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q–HERMITE––HADAMARD INEQUALITIES FOR FUNCTIONS

WITH CONVEX OR h–CONVEX q–DERIVATIVE

PÉTER KÓRUS ∗ AND JUAN E. NÁPOLES VALDÉS

(Communicated by S. Varošanec)

Abstract. In this work, using the definitions of convex functions and h -convex functions, new
Hermite–Hadamard type inequalities are presented using the framework of q -calculus. We prove
inequalities for the qa - and qb -definite integrals of functions which have a convex or general
convex qa - or qb -derivative. These inequalities have consequences for q -integrals and classical
integrals, while extending some results previously known from the literature.

1. Introduction

One of the most fruitful concepts in Mathematics is the convex function, not only
because of its theoretical impact in various areas, but also because of the multiplicity of
applications that have been developed in recent times.

A function f : [a,b] → R is said to be convex if f
(
tx+(1− t)y

)
� t f (x)+ (1−

t) f (y) holds for all x,y ∈ [a,b] , x < y and t ∈ [0,1] . And it is said that function f is
concave on [a,b] if the above inequality is the opposite. During the paper, it is always
assumed that a < b .

Readers interested in the aforementioned development, can consult e.g. paper [20],
where a panorama, practically complete, of these branches is presented.

One of the most important inequalities, for convex functions, is the well-known
Hermite–Hadamard inequality:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
(1)

holds for any function f convex on the interval [a,b] . This inequality was published by
Hermite ([13]) in 1883 and, independently, by Hadamard in 1893 ([12]). This inequality
gives a very useful boundedness to the mean value of a function, in this case convex
functions.

More than one hundred years ago, the Reverend Frank Hilton Jackson defined a
new derivative of a function at a point, without the use of the notion of limit, opening
a new direction of work in classical calculus and number theory. He got q -analogs of
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several known results from these areas. Interested readers can consult Jackson’s works
[15, 16], as well as [10, 18] on the basis of q -calculus.

The q -derivative of a real function f (x) is defined for q ∈ (0,1) as

Dq f (x) =
f (qx)− f (x)

qx− x
, x �= 0 (2)

and Dq f (0) = f ′(0) for functions f differentiable at x = 0. The q -derivative calculates
the rise of f (x) over the interval (qx,x) . As such, it is numerically equal to the slope
of the line going through points (qx, f (qx)) and (x, f (x)) .

The Jackson integral of a real function f is defined by the series expansion∫ x

0
f (t)dqt = (1−q)x

∞

∑
k=0

qk f (qkx) (3)

provided that the series is finite, e.g. in case | f (x)xα | is bounded on the interval (0,A]
for some 0 � α < 1 (see [10]).

The following expression, defines the q -number (see [18]) and will be used later:

[n]q =
1−qn

1−q
= 1+q+q2+ . . .+qn−1, q ∈ (0,1), n ∈ N,

e.g. [2]q = 1+q and [3]q = 1+q+q2 .
A generalization of the definition of convex function is as follows.

DEFINITION 1. [21, 27] Let h : [0,1] → [0,∞) and f : [a,b] ⊆ R → R . We say
that f is an h -convex function, if for all x,y ∈ [a,b] and t ∈ (0,1) , we have

f (tx+(1− t)y) � h(t) f (x)+h(1− t) f (y).

REMARK 1. Note that in papers [21, 27], non-negativity of function f is assumed,
but in this paper, this condition is dropped to get more general results.

Special cases of the above definition are the following.
If h(t) = ts , s ∈ (0,1] , then f is called an s-convex function ([7, 14]).
If h(t) = t , then f is a convex function.

Generalization of the q -derivative (2) was introduced in [25, 26] and [5] as fol-
lows.

DEFINITION 2. For a function f : [a,b] → R and q ∈ (0,1) , the qa -derivative of
f at x ∈ [a,b] is characterized by the expression

aDq f (x) =
f (x)− f (qx+(1−q)a)

(1−q)(x−a)
, x �= a. (4)

The qb -derivative of f at x ∈ [a,b] is defined by

bDq f (x) =
f (x)− f (qx+(1−q)b)

(1−q)(x−b)
, x �= b. (5)
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For x = a , we define aDq f (a) = limx→a aDq f (x) = f ′(a) if it exists and is finite.
Analogously, for x = b , we define bDq f (b) = limx→b

bDq f (x) = f ′(b) if it exists and
is finite.

REMARK 2. Note that if a = 0 in (4), or, if b = 0 in (5), then we obtain the
familiar q -derivative (2) of f at x ∈ [a,b] .

The qa -definite integral defined in [25, 26] and the analogous qb -definite integral
defined in [5], are generalizations of the q -integral (3).

DEFINITION 3. For a function f : [a,b] → R and q ∈ (0,1) , the qa -definite inte-
gral of f is defined by the expression∫ x

a
f (t) adqt = (1−q)(x−a)

∞

∑
k=0

qk f (qkx+(1−qk)a), x ∈ [a,b],

and similarly, the qb -definite integral of f is∫ b

x
f (t) bdqt = (1−q)(b− x)

∞

∑
k=0

qk f (qkx+(1−qk)b), x ∈ [a,b],

provided that the series is finite, e.g. in case f is continuous on [a,b] .

EXAMPLE 1. It is well-known that∫ b

a
(mx+ k) adqx = (b−a)

(
m(qa+b)

[2]q
+ k

)
,

∫ b

a
(mx+ k) bdqx = (b−a)

(
m(a+bq)

[2]q
+ k

)
.

Some important properties of the qa - and qb -derivatives and integrals will be used
later (see [5, 17, 25]):

THEOREM 1. For continuous f : [a,b] → R and q ∈ (0,1) , we have∫ x

a
aDq f (t) adqt = f (x)− f (a),

∫ b

x

bDq f (t) bdqt = f (b)− f (x).

Moreover, for continuous f ,g : [a,b] → R , integration by parts says∫ b

a
g(qt +(1−q)a) aDq f (t) adqt =

[
f (t)g(t)

]b
a −

∫ b

a
f (t) aDqg(t) adqt,∫ b

a
g(qt +(1−q)b) bDq f (t) bdqt =

[
f (t)g(t)

]b
a −

∫ b

a
f (t) bDqg(t) bdqt.

Some theoretical preambles, on this subject, are the following. In [22], a q -analog
of a classical integral identity is established, from this equality, various q -estimates
are obtained for the Hermite–Hadamard inequality for convex and quasi-convex q -
differentiable functions; in [3] some generalizations of the Hermite–Hadamard inequal-
ity are obtained within the framework of q -calculus for convex functions, but they in-
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corporate the differentiability of the function, which can be omitted, as it was shown in
[5].

THEOREM 2. Let f : [a,b] → R be a convex function on [a,b] and q ∈ (0,1) .
Then we have

f

(
qa+b
[2]q

)
� 1

b−a

∫ b

a
f (x) adqx � q f (a)+ f (b)

[2]q
(6)

and

f

(
a+qb
[2]q

)
� 1

b−a

∫ b

a
f (x) bdqx � f (a)+q f (b)

[2]q
. (7)

Other results can be found in [1, 2, 4, 6, 8, 9, 17, 24, 28] and the references cited
in them.

Considering the proof of [5, Theorem 18], one can deduce the next statement.

THEOREM 3. Let f : [a,b] → R be a continuous, h-convex function and q ∈
(0,1) . Then we have

1
b−a

∫ b

a
f (x) adqx � H2 f (a)+H1 f (b) (8)

and

1
b−a

∫ b

a
f (x) bdqx � H1 f (a)+H2 f (b), (9)

where H1 =
∫ 1
0 h(t)dqt and H2 =

∫ 1
0 h(1− t)dqt , provided that H1 and H2 exist and

are finite.

In this paper, we obtain new inequalities of Hermite–Hadamard type for functions
which have q -derivatives (in the sense of (4) and (5)) h -convex or convex on finite
intervals. As we will see, these results are extensions of some results known from the
literature.

2. Main results

We start with a lemma that will be of benefit later.

LEMMA 1. For continuous f : [a,b] → R , we have

∫ b

a
(x−a) aDq f (x)adqx =

1
q

(
(b−a) f (b)−

∫ b

a
f (x) adqx

)
,

∫ b

a
(x−a) aDq f

(
qa+x
[2]q

)
adqx =

[2]q
q

(
(b−a) f

(
qa+b
[2]q

)
− [2]q

∫ qa+b
[2]q

a
f (x) adqx

)
.



q -HH INEQUALITIES FOR FUNCTIONS WITH (GENERAL) CONVEX q -DERIVATIVE 605

Proof. Considering integration by parts for f (x) and g(x) = x−a , by Theorem 1,
we can write∫ b

a
(qx+(1−q)a−a)aDq f (x) adqx =

[
(x−a) f (x)

]b
a −

∫ b

a
f (x) aDq(x−a) adqx

that is equivalent to

q
∫ b

a
(x−a) aDq f (x) adqx = (b−a) f (b)−

∫ b

a
f (x) adqx.

The first required equation is obtained.

Analogously, integration by parts for f
(

qa+x
[2]q

)
and g(x) = x−a yields

∫ b

a
(qx+(1−q)a−a) aDq f

(
qa+ x
[2]q

)
adqx

=
[
[2]q(x−a) f

(
qa+ x
[2]q

)]b

a

− [2]q
∫ b

a
f

(
qa+ x
[2]q

)
aDq(x−a) adqx

= [2]q

(
(b−a) f

(
qa+b
[2]q

)
− [2]q

∫ qa+b
[2]q

a
f (x) adqx

)

that is equivalent to the second required equation. �
Our first main result reads as follows.

THEOREM 4. Let f : [a,b]→R be such that aDq f (x) is continuous, h-convex on
[a,b] and f ′(a) exists. The following inequality holds:

1
b−a

∫ b

a
f (x) adqx � q f (a)+H1 f (b)

q+H1
+

qH2(b−a)
[2]q(q+H1)

f ′(a).

Proof. Writing inequality (8) for aDq f (x) , substituting x in place of b and multi-
plying by (x−a) yield

∫ x

a
aDq f (t) adqt � (x−a)(H2 aDq f (a)+H1 aDq f (x)).

By qa -integrating both sides with respect to x on [a,b] , we have

∫ b

a

(∫ x

a
aDq f (t) adqt

)
adqx �

∫ b

a
(x−a)(H2 aDq f (a)+H1 aDq f (x)) adqx.

The left-hand side is equal to

∫ b

a

(∫ x

a
aDq f (t)adqt

)
adqx =

∫ b

a
f (x) adqx− (b−a) f (a), (10)
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while, by Lemma 1, the right-hand side is∫ b

a
(x−a)(H2 aDq f (a)+H1 aDq f (x)) adqx

=
(b−a)2

[2]q
H2 aDq f (a)+

H1

q

(
(b−a) f (b)−

∫ b

a
f (x) adqx

)
.

(11)

Combining (10) and (11) yields the required result. �
The following results are consequences of considering convex functions instead of

h -convex functions. In this case, h(t) = t , H1 = 1
[2]q

and H2 = q
[2]q

.

COROLLARY 1. Let f : [a,b] → R be such that aDq f (x) is convex on [a,b] and
f ′(a) exists. The following inequality holds:

1
b−a

∫ b

a
f (x) adqx � q[2]q f (a)+ f (b)

[3]q
+

q2(b−a)
[2]q[3]q

f ′(a). (12)

A lower estimation for the qa -integral reads as follows.

THEOREM 5. Let f : [a,b] → R be such that aDq f (x) is convex on [a,b] and
f ′(a) exists. Then

[2]2q f
(

qa+b
[2]q

)
−q f (a)

[3]q
− q(b−a)

[2]q[3]q
f ′(a) � 1

b−a

∫ b

a
f (x) adqx.

Proof. Writing the first inequality in (6) for aDq f (x) , substituting x in place of b
and multiplying by (x−a) yield

(x−a)aDq f

(
qa+ x
[2]q

)
�
∫ x

a
aDq f (t)adqt.

After qa -integrating both sides with respect to x on [a,b] , we get∫ b

a
(x−a) aDq f

(
qa+ x
[2]q

)
adqx �

∫ b

a

(∫ x

a
aDq f (t) adqt

)
adqx.

The right-hand side is equal to (10), while, by Lemma 1 and (12), the left-hand side can
be estimated as ∫ b

a
(x−a) aDq f

(
qa+ x
[2]q

)
adqx

=
[2]q
q

(
(b−a) f

(
qa+b
[2]q

)
− [2]q

∫ qa+b
[2]q

a
f (x) adqx

)

� [2]q
q

(b−a)

⎛
⎝ f

(
qa+b
[2]q

)
−
⎛
⎝q[2]q f (a)+ f

(
qa+b
[2]q

)
[3]q

+
q2(b−a)
[2]2q[3]q

f ′(a)

⎞
⎠
⎞
⎠ .

(13)
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Combining (10) and (13) yields the required result. �

We obtain analogous results for qb -integrals. By considering inequalities (9) and
(7) for bDq f (x) , we get the following results corresponding to Theorems 4 and 5.

THEOREM 6. Let f : [a,b]→R be such that bDq f (x) is continuous, h-convex on
[a,b] and f ′(b) exists. The following inequality holds:

q f (b)+H1 f (a)
q+H1

− qH2(b−a)
[2]q(q+H1)

f ′(b) � 1
b−a

∫ b

a
f (x) bdqx.

THEOREM 7. Let f : [a,b] → R be such that bDq f (x) is convex on [a,b] and
f ′(b) exists. Then

f (a)+q[2]q f (b)
[3]q

− q2(b−a)
[2]q[3]q

f ′(b) � 1
b−a

∫ b

a
f (x) bdqx

�
[2]2q f

(
a+qb
[2]q

)
−q f (b)

[3]q
+

q(b−a)
[2]q[3]q

f ′(b).

By taking a = 0, Corollary 1 and Theorem 5 together imply a new version of the
Hermite–Hadamard inequality (1) in the framework of classical q -calculus.

COROLLARY 2. Let f : [a,b] → R be such that Dq f (x) is convex on [0,b] and
f ′(0) exists. Then

[2]2q f
(

b
[2]q

)
−q f (0)

[3]q
− qb

[2]q[3]q
f ′(0) � 1

b

∫ b

0
f (x)dqx

� q[2]q f (0)+ f (b)
[3]q

+
q2b

[2]q[3]q
f ′(0).

Combining Corollary 1 and Theorem 5, also taking the limit q→ 1− , allows us to
obtain an inequality for classical integrals, which can be also calculated directly from
Corollary 2 and Corollary 4 of [19] (see also [11]).

COROLLARY 3. Let f : [a,b] → R be differentiable on [a,b] such that f ′(x) is
convex on [a,b] . The following inequality holds:

4 f
(

a+b
2

)− f (a)
3

− b−a
6

f ′(a) � 1
b−a

∫ b

a
f (x)dx

� 2 f (a)+ f (b)
3

+
b−a

6
f ′(a).
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REMARK 3. If in Corollary 3, we additionally assume that f (x) is convex on
[a,b] , then we have an improvement of the Hermite–Hadamard inequality (1), since

f

(
a+b

2

)
�

4 f
(

a+b
2

)− f (a)
3

− b−a
6

f ′(a) � 1
b−a

∫ b

a
f (x)dx

� 2 f (a)+ f (b)
3

+
b−a

6
f ′(a) � f (a)+ f (b)

2

by considering the inequality f (x)+ f ′(x)(y−x) � f (y) for x = a , y = a+b
2 and x = a ,

y = b , respectively.

REMARK 4. If in the main results, we consider h -concave and concave functions,
respectively, instead of h -convex and convex functions, then the opposite inequalities
hold.

3. Conclusions

In this article, various generalizations of the Hermite–Hadamard inequality are
obtained in the framework of the q -operators. These inequalities naturally extend some
previously known results from the literature as we showed. The accuracy of our main
results Theorems 4–7 can be highlighted through the function f : [a,b] → R, f (x) =
c1 x2 + c2 x+ c3 , in which case, the inequalities become equalities.

To illustrate the strength of our results, consider the following example. Let f :[
0, π

2

]→ R, f (x) = sinx . For this concave function f , Theorem 2 implies

sin
π

2(1+q)
� 2

π

∫ π/2

0
sinxdqx � 1

1+q
, (14)

while Corollary 2 yields the following refinement of the previous inequality

(1+q)2 sin π
2(1+q)

1+q+q2 − qπ
2(1+q)(1+q+q2)

� 2
π

∫ π/2

0
sinxdqx

� 1
1+q+q2 +

q2π
2(1+q)(1+q+q2)

=
1

1+q
· 2+2q+ πq2

2+2q+2q2

(15)

by noticing the concavity of

Dq sinx =

{
sin(qx)−sinx

qx−x , x �= 0,

1, x = 0,

that can be shown by calculation. One can easily see that the upper bound in (15) is
less than the one in (14), while the lower bound in (15) is greater than the one in (14).

It is clear that the problem of extending the lower estimation for the qa -integral
in Theorem 5 for h -convex functions, or, the generalization of our results for the case
of more general definitions, such as the (h−m)-convex modified functions of [23],
remains open.
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Institute of Applied Pedagogy

Juhász Gyula Faculty of Education, University of Szeged
Hattyas utca 10, H-6725 Szeged, Hungary

e-mail: korus.peter@szte.hu
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