2*kaf2—k€7g2,k§)(x))pdxdc>q/P)l/q

re( ([ [ @ity igerasag)”) O

keZ
kéz’ﬂq(/ /,1 (M (Ayip f8) (x ))dedQ*)q/P)l/q
+O(Z ([, f e oyaag)"" )"

5
=Y B
i-1

Estimate for B;. By (22), we can write
a/p\ 1/q
< Clbl ey (3,2 / / M(AyifAysgg) () dxdg)” )
keZ

+cubumw>(kzzz’“q( [ [omeaprraas)”) " o
- :
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B} a/p\1/q
FCOlmgy (T2 [ [ (1.8 sgm) ()7 arat)™)
keZ

re( T 2( /m /R |85 DI(f,8) (x) [P dxd )W> "

keZ

By Holder’s inequality, (1) and (61)—(65), one has

(k%zksq (/sm /n(fm(Az—kgf, Az,kcg)(x))pdxdgydp) 1/q

!
<C(Z29( [ 18461 ooy 12 sl ) )

keZ

‘ 1/q
<C( T 2Ny Pl o A28l s ey
keZ

) p/(ap1)
< C( 2 (zkm/m HAszngLpl (Rnxmn))qm/P> (68)
keZ

p/(ap2)
y ( ¥ (2ksp/p> 18y +r8ll1r2 (R,,an))qu/p>
keZ

C”fHBm ‘il’l/l’(Rn HgHsz ql)z/p(R,,)
sp/py sp/py

CHfHBm a1/ (gny HgHsz 4P2/P gy
sp/p1 sp/p2

< C”fHBfl’q(Rn) ||g||B£’2~H(Rn).

In view of (1), (61) and (65),

1522"5:1 / /,1 (Apic fr8)(x ))pdxd(;)q/p)l/q

a/p\ 1/q
gc p n 2]{5&] / A - v n d
||g||L:z(R)<k€% ( 0, 18-k fllze1 () C) ) 9)

/piy 1/
< Cllgluran ( T 2°7( [ 12 Wb ye?) )

keZ

< Cllglluraen) 111 g0y < I g1 g 82 -
An argument similar to (69) shows that

(ke%%q(/ n/n(fm(f,Azkgg)(x))pdxdgq/p)l/q

< CHf”B_fl‘”(Rn)HgHszﬂ(Rn).

(70)
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From (1) and (61) we see that

(Z20( [ [ 1avscomirgwpasag)”) ™

keZ

) C<;§_m 2 </m /]R Ay B f ,g)(x)V’dxdg)"/ ”) /a

+c<k§1 2k /m L, 1scoms. @raxag)”")"

< CIR M 8) | o ()
K XRINY.
8 (”bHL""(R")( )y 2k5q> q+IIbIIL,-p(]Rn)<22’“1(-s 1)) q)
k=1

k=—o0
< Cllpten | llrr 2oy 18l 72 o) < ClB g 11101 gy 11 526 ey

It follows from (67)—(71) that
By < Clblipmn) 1Nl grr-a gy 1811 24 ey -

Estimate for B,. Using (32) and (68)—(70), we have

B < ,{ezzzksq</m,, J R SR &y ge)asa)”")

—|—C<ke%2ksq</ n/]Rn (W(ATI{CZ)AT’(CJC:g)(X))pdxdg>q/p>l/q

—|—C<ke%2ksq</mn/n(m(A2kgbf,Azkgg)(x))pdxdg>4/l7>l/q

+C<ke%2ksq (/m /Rn (m(A2—kaf7g)(x))pdde>q/P) 1/q

< Clpli-gen (2,2 L@ ke f. 8y i) ) )
: :

*C”b”Lw<R">(k222"”(/mn [ sy gyanag)”) "

Ol (S 20 [ [ (78 sgo)oyraa)””)

keZ
vo(Z ([ [ oy ibs.) ) dsas)
keZ Ry JR?
< ClBlluipn 11 5219 gy 181 522 g

re(Z ([, [ O ibsg i)

q/p>1/q

q/17>1/q.

(71)

(72)

(73)
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In view of (1) and (61), one has

(520( [, [ o srorasic)”)

s a/p\1/q
<C(Z29( [ 1840 I e rn o 20

keZ

< Clglran ( T 27( [ 182 1gb o ey

keZ

)
)1/11

0 a/p\ 1/q
< . ksq B p)
\CHgHLpz(R )<k§o°2 </§Rn 1A, ké‘bf“Lll(Rn)dC) ) o

oo q/p\ 1/
+CH8HL"2(R”)<Z 2ksq(/m 18- bAII7, (R")dc> )
k=1 n

< ClRalllgll 2 @) 1 1] o1 ey

(Wl (3 29)" 4 ol (5 2909) )

k=—o0 k=1
< ClID|Lip@n) 1| or (mry ll gl o2 (e
< CHbHLip(R")||fHBfl>q(Rn)||g||B_f2>q(Rn)~

Combining (74) with (73) implies that
B, < C”b”Lip(R")Hf”B_fl"q(]Rn)HgHsz"q(]Rn)' (75)

Estimates for Bz, B4 and Bs. We use (68), (69) and (70), respectively to obtain
q/p\ 1/q
By <o 324 / [ B0+ 1Bl ) (R s £, By-s ) ) ) )
keZ
a/p\1/q
< Clbl ey (3,2 / / M(AyifAysgg) () dxdl) )
keZ
< ClllLipan 115214 gy 181 52 g (76)
s a/p\1/q
c(Z2( / JRCERATI )(W(Aszgf,g)(x))”dxdé) )
kez
ksq » q/p\ 1/q
<Ol (T 290 [ [ o8y s f0))arac)")
keZ n

< ClBlip(zny 171 g1 o gl g2 g an

5 a/p\ 1/q
B < (T2 [, [ 10l ) Ay Pt ) )

W

<Ol (£ 2( [, [ 00085 scarpanac)””)

< C”b”Lip(R") Hf”B_fl"q(Rn) HgHsz~q(Rn)~ (78)
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Finally, we get from (66), (72) and (75)—(78) that
||mb(f7g)||8_£"”(w) < CHbHLip(R")||fHBfl’q(R")”g”B_fz’q(R")' (79)

Combining (79) with (5) and (61) implies (10) for 91,

Step 2: Proof of the continuity part.
Let fj — f in BY"(R") and g; — g in BY*?(R") as j — eo. In view of (6) and
(61), it is enough to show that

1990 (f,85) — MM (f,8) | gra(ny — 0 as j— oo (80)

We now prove (80) by contradiction. Assume that (80) is not valid. We may assume
without loss of generality that there exists ¢ > 0 such that

1990 (f5,87) — M(f )|l gra (e > ¢, forall j = 1. (81)

Since My (fj,87) — PMp(f,g) in LP(R") as j — oo, by extracting a subsequence we
may assume without loss of generality that 9%, (f;,&;)(x) =9, (f,g)(x) = 0 as j— oo
for almost every x € R". Consequently it holds that

Ay ke (M (f,87) — Mp(f,8))(x) = 0 as j— oo (82)
forevery (k,) € Z x R, and almost every x € R". For convenience, we set

Vrg(x.k,0) = |A2*k§b‘fm(f2*k¢j782*/%:)()5)
+IM(Ayrebfykg: 824 ) (%) + IMp(Agi 1 Bg-k £ 8) (%) (83)
+ Iy (Ayse f,8)(X) + DM (f, Ay i 8) (%)
By (19), one has
|85 (f,8) (%) < Wy g(x,k, ) (84)

forany x € R", k € Z and § € R,. Using (83) and the sublinearity of 91, and 9N,
one has

(Wi, (6,5, 8) — Wi g (X, K, O
<A BIM((S)2-4¢ (8)2-+¢) (%) = M(fr-4¢ 8247 ) (%)
+DUA 1 b(f)2 kg (87)24) (X) = M(Ay ke b fy kg 824 ) (%))
+ My (Ag kg 5 Bg kg 87)(X) = Mp(Agkp [ A5k 8) ()]
+ 19 (Ag-k £7,85) (%) = M (Ag-k f 8) (%)
+ MM (£, Ag-k8) (%) = My (f, Mgk 8) (%) (85)
S Ak DI = fa-kg (81)2-+) (%) + Ay kg DIMM(frrg, (85— 8)pk ) (¥)
+ Ay kg b(fj = f)orgs (8524 ) (%) + I Ay kb frkp, (85— 8)r4¢) (%)
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I (Agrg (fj = f)s Dok 85) (%) + MMy (Agip f Ay (8 — 8)) (%)
+ Iy (A (f5 = £):87)(X) + Mp(Ayip fr8 — 8) (%)
I (ff = S Bk 85) (%) + MMy (f, gk (8 — 8)) ()
=:¥;(x,k,{).
Combining (85) with (84) implies that

| Ao (f7,87) (%) = Ags e My (£, 8) ()

(86)
< Vg (x,k, &)+ W.f7g(x7k7 &< \Pj(x7k7 &) +2W.ﬂg(x7k7 &)

forall (x,k,{) € R" X Z x R,,. By the arguments similar to those used in deriving (79),

12Wr.gllp.g.s < CHbHLip(R")”fHBfl“f(]Rn)”g”BfZ‘q(Rn)a (87)
¥ p.q.5 < ClIblILip@en) (ILF5 = fll grra ) 185 = 8ll g2 ) 55)
+ Hf/ _f”B_fl"q(Rn) HgHBfZ‘”(Rn) + Hf”Bfl’q(]R")”gj _8”352‘”(Rn))-

In view of (88), there exists a subsequence {ji};2; C {j}7_; such that

1¥illp.g.s <o (89)
i=1
From (86) we have
|A2’k§(mb(fji7gji) — My (f,8))(x)]

(90)

< W (0k 8) 29k, 0) = O,k ),
i=1

forall (x,k,{) € R" x Z xR, and all i > 1. We get from (87)—(89) that ||©]|, 45 < eo.
The rest of proof follows from (82), (90), the fact that ||©||,4,s < e and the arguments
similar to the proof of the continuity for 21, in Theorem 2. We omit the details. [J
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