ON q-MONOTONICITY OF α-BERNSTEIN OPERATORS

Bogdan Gavrea, Ioan Gavrea and Daniel Ianoşi*

(Communicated by J. Jakšetić)

Abstract

In this paper we show that α-Bernstein operators preserve q-monotonicity of all orders. We investigate the tensor product of two such operators and show that it preserves (q, s) box convexity. Some Raşa type inequalities for the α-Bernstein operators are also derived.

1. Introduction

In [4], the following generalization of the Bernstein operators depending on a nonnegative real parameter was derived. Given a function $f(x)$ on $[0,1]$, for each positive integer n and any fixed real α, the so called α-Bernstein operator for $f(x)$ is defined as

$$
\begin{equation*}
T_{n, \alpha}(f ; x)=\sum_{i=0}^{n} p_{n, i}^{(\alpha)}(x) f\left(\frac{i}{n}\right), \tag{1}
\end{equation*}
$$

where $p_{1,0}^{(\alpha)}(x)=1-x, p_{1,1}^{(\alpha)}(x)=x$ and

$$
\begin{aligned}
p_{n, i}^{(\alpha)}(x)= & {\left[\binom{n-2}{i}(1-\alpha) x+\binom{n-2}{i-2}(1-\alpha)(1-x)+\binom{n}{i} \alpha x(1-x)\right] } \\
& \times x^{i-1}(1-x)^{n-i-1},
\end{aligned}
$$

for $n \geqslant 2, x \in[0,1]$. Here the binomial coefficients $\binom{k}{l}$ are given by

$$
\binom{k}{l}=\left\{\begin{array}{l}
\frac{k!}{l!(k-l)!}, \text { if } 0 \leqslant l \leqslant k \\
0, \text { else }
\end{array}\right.
$$

When $\alpha=1$, the α-Bernstein operator reduces to the classical Bernstein operator

$$
T_{n, 1}(f ; x)=B_{n}(f ; x)=\sum_{i=0}^{n} b_{n, i}(x) f\left(\frac{i}{n}\right), n \in \mathbb{N},
$$

Mathematics subject classification (2020): 41A36, 41A17.
Keywords and phrases: α-Bernstein operators, q-monotonicity, shape preserving, polynomial inequalities.

* Corresponding author.
where $b_{n, i}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}, i, n \in \mathbb{N}$.
In this paper we will consider only α-Bernstein operators with $\alpha \in[0,1]$. Under this assumption, the operators $T_{n, \alpha}$ are linear positive operators.

The rate of convergence and a Voronovskaja type theorem are given in [4]. The operators $T_{n, \alpha}$ preserve monotonicity and convexity ([4], Theorem 3.3 and Theorem 4.1.).

We observe that $p_{n, i}^{(\alpha)}(x)$ can be written in terms of the Bernstein basis as

$$
\begin{equation*}
p_{n, i}^{(\alpha)}(x)=(1-\alpha)(1-x) b_{n-2, i}(x)+(1-\alpha) x b_{n-2, i-2}(x)+\alpha b_{n, i}(x), \quad i, n \in \mathbb{N} \tag{2}
\end{equation*}
$$

It follows from (2) that the α-Bernstein operator $T_{n, \alpha}$ can be written in terms of the Bernstein operators

$$
\begin{align*}
T_{n, \alpha}(f ; x)= & (1-\alpha)(1-x) B_{n-2}\left(f\left(\frac{n-2}{n} t\right) ; x\right) \tag{3}\\
& +(1-\alpha) x B_{n-2}\left(f\left(\frac{(n-2) t+2}{n}\right) ; x\right)+\alpha B_{n}(f(t) ; x)
\end{align*}
$$

where $B_{k}(f(a t+b) ; x)$ is the Bernstein polynomial of degree k, corresponding to the function $g(t)=f(a t+b)$ evaluated at x.

We will use identity (3) to prove some new properties of the α-Bernstein operators $T_{n, \alpha}, n \in \mathbb{N}, \alpha \in(0,1)$.

In [10], J. Mrowiec, T. Rajba and S. Wąsowicz solved for the first time the following problem, raised by I. Raşa ([12], Problem 2, p.164), related to the preservation of convexity by the Bernstein-Schnabl operators. In [8], Raşa's conjecture was studied for the case of Baskakov-Mastroianni operators.

Problem. Prove or disprove that

$$
\begin{equation*}
\sum_{i, j=0}^{n}\left(b_{n, i}(x) b_{n, j}(x)+b_{n, i}(y) b_{n, j}(y)-2 b_{n, i}(x) b_{n, j}(y)\right) f\left(\frac{i+j}{2 n}\right) \geqslant 0 \tag{4}
\end{equation*}
$$

for each convex function $f \in C[0,1]$ and for all $x, y \in[0,1]$.
A simple proof of (4) was given by U . Abel in [1]. In [3], [6] and [7], inequality (4) was proved in a more general context.

Given $f \in C[0,1]$, we define

$$
\Delta_{h}^{1} f(x):=\Delta_{h} f(x):=\left\{\begin{array}{l}
f(x+h)-f(x), \quad x, x+h \in[0,1] \\
0, \text { otherwise }
\end{array}\right.
$$

and for $q \geqslant 1$

$$
\Delta_{h}^{q+1} f(x):=\Delta_{h}^{q}\left(\Delta_{h} f(x)\right)
$$

A function f defined on $[0,1]$ is called q-monotone if $\Delta_{h}^{q} f(x) \geqslant 0$, for all $h \geqslant 0$. In particular a $1-$ monotone function is non-decreasing and a $2-$ monotone one is convex. It is known (see, [9] for example) that the Bernstein polynomials preserve q-monotonicity
for all orders $q \geqslant 1$. This property follows from the following identity, which will be used later in this paper:

$$
\begin{equation*}
\left(D^{q} B_{n} f\right)(x)=\binom{n}{q} \frac{q!}{n^{q}} \sum_{j=0}^{n-q} b_{n-q, j}(x)\left[\frac{j}{n}, \frac{j+1}{n}, \ldots, \frac{j+q}{n} ; f\right] . \tag{5}
\end{equation*}
$$

Here, by $\left[x_{0}, \ldots, x_{q} ; f\right]$, we have denoted the divided difference of the function f on the distinct points $x_{0}, \ldots, x_{q} \in[0,1]$, defined by the formulas

$$
\begin{gathered}
{\left[x_{0} ; f\right]=f\left(x_{0}\right)} \\
{\left[x_{0}, x_{1}, \ldots, x_{q-1}, x_{q} ; f\right]=\frac{\left[x_{0}, \ldots, x_{q-1} ; f\right]-\left[x_{1}, \ldots, x_{q} ; f\right]}{x_{0}-x_{q}}}
\end{gathered}
$$

for $q \geqslant 1$. Given the divided difference $[x, x+h, \ldots, x+q h ; f]$ and $\Delta_{h}^{q} f(x)$, the following identity is well-known:

$$
\begin{equation*}
[x, x+h, \ldots, x+q h ; f]=\frac{1}{q!} \frac{1}{h^{q}} \Delta_{h}^{q} f(x) \tag{6}
\end{equation*}
$$

U. Abel and D. Leviatan in [2] proved an analogous inequality of (4) for q monotone functions. More precisely, they proved the following theorem.

THEOREM A. Let $q, n \in \mathbb{N}$. If $f \in C[0,1]$ is a q-monotone function, then for all $x, y \in[0,1]$,

$$
\begin{gathered}
\operatorname{sgn}(x-y)^{q} \sum_{v_{1}, \ldots, v_{q}=0}^{n} \sum_{j=0}^{q}(-1)^{q-j}\binom{q}{j}\left(\prod_{i=1}^{j} b_{n, v_{i}}(x)\right)\left(\prod_{i=j+1}^{q} b_{n, v_{i}}(y)\right) \\
\times \int_{0}^{1} f\left(\frac{v_{1}+\ldots+v_{q}+\alpha t}{q n+\alpha}\right) d t \geqslant 0
\end{gathered}
$$

where $\alpha \in[0,1]$.
The aim of this paper is to show that the α-Bernstein operator, $T_{n, \alpha}$, preserves q-monotonicity of all orders, $q \geqslant 1$ and to extend Theorem A. Our main results are listed below, with the corresponding proofs given in Section 2.

THEOREM 1. The α-Bernstein operator, $T_{n, \alpha}$, preserves q-monotonicity of all orders $q, q \in \mathbb{N}$.

Before giving the next result, we recall the definition of box-convexity. A function $f \in C([0,1] \times[0,1])$ is called box-convex of order (q, s), [5], if for any distinct points $x_{0}, x_{1}, \ldots, x_{q} \in[0,1]$ and any distinct points $y_{0}, y_{1}, \ldots, y_{s} \in[0,1]$

$$
\left[\begin{array}{l}
x_{0}, x_{1}, \ldots, x_{q}, f \\
y_{0}, y_{1}, \ldots, y_{s}
\end{array}\right] \geqslant 0
$$

where

$$
\left[\begin{array}{l}
x_{0}, \ldots, x_{q} ; f \\
y_{0}, \ldots, y_{s}
\end{array}\right]=\left[x_{0}, \ldots x_{q} ;\left[y_{0}, \ldots, y_{s} ; f(x, \cdot)\right]\right]=\left[y_{0}, \ldots, y_{s} ;\left[x_{0}, \ldots, x_{q} ; f(\cdot, y)\right]\right] .
$$

THEOREM 2. Let $\alpha, \beta \in[0,1]$ be two fixed numbers and n, m be two natural numbers. If $T_{n, m, \alpha, \beta}: C([0,1] \times[0,1]) \rightarrow C([0,1] \times[0,1])$ is the tensorial product of $T_{n, \alpha}$ and $T_{m, \beta}$, i.e.

$$
\begin{equation*}
T_{n, m, \alpha, \beta}(f)(x, y)=\sum_{i=0}^{n} \sum_{j=0}^{m} p_{n, i}^{(\alpha)}(x) p_{m, j}^{(\beta)}(y) f\left(\frac{i}{n}, \frac{j}{m}\right) \tag{7}
\end{equation*}
$$

then $T_{n, m, \alpha, \beta}$ preserves (q, s)-box convexity, for all $q, s \in \mathbb{N}$.
THEOREM 3. Let $f \in C([0,1] \times[0,1])$ be a $(1,1)$-box convex function and x_{1}, $t_{1}, y_{1}, z_{1} \in[0,1]$. Then

$$
\begin{gather*}
\operatorname{sgn}\left(x_{1}-t_{1}\right)\left(y_{1}-z_{1}\right) \sum_{i=0}^{n} \sum_{j=0}^{m}\left(p_{n, i}^{(\alpha)}\left(x_{1}\right)-p_{n, i}^{(\alpha)}\left(t_{1}\right)\right)\left(p_{m, j}^{(\beta)}\left(y_{1}\right)-p_{m, j}^{(\beta)}\left(z_{1}\right)\right) \tag{8}\\
\times A_{\frac{i}{n}, \frac{j}{m}}(f) \geqslant 0
\end{gather*}
$$

where $A_{\frac{i}{n}, \frac{j}{m}}(f)=\int_{0}^{1} \int_{0}^{1} f\left(\frac{i+a u}{n+a}, \frac{j+b v}{m+b}\right) d u d v, i=0,1, \ldots, n, j=0,1, \ldots, m$, a and b being two fixed positive numbers.

Corollary 4. Let $f \in C[0,1]$ be a convex function and δ be a fixed positive number. Then

$$
\begin{align*}
\operatorname{sgn}\left(x_{1}-t_{1}\right)\left(y_{1}\right. & \left.-z_{1}\right) \sum_{i=0}^{n} \sum_{j=0}^{m}\left(p_{n, i}^{(\alpha)}\left(x_{1}\right)-p_{n, i}^{(\alpha)}\left(t_{1}\right)\right)\left(p_{m, j}^{(\beta)}\left(y_{1}\right)-p_{m, j}^{(\beta)}\left(z_{1}\right)\right) \tag{9}\\
& \times \int_{0}^{1} f\left(\frac{1}{2+\delta}\left(\frac{i}{n}+\frac{j}{m}+\delta t\right)\right) d t \geqslant 0
\end{align*}
$$

REMARK 5. For $\alpha=\beta=1, \delta=0, x_{1}=y_{1}=x$ and $t_{1}=z_{1}=y, m=n$, we get inequality (4).

2. Proofs

Proof of Theorem 1. Using Leibniz's rule in (3) we get

$$
\begin{align*}
D^{q} T_{n, \alpha}(f ; x)= & (1-\alpha)\left[x D^{q} B_{n-2}\left(f\left(\frac{(n-2) t+2}{n}\right) ; x\right)\right. \tag{10}\\
& \left.+(1-x) D^{q} B_{n-2}\left(f\left(\frac{(n-2) t}{n}\right) ; x\right)\right]+\alpha D^{q} B_{n}(f(t) ; x)
\end{align*}
$$

$$
\begin{aligned}
& +q\left[D^{q-1} B_{n-2}\left(f\left(\frac{(n-2) t+2}{n}\right) ; x\right)\right. \\
& \left.-D^{q-1} B_{n-2}\left(f\left(\frac{(n-2) t}{n}\right) ; x\right)\right]
\end{aligned}
$$

The first three terms in (10) are positive since Bernstein operators preserves q-monotonicity. For the last two terms, by (5) we have

$$
\begin{align*}
& D^{q-1} B_{n-2}\left(f\left(\frac{(n-2) t+2}{n}\right) ; x\right)-D^{q-1} B_{n-2}\left(f\left(\frac{(n-2) t}{n}\right) ; x\right) \tag{11}\\
& =\binom{n-2}{q-1} \frac{(q-1)!}{n^{q-1}} \sum_{j=0}^{n-q-1} b_{n-q-1, j}(x) \\
& \quad \times\left\{\left[\frac{j+2}{n}, \frac{j+3}{n}, \ldots, \frac{j+q+1}{n} ; f(t)\right]-\left[\frac{j}{n}, \frac{j+1}{n}, \ldots, \frac{j+q-1}{n} ; f(t)\right]\right\} .
\end{align*}
$$

Using the recursive formula for divided differences, we obtain

$$
\begin{align*}
& {\left[\frac{j+2}{n}, \frac{j+3}{n}, \ldots, \frac{j+q+1}{n} ; f(t)\right]-\left[\frac{j}{n}, \frac{j+1}{n}, \ldots, \frac{j+q-1}{n} ; f(t)\right] } \tag{12}\\
= & {\left[\frac{j+2}{n}, \frac{j+3}{n}, \ldots, \frac{j+q+1}{n} ; f(t)\right]-\left[\frac{j+1}{n}, \frac{j+2}{n}, \ldots, \frac{j+q}{n} ; f(t)\right] } \\
& +\left[\frac{j+1}{n}, \frac{j+2}{n}, \ldots, \frac{j+q}{n} ; f(t)\right]-\left[\frac{j}{n}, \frac{j+1}{n}, \ldots, \frac{j+q-1}{n} ; f(t)\right] \\
= & \frac{n}{q}\left\{\left[\frac{j+1}{n}, \frac{j+2}{n}, \ldots, \frac{j+q+1}{n} ; f(t)\right]+\left[\frac{j}{n}, \frac{j+1}{n}, \ldots, \frac{j+q}{n} ; f(t)\right]\right\} .
\end{align*}
$$

From (12), it follows that the last two terms are positive. This implies that $D^{q} T_{n, \alpha}(f ; x) \geqslant$ 0 and the proof is complete.

For the proof of Theorem 2, we will use the following result due to T. Popoviciu, [11].

Lemma 1. ([11], pp. 78, T. Popoviciu) If $f \in C^{q+s}([0,1] \times[0,1])$ and the mixed derivative $\frac{\partial^{q+s} f}{\partial x^{q} \partial y^{s}}$ exists and is continuous, then f is (q, s)-box convex if and only if

$$
\begin{equation*}
\frac{\partial^{q+s} f}{\partial x^{q} \partial y^{s}} \geqslant 0 \tag{13}
\end{equation*}
$$

Proof of Theorem 2. We first note that the following indentity

$$
\begin{aligned}
T_{n, m, \alpha, \beta}(f)(x, y)= & (1-\alpha)(1-\beta) L_{n-2, m-2}^{(1)}(f)(x, y)+(1-\alpha) \beta L_{n-2, m}^{(2)}(f)(x, y) \\
& +\alpha(1-\beta) L_{n, m-2}^{(3)}(f)(x, y)+\alpha \beta B_{n, m}(f)(x, y),
\end{aligned}
$$

where

$$
\begin{aligned}
L_{n-2, m-2}^{(1)}(f)(x, y) & =\sum_{i=0}^{n} \sum_{j=0}^{m} u_{n-2, i}(x) u_{m-2, j}(y) f\left(\frac{i}{n}, \frac{j}{m}\right), \\
L_{n-2, m}^{(2)}(f)(x, y) & =\sum_{i=0}^{n} \sum_{j=0}^{m} u_{n-2, i}(x) b_{m, j}(y) f\left(\frac{i}{n}, \frac{j}{m}\right), \\
L_{n, m-2}^{(3)}(f)(x, y) & =\sum_{i=0}^{n} \sum_{j=0}^{m} b_{n, i}(x) u_{m-2, j}(y) f\left(\frac{i}{n}, \frac{j}{m}\right)
\end{aligned}
$$

and

$$
u_{r, k}(t)=(1-t) b_{r, k}(t)+t b_{r, k-2}(t)
$$

holds. We further have

$$
\begin{aligned}
& \frac{\partial^{q+s} L_{n-2, m-2}^{(1)}(f)}{\partial x^{q} \partial y^{s}}(x, y) \\
= & \sum_{i=0}^{n} \sum_{j=0}^{m}\left[(1-x) D_{x}^{q} b_{n-2, i}(x)+x D_{x}^{q} b_{n-2, i-2}(x)\right] \\
& \times\left[(1-y) D_{y}^{s} b_{m-2, j}(y)+y D_{y}^{s} b_{m-2, j-2}(y)\right] f\left(\frac{i}{n}, \frac{j}{m}\right) \\
& +q s \sum_{i=0}^{n} \sum_{j=0}^{m} D_{x}^{q-1}\left(b_{n-2, i-2}(x)-b_{n-2, i}(x)\right) D_{y}^{s-1}\left(b_{m-2, j-2}(y)-b_{m-2, j}(y)\right) f\left(\frac{i}{n}, \frac{j}{m}\right) \\
= & \Sigma_{I}+q s \Sigma_{I I},
\end{aligned}
$$

where

$$
\begin{aligned}
\Sigma_{I}= & (1-x)(1-y) \frac{\partial^{q+s} B_{n-2, m-2}\left(f_{1}\right)}{\partial x^{q} \partial y^{s}}(x, y)+x(1-y) \frac{\partial^{q+s} B_{n-2, m-2}\left(f_{2}\right)}{\partial x^{q} \partial y^{s}}(x, y) \\
& +y(1-x) \frac{\partial^{q+s} B_{n-2, m-2}\left(f_{3}\right)}{\partial x^{q} \partial y^{s}}(x, y)+x y \frac{\partial^{q+s} B_{n-2, m-2}\left(f_{4}\right)}{\partial x^{q} \partial y^{s}}(x, y) \\
\Sigma_{I I}= & \sum_{i=0}^{n} \sum_{j=0}^{m} D_{x}^{q-1}\left(b_{n-2, i-2}(x)-b_{n-2, i}(x)\right) D_{y}^{s-1}\left(b_{m-2, j-2}(y)-b_{m-2, j}(y)\right) f\left(\frac{i}{n}, \frac{j}{m}\right),
\end{aligned}
$$

and $f_{1}, f_{2}, f_{3}, f_{4}$ are given by

$$
\begin{aligned}
& f_{1}(x, y)=f\left(\frac{(n-2) x}{n}, \frac{(m-2) y}{m}\right), \quad f_{2}(x, y)=f\left(\frac{(n-2) x+2}{n}, \frac{(m-2) y}{m}\right), \\
& f_{3}(x, y)=f\left(\frac{(n-2) x}{n}, \frac{(m-2) y+2}{m}\right), \quad f_{4}(x, y)=f\left(\frac{(n-2) x+2}{n}, \frac{(m-2) y+2}{m}\right) .
\end{aligned}
$$

Since the functions $f_{i}, i=\overline{1,4}$ are (q, s)-box convex it follows that $\Sigma_{I} \geqslant 0$. From
equations (11) and (12) we get successively

$$
\begin{aligned}
\Sigma_{I I}= & \frac{m}{s}\binom{m-2}{s-2} \frac{(s-1)!}{m^{s-1}} \sum_{i=0}^{n} D_{x}^{q-1}\left(b_{n-2, i-2}(x)-b_{n-2, i}(x)\right) \\
& \times \sum_{j=0}^{m-s-1} b_{m-s-1, j}(y)\left\{\left[\frac{j+1}{m-2}, \frac{j+2}{m-2}, \ldots, \frac{j+s+1}{m-2} ; f_{1}(x, y)\right]_{y}\right. \\
& \left.+\left[\frac{j}{m-2}, \frac{j+1}{m-2}, \ldots, \frac{j+s}{m-2} ; f_{1}(x, y)\right]_{y}\right\} \\
= & \frac{n}{q} \frac{m}{s}\binom{n-2}{q-1}\binom{m-2}{s-1} \frac{(q-1)!}{n^{q-1}} \frac{(s-1)!}{m^{s-1}} \sum_{i=0}^{n-q-1} \sum_{j=0}^{m-s-1} b_{n-q-1, i}(x) b_{m-s-1, j}(y) \\
& \times\left(\left[\begin{array}{l}
\frac{i+1}{n}, \ldots, \frac{i+q+1}{n} \\
\frac{j+1}{m}, \ldots, \frac{j+s+1}{m}
\end{array} f\right]+\left[\frac{i+1}{n}, \ldots, \frac{i+q+1}{\frac{j}{m}}, \ldots, \frac{j+s}{m} ; f\right]+\left[\begin{array}{l}
\frac{i}{n}, \ldots, \frac{i+q}{n} \\
\frac{j+1}{m}, \ldots, \frac{j+s+1}{m}
\end{array}, f\right]\right. \\
& \left.+\left[\begin{array}{l}
\frac{i}{n}, \ldots, \frac{i+q}{n} \\
\frac{j}{m}
\end{array}, \ldots, \frac{j+s}{m}\right]\right) .
\end{aligned}
$$

This leads to $\Sigma_{I I} \geqslant 0$. In a similar way one can prove that

$$
\frac{\partial^{q+s} L_{n-2, m}^{(2)}(f)}{\partial x^{q} \partial y^{s}}(x, y) \geqslant 0
$$

and

$$
\frac{\partial^{q+s} L_{n, m-2}^{(3)}(f)}{\partial x^{q} \partial y^{s}}(x, y) \geqslant 0
$$

Therefore inequaltity (13) of Lemma 1 is satisfied by $T_{n, m, \alpha, \beta}(f)$ for any (q, s)-box convex function. This concludes our proof.

Proof of Theorem 3. Since for any continuous function $g:[0,1] \times[0,1] \rightarrow[0, \infty]$ we have

$$
\operatorname{sgn}\left(x_{1}-t_{1}\right)\left(y_{1}-z_{1}\right) \int_{t_{1}}^{x_{1}} \int_{z_{1}}^{y_{1}} g(x, y) d x d y \geqslant 0
$$

it is sufficient to prove the theorem for the case $x_{1}>t_{1}$ and $y_{1}>z_{1}$.
We have

$$
\begin{align*}
& \sum_{i=0}^{n} \sum_{j=0}^{m}\left(p_{n, i}^{(\alpha)}\left(x_{1}\right)-p_{n, i}^{(\alpha)}\left(t_{1}\right)\right)\left(p_{m, j}^{(\beta)}\left(y_{1}\right)-p_{m, j}^{(\beta)}\left(z_{1}\right)\right) g\left(\frac{i}{n}, \frac{j}{m}\right) \tag{14}\\
& =\int_{t_{1}}^{x_{1}} \int_{z_{1}}^{y_{1}} \sum_{i=0}^{n} \sum_{j=0}^{m} p_{n, i}^{(\alpha)^{\prime}}(u) p_{m, j}^{(\beta)^{\prime}}(v) g\left(\frac{i}{n}, \frac{j}{m}\right) d u d v \\
& =\int_{t_{1}}^{x_{1}} \int_{z_{1}}^{y_{1}} \frac{\partial^{2} T_{n, m, \alpha, \beta}(g)}{\partial x \partial y}(u, v) d u d v,
\end{align*}
$$

for any $g \in C([0,1] \times[0,1])$. If g is $(1,1)$-box convex function, by virtue of Theorem 2 , we obtain

$$
\begin{equation*}
\frac{\partial^{2} T_{n, m, \alpha, \beta}(g)}{\partial x \partial y} \geqslant 0 \tag{15}
\end{equation*}
$$

If f is a $(1,1)$-box convex function, then

$$
\begin{equation*}
g(x, y)=\int_{0}^{1} \int_{0}^{1} f\left(\frac{n x+a u}{n+a}, \frac{m x+b v}{m+b}\right) d u d v \tag{16}
\end{equation*}
$$

is also a $(1,1)$-box convex function. Now, Theorem 3 follows from (15) with g given by (16).

Proof of Corollary 4. If f is a convex function, then the function h, defined by

$$
h(x, y)=\int_{0}^{1} f\left(\frac{1}{2+\delta}(x+y+\delta t)\right) d t
$$

is a $(1,1)$-box convex function on $[0,1] \times[0,1]$ for any $\delta \geqslant 0$. Now, (9) follows from (15) with $g:=h$.

We conclude this section by raising the following question.
Problem. Let q, s be two natural numbers, $q, s \geqslant 2$ and let $x_{k}, t_{k} \in[0,1], k=$ $1, \ldots, q$ such that $x_{k} \neq t_{k}$ and $y_{i}, z_{i} \in[0,1], i=1, \ldots, s$ be such that $y_{i} \neq z_{i}$. If $g \in$ $C([0,1] \times[0,1])$ is a (q, s)-box convex function, prove or disprove that

$$
\begin{align*}
& \operatorname{sgn}\left(\prod_{k=1}^{q}\left(x_{k}-t_{k}\right)\right)\left(\prod_{i=1}^{s}\left(y_{i}-z_{i}\right)\right) \tag{17}\\
& \times \sum_{i_{1}, \ldots, i_{k}=0}^{n} \sum_{j_{1}, \ldots, j_{s}=0}^{m}\left(\prod_{k=1}^{q}\left(p_{n, i_{k}}^{(\alpha)}\left(x_{k}\right)-p_{n, i_{k}}^{(\alpha)}\left(t_{k}\right)\right)\right)\left(\prod_{r=1}^{s}\left(p_{m, j_{r}}^{(\beta)}\left(y_{r}\right)-p_{m, s_{r}}^{(\beta)}\left(z_{r}\right)\right)\right) \\
& \times g\left(\frac{i_{1}+\ldots+i_{q}}{m q}, \frac{j_{1}+\ldots+j_{s}}{n s}\right) \geqslant 0 .
\end{align*}
$$

REMARK 6. For $\alpha=\beta=1$ the assertion is true, [6]. For $\alpha=\beta=1, s=0, m=n$ and $g(x, y)=\int_{0}^{1} f\left(\frac{n x+\alpha t}{q n+\alpha}\right) d t$, (17) is equivalent to the inequality from Theorem A, [2].

3. Conclusions and future work

In this paper we prove that the α-Bernstein operators preserve q-monotonicity of all orders. We have also extended the result obtained by U. Abel and D. Leviatan in [2]. In the end of Section 2, we proposed an open problem related to (q, s)-box convex functions, that further extends the results from [2].

Acknowledgements. The authors would like to thank the referees for their valuable comments and suggestions which helped in improving the quality of this article.

REFERENCES

[1] U. Abel, An inequality involving Bernstein polynomials and convex functions, Journal of Approximation Theory, 222 (2017), 1-7, https://doi.org/10.1016/j.jat.2017.05.006
[2] U. Abel, D. Leviatan, An extension of Raşa's conjecture to q-monotone functions, Results Math., 75 (4) (2020), 181-193, https://doi.org/10.1007/s00025-020-01308-y
[3] U. Abel, I. RAŞA, A sharpening of a problem on Bernstein polynomials and convex functions, Math.Inequal.Appl. 21 (3) (2018), 773-777. https://dx.doi.org/10.7153/mia-2018-21-55
[4] X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450 (2017), 244-261, https://doi.org/10.1016/j.jmaa.2016.12.075
[5] S. Gal, Shape Preserving Approximation by Real and Complex Polynomials, Berkhauser, Boston, 2008.
[6] B. Gavrea, I. Gavrea, An inequality involving some linear positive operators and box-convex functions, (submitted).
[7] B. Gavrea, On a convexity problem in connection with some linear operators, J. Math. Anal. Appl., 461 (1) (2018), 319-332, https://doi.org/10.1016/j.jmaa.2018.01.010
[8] B. GaVrea, On a convexity problem with applications to Mastroianni type operators, Math. Inequal. Appl., 23 (2020), 765-773, https://dx.doi.org/10.7153/mia-2020-23-64
[9] G. G. Lorentz, Bernstein Polynomials, Mathematical Expositions, No. 8, University of Toronto Press, Toronto, 1953.
[10] J. Mrowiec, T. Rajba, S. WA̧sowicz, A solution to the problem of Raşa conected with Bernstein polynomials, J. Math. Anal. Appl., 446 (1) (2017), 864-878, https://doi.org/10.1016/j.jmaa.2016.09.009
[11] T. Popoviciu, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Thèses de l'entre-deux-guerres, Faculte des Sciences de Paris, 1933.
[12] I. RaŞA, 2. Problem, p. 164. Ann. Univ. Paedagog. Crac. Stud. Math. 13, 139-169., In: Report of Meeting Conference on Ulam's Type Stability, Rytro, Poland, June 2-6 (2014).

Bogdan Gavrea
Department of Mathematics
Technical University of Cluj-Napoca
Str. Memorandumului nr. 28, Cluj-Napoca, 400114, Romania
e-mail: bogdan.gavrea@math.utcluj.ro
Ioan Gavrea
Department of Mathematics
Technical University of Cluj-Napoca
Str. Memorandumului nr. 28, Cluj-Napoca, 400114, Romania
e-mail: ioan.gavrea@math.utcluj.ro
Daniel Ianoşi
Department of Mathematics
Technical University of Cluj-Napoca
Str. Memorandumului nr. 28, Cluj-Napoca, 400114, Romania
e-mail: dan.ianosi@yahoo.com

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

