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ON q–MONOTONICITY OF α –BERNSTEIN OPERATORS

BOGDAN GAVREA, IOAN GAVREA AND DANIEL IANOŞI ∗

(Communicated by J. Jakšetić)

Abstract. In this paper we show that α -Bernstein operators preserve q -monotonicity of all or-
ders. We investigate the tensor product of two such operators and show that it preserves (q,s) -
box convexity. Some Raşa type inequalities for the α -Bernstein operators are also derived.

1. Introduction

In [4], the following generalization of the Bernstein operators depending on a non-
negative real parameter was derived. Given a function f (x) on [0,1] , for each positive
integer n and any fixed real α , the so called α -Bernstein operator for f (x) is defined
as

Tn,α( f ;x) =
n

∑
i=0

p(α)
n,i (x) f

(
i
n

)
, (1)

where p(α)
1,0 (x) = 1− x , p(α)

1,1 (x) = x and

p(α)
n,i (x) =

[(
n−2

i

)
(1−α)x+

(
n−2
i−2

)
(1−α)(1− x)+

(
n
i

)
αx(1− x)

]
× xi−1(1− x)n−i−1,

for n � 2, x ∈ [0,1] . Here the binomial coefficients
(k

l

)
are given by

(
k
l

)
=

⎧⎨
⎩

k!
l!(k− l)!

, if 0 � l � k

0, else.

When α = 1, the α -Bernstein operator reduces to the classical Bernstein operator

Tn,1( f ;x) = Bn( f ;x) =
n

∑
i=0

bn,i(x) f

(
i
n

)
, n ∈ N,
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where bn,i(x) =
(n

i

)
xi(1− x)n−i , i , n ∈ N.

In this paper we will consider only α -Bernstein operators with α ∈ [0,1] . Under
this assumption, the operators Tn,α are linear positive operators.

The rate of convergence and a Voronovskaja type theorem are given in [4]. The
operators Tn,α preserve monotonicity and convexity ([4], Theorem 3.3 and Theorem
4.1.).

We observe that p(α)
n,i (x) can be written in terms of the Bernstein basis as

p(α)
n,i (x) = (1−α)(1− x)bn−2,i(x)+ (1−α)xbn−2,i−2(x)+ αbn,i(x), i,n ∈ N. (2)

It follows from (2) that the α -Bernstein operator Tn,α can be written in terms of the
Bernstein operators

Tn,α( f ;x) =(1−α)(1− x)Bn−2

(
f

(
n−2

n
t

)
;x

)
(3)

+(1−α)xBn−2

(
f

(
(n−2)t +2

n

)
;x

)
+ αBn ( f (t) ;x) ,

where Bk ( f (at +b);x) is the Bernstein polynomial of degree k , corresponding to the
function g(t) = f (at +b) evaluated at x .

We will use identity (3) to prove some new properties of the α -Bernstein operators
Tn,α , n ∈ N, α ∈ (0,1) .

In [10], J. Mrowiec, T. Rajba and S. Wa̧sowicz solved for the first time the follow-
ing problem, raised by I. Raşa ([12], Problem 2, p.164), related to the preservation of
convexity by the Bernstein-Schnabl operators. In [8], Raşa’s conjecture was studied for
the case of Baskakov-Mastroianni operators.

PROBLEM. Prove or disprove that

n

∑
i, j=0

(bn,i(x)bn, j(x)+bn,i(y)bn, j(y)−2bn,i(x)bn, j(y)) f

(
i+ j
2n

)
� 0 (4)

for each convex function f ∈C[0,1] and for all x,y ∈ [0,1] .

A simple proof of (4) was given by U. Abel in [1]. In [3], [6] and [7], inequality
(4) was proved in a more general context.

Given f ∈C[0,1] , we define

Δ1
h f (x) := Δh f (x) :=

{
f (x+h)− f (x), x, x+h ∈ [0,1]
0, otherwise

and for q � 1
Δq+1

h f (x) := Δq
h (Δh f (x)) .

A function f defined on [0,1] is called q -monotone if Δq
h f (x) � 0, for all h� 0. In par-

ticular a 1–monotone function is non-decreasing and a 2–monotone one is convex. It is
known (see, [9] for example) that the Bernstein polynomials preserve q -monotonicity
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for all orders q � 1. This property follows from the following identity, which will be
used later in this paper:

(DqBn f ) (x) =
(

n
q

)
q!
nq

n−q

∑
j=0

bn−q, j(x)
[

j
n
,
j +1
n

, . . . ,
j +q
n

; f

]
. (5)

Here, by [x0, . . . ,xq; f ] , we have denoted the divided difference of the function f on
the distinct points x0, . . . ,xq ∈ [0,1] , defined by the formulas

[x0; f ] = f (x0)

[
x0,x1, . . . ,xq−1,xq; f

]
=

[
x0, . . . ,xq−1; f

]− [x1, . . . ,xq; f ]
x0− xq

for q � 1. Given the divided difference [x,x+h, . . . ,x+qh; f ] and Δq
h f (x) , the follow-

ing identity is well-known:

[x,x+h, . . . ,x+qh; f ] =
1
q!

1
hq Δq

h f (x) (6)

U. Abel and D. Leviatan in [2] proved an analogous inequality of (4) for q -
monotone functions. More precisely, they proved the following theorem.

THEOREM A. Let q,n ∈ N . If f ∈C[0,1] is a q-monotone function, then for all
x,y ∈ [0,1] ,

sgn(x− y)q
n

∑
ν1,...,νq=0

q

∑
j=0

(−1)q− j
(

q
j

)( j

∏
i=1

bn,νi(x)

)(
q

∏
i= j+1

bn,νi(y)

)

×
∫ 1

0
f

(
ν1 + . . .+ νq + αt

qn+ α

)
dt � 0,

where α ∈ [0,1] .

The aim of this paper is to show that the α -Bernstein operator, Tn,α , preserves
q -monotonicity of all orders, q � 1 and to extend Theorem A. Our main results are
listed below, with the corresponding proofs given in Section 2.

THEOREM 1. The α -Bernstein operator, Tn,α , preserves q-monotonicity of all
orders q, q ∈ N .

Before giving the next result, we recall the definition of box-convexity. A function
f ∈C ([0,1]× [0,1]) is called box-convex of order (q,s) , [5], if for any distinct points
x0,x1, . . . ,xq ∈ [0,1] and any distinct points y0,y1, . . . ,ys ∈ [0,1][

x0,x1, . . . , xq

y0,y1, . . . , ys
; f

]
� 0,
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where[
x0, . . . , xq

y0, . . . , ys
; f

]
= [x0, . . .xq; [y0, . . . ,ys; f (x, ·)]] = [y0, . . . ,ys; [x0, . . . ,xq; f (·,y)]] .

THEOREM 2. Let α,β ∈ [0,1] be two fixed numbers and n,m be two natural
numbers. If Tn,m,α ,β : C ([0,1]× [0,1]) → C ([0,1]× [0,1]) is the tensorial product of
Tn,α and Tm,β , i.e.

Tn,m,α ,β ( f )(x,y) =
n

∑
i=0

m

∑
j=0

p(α)
n,i (x)p(β )

m, j(y) f

(
i
n
,

j
m

)
, (7)

then Tn,m,α ,β preserves (q,s)–box convexity, for all q,s ∈ N .

THEOREM 3. Let f ∈ C ([0,1]× [0,1]) be a (1,1)–box convex function and x1 ,
t1 , y1 , z1 ∈ [0,1] . Then

sgn(x1− t1)(y1 − z1)
n

∑
i=0

m

∑
j=0

(
p(α)

n,i (x1)− p(α)
n,i (t1)

)(
p(β )

m, j(y1)− p(β )
m, j(z1)

)
(8)

×A i
n , j

m
( f ) � 0,

where A i
n , j

m
( f ) =

∫ 1
0

∫ 1
0 f
(

i+au
n+a , j+bv

m+b

)
dudv, i = 0,1, . . . ,n, j = 0,1, . . . ,m, a and b

being two fixed positive numbers.

COROLLARY 4. Let f ∈ C[0,1] be a convex function and δ be a fixed positive
number. Then

sgn(x1− t1)(y1 − z1)
n

∑
i=0

m

∑
j=0

(
p(α)

n,i (x1)− p(α)
n,i (t1)

)(
p(β )

m, j(y1)− p(β )
m, j(z1)

)
(9)

×
∫ 1

0
f

(
1

2+ δ

(
i
n

+
j
m

+ δ t

))
dt � 0.

REMARK 5. For α = β = 1, δ = 0, x1 = y1 = x and t1 = z1 = y, m = n, we get
inequality (4).

2. Proofs

Proof of Theorem 1. Using Leibniz’s rule in (3) we get

DqTn,α( f ;x) =(1−α)
[
xDqBn−2

(
f

(
(n−2)t +2

n

)
;x

)
(10)

+(1− x)DqBn−2

(
f

(
(n−2)t

n

)
;x

)]
+ αDqBn ( f (t);x)
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+q

[
Dq−1Bn−2

(
f

(
(n−2)t +2

n

)
;x

)

−Dq−1Bn−2

(
f

(
(n−2)t

n

)
;x

)]
.

The first three terms in (10) are positive since Bernstein operators preserves q-monotonicity.
For the last two terms, by (5) we have

Dq−1Bn−2

(
f

(
(n−2)t +2

n

)
;x

)
−Dq−1Bn−2

(
f

(
(n−2)t

n

)
;x

)
(11)

=
(

n−2
q−1

)
(q−1)!
nq−1

n−q−1

∑
j=0

bn−q−1, j(x)

×
{[

j +2
n

,
j +3
n

, . . . ,
j +q+1

n
; f (t)

]
−
[

j
n
,
j +1
n

, . . . ,
j +q−1

n
; f (t)

]}
.

Using the recursive formula for divided differences, we obtain[
j +2
n

,
j +3
n

, . . . ,
j +q+1

n
; f (t)

]
−
[

j
n
,

j +1
n

, . . . ,
j +q−1

n
; f (t)

]
(12)

=
[

j +2
n

,
j +3
n

, . . . ,
j +q+1

n
; f (t)

]
−
[

j +1
n

,
j +2
n

, . . . ,
j +q
n

; f (t)
]

+
[

j +1
n

,
j +2
n

, . . . ,
j +q
n

; f (t)
]
−
[

j
n
,
j +1
n

, . . . ,
j +q−1

n
; f (t)

]

=
n
q

{[
j +1
n

,
j +2
n

, . . . ,
j +q+1

n
; f (t)

]
+
[

j
n
,

j +1
n

, . . . ,
j +q
n

; f (t)
]}

.

From (12), it follows that the last two terms are positive. This implies that DqTn,α( f ;x)�
0 and the proof is complete. �

For the proof of Theorem 2, we will use the following result due to T. Popoviciu,
[11].

LEMMA 1. ([11], pp. 78, T. Popoviciu) If f ∈Cq+s ([0,1]× [0,1]) and the mixed

derivative ∂ q+s f
∂xq∂ys exists and is continuous, then f is (q,s)-box convex if and only if

∂ q+s f
∂xq∂ys � 0. (13)

Proof of Theorem 2. We first note that the following indentity

Tn,m,α ,β ( f )(x,y) =(1−α)(1−β )L(1)
n−2,m−2( f )(x,y)+ (1−α)βL(2)

n−2,m( f )(x,y)

+ α(1−β )L(3)
n,m−2( f )(x,y)+ αβBn,m( f )(x,y),
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where

L(1)
n−2,m−2( f )(x,y) =

n

∑
i=0

m

∑
j=0

un−2,i(x)um−2, j(y) f

(
i
n
,

j
m

)
,

L(2)
n−2,m( f )(x,y) =

n

∑
i=0

m

∑
j=0

un−2,i(x)bm, j(y) f

(
i
n
,

j
m

)
,

L(3)
n,m−2( f )(x,y) =

n

∑
i=0

m

∑
j=0

bn,i(x)um−2, j(y) f

(
i
n
,

j
m

)

and

ur,k(t) = (1− t)br,k(t)+ tbr,k−2(t),

holds. We further have

∂ q+sL(1)
n−2,m−2( f )

∂xq∂ys (x,y)

=
n

∑
i=0

m

∑
j=0

[(1− x)Dq
xbn−2,i(x)+ xDq

xbn−2,i−2(x)]

×[(1− y)Ds
ybm−2, j(y)+ yDs

ybm−2, j−2(y)
]

f

(
i
n
,

j
m

)

+qs
n

∑
i=0

m

∑
j=0

Dq−1
x (bn−2,i−2(x)−bn−2,i(x))Ds−1

y

(
bm−2, j−2(y)−bm−2, j(y)

)
f

(
i
n
,

j
m

)

= ΣI +qsΣII,

where

ΣI = (1− x)(1− y)
∂ q+sBn−2,m−2( f1)

∂xq∂ys (x,y)+ x(1− y)
∂ q+sBn−2,m−2( f2)

∂xq∂ys (x,y)

+y(1− x)
∂ q+sBn−2,m−2( f3)

∂xq∂ys (x,y)+ xy
∂ q+sBn−2,m−2( f4)

∂xq∂ys (x,y),

ΣII =
n

∑
i=0

m

∑
j=0

Dq−1
x (bn−2,i−2(x)−bn−2,i(x))Ds−1

y

(
bm−2, j−2(y)−bm−2, j(y)

)
f

(
i
n
,

j
m

)
,

and f1, f2, f3, f4 are given by

f1(x,y) = f

(
(n−2)x

n
,
(m−2)y

m

)
, f2(x,y) = f

(
(n−2)x+2

n
,
(m−2)y

m

)
,

f3(x,y) = f

(
(n−2)x

n
,
(m−2)y+2

m

)
, f4(x,y) = f

(
(n−2)x+2

n
,
(m−2)y+2

m

)
.

Since the functions fi, i = 1,4 are (q,s)–box convex it follows that ΣI � 0. From
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equations (11) and (12) we get successively

ΣII =
m
s

(
m−2
s−2

)
(s−1)!
ms−1

n

∑
i=0

Dq−1
x (bn−2,i−2(x)−bn−2,i(x))

×
m−s−1

∑
j=0

bm−s−1, j(y)

{[
j +1
m−2

,
j +2
m−2

, . . . ,
j + s+1
m−2

; f1(x,y)
]

y

+
[

j
m−2

,
j +1
m−2

, . . . ,
j + s

m−2
; f1(x,y)

]
y

}

=
n
q

m
s

(
n−2
q−1

)(
m−2
s−1

)
(q−1)!
nq−1

(s−1)!
ms−1

n−q−1

∑
i=0

m−s−1

∑
j=0

bn−q−1,i(x)bm−s−1, j(y)

×
([

i+1
n , . . . , i+q+1

n
j+1
m , . . . , j+s+1

m

; f

]
+

[
i+1
n , . . . , i+q+1

n
j
m , . . . , j+s

m

; f

]
+

[
i
n , . . . , i+q

n
j+1
m , . . . , j+s+1

m

; f

]

+

[
i
n , . . . , i+q

n
j
m , . . . , j+s

m

; f

])
.

This leads to ΣII � 0. In a similar way one can prove that

∂ q+sL(2)
n−2,m( f )

∂xq∂ys (x,y) � 0

and

∂ q+sL(3)
n,m−2( f )

∂xq∂ys (x,y) � 0.

Therefore inequaltity (13) of Lemma 1 is satisfied by Tn,m,α ,β ( f ) for any (q,s)-box
convex function. This concludes our proof. �

Proof of Theorem 3. Since for any continuous function g : [0,1]× [0,1] → [0,∞]
we have

sgn(x1− t1)(y1 − z1)
∫ x1

t1

∫ y1

z1
g(x,y)dxdy � 0

it is sufficient to prove the theorem for the case x1 > t1 and y1 > z1 .
We have

n

∑
i=0

m

∑
j=0

(
p(α)

n,i (x1)− p(α)
n,i (t1)

)(
p(β )

m, j(y1)− p(β )
m, j(z1)

)
g

(
i
n
,

j
m

)
(14)

=
∫ x1

t1

∫ y1

z1

n

∑
i=0

m

∑
j=0

p(α)′
n,i (u)p(β )′

m, j (v)g
(

i
n
,

j
m

)
dudv

=
∫ x1

t1

∫ y1

z1

∂ 2Tn,m,α ,β (g)
∂x∂y

(u,v)dudv,
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for any g ∈C ([0,1]× [0,1]). If g is (1,1)-box convex function, by virtue of Theorem
2, we obtain

∂ 2Tn,m,α ,β (g)
∂x∂y

� 0. (15)

If f is a (1,1)–box convex function, then

g(x,y) =
∫ 1

0

∫ 1

0
f

(
nx+au
n+a

,
mx+bv
m+b

)
dudv (16)

is also a (1,1)–box convex function. Now, Theorem 3 follows from (15) with g given
by (16). �

Proof of Corollary 4. If f is a convex function, then the function h , defined by

h(x,y) =
∫ 1

0
f

(
1

2+ δ
(x+ y+ δ t)

)
dt

is a (1,1)–box convex function on [0,1]× [0,1] for any δ � 0. Now, (9) follows from
(15) with g := h . �

We conclude this section by raising the following question.

PROBLEM. Let q,s be two natural numbers, q,s � 2 and let xk,tk ∈ [0,1],k =
1, . . . ,q such that xk �= tk and yi,zi ∈ [0,1], i = 1, . . . ,s be such that yi �= zi . If g ∈
C ([0,1]× [0,1]) is a (q,s)–box convex function, prove or disprove that

sgn

(
q

∏
k=1

(xk − tk)

)(
s

∏
i=1

(yi − zi)

)
(17)

×
n

∑
i1,...,ik=0

m

∑
j1,..., js=0

(
q

∏
k=1

(
p(α)

n,ik
(xk)− p(α)

n,ik
(tk)
))( s

∏
r=1

(
p(β )

m, jr(yr)− p(β )
m,sr(zr)

))

×g

(
i1 + . . .+ iq

mq
,
j1 + . . .+ js

ns

)
� 0.

REMARK 6. For α = β = 1 the assertion is true, [6]. For α = β = 1, s = 0, m = n

and g(x,y) =
∫ 1
0 f
(

nx+αt
qn+α

)
dt , (17) is equivalent to the inequality from Theorem A, [2].

3. Conclusions and future work

In this paper we prove that the α -Bernstein operators preserve q -monotonicity of
all orders. We have also extended the result obtained by U. Abel and D. Leviatan in
[2]. In the end of Section 2, we proposed an open problem related to (q,s)–box convex
functions, that further extends the results from [2].

Acknowledgements. The authors would like to thank the referees for their valuable
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